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This introductory chapter is meant to help those readers who are not yet 
proficient in the use of vector operators. 

We shall frequently refer to the fields of electric charges and currents. 
For example, we shall consider the force between two electric charges to 
arise from an interaction between either one of the charges and the field 
of the other. 
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Fig. 1-1. A vector A and its three 
component vectors Axx, A,.y, A,z 
which, when they are placed end to 
end, are equivalent to A .  The unit 
vectors X, y, Z point in the positive 
directions of the coordinate axes 
and are of unit magnitude. 

Mathematically , a field is a function that describes a physical quantity 
at all points in space. In scalar fields this quantity is specified by a single 
number for each point . Temperature , density , and electric potential are 
examples of scalar quantities that can vary from one point to another in 
space. In vector fields the physical quantity is a vector, specified by both a 
number and a direction. Wind velocity and gravitational force are 
examples of such vector fields . 

Vector quantities will be designated by boldface italic type, and unit 
vectors will carry a circumflex: X, y, Z. 

Scalar quantities will be designated by lightface italic type. 
We shall follow the usual custom of using right-hand Cartesian 

coordinate systems as in Fig .  1 - 1 :  the positive z-direction is the direction 
of advance of a right-hand screw rotated in the sense that turns the 
positive x-axis into the positive y-axis through the 90° angle . 

1 . 1  VECTOR ALGEBRA 

Figure 1-1  shows a vector A and its three components Ax> Ay, Az. If we 
define two vectors 

(1-1) 

where X, y, z are the unit vectors along the X-, y o, and z-axes, 
respectively, then 

A + B = (Ax + Bx)x + (Ay + By)Y + (Az + Bz)i, (1-2) 

A - B = (Ax - Bx)x + (Ay - By)Y + (Az - Bz)i, (1-3) 

A . B = AxBx + AyBy + AzBz = AB cos 1>, (1-4) 



x y 
A X B = A( Av 

Bx By 

as in Fig. 1-2, where 

z 
Az 

Bz 

Fig. 1-2. Two vectors A and Band 
the unit vector C, normal to the 
plane containing A and B. The 
positive directions for 4J and C 
follow the right-hand screw rule. 
The vector product A X B is equal 
to AB sin 4J c, and B X A = -A X 
B. 
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= A B sin <pc = C, (1-5) 

(1-6) 

is the magnitude of A, and similarly for B. 
The quantity A . B, which is read "A dot B ,"  is the scalar, or dot 

product of A and B, while A X B, read "A cross B ,"  is their vector, or 
cross product. 
1 . 1 . 1  Invariance 

The quantities A, B, and <p are independent of the choice of coordinate 
�ystem.  Such quantities are said to be invariant. A vector ,  say the 
gravitational force on a brick , is invariant, but its components are not ; 
t hey depend on the coordinate sytem. 

Both the dot and cross products are functions of only A, B, and <p and 
<lre thus also invariant . 

The sum and the difference , A + B and A - B, are themselves vectors 
and invariant. 

1 . 2  THE GRADIENT VI 
A scalar point-function is a scalar quantity, say temperature , that is a 
function of the coordinates. Consider a scalar point-function f that is 
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Fig. 1-3. A scalar-point function 
changes from f to f + df over the 
distance dl. 

continuous and differentiable . We wish to know how f changes over the 
infinitesimal distance dl in Fig. 1-3. The differential 

of of of df = - dx  + - dy + - dz ox oy oz 
is the scalar product of the two vectors 

and 

dl = dx i + dy Y + dz i 

Vf = of i + of y + of i. 
ox oy oz 

( 1 -7) 

(1-8) 

( 1 -9) 

The second vector , whose components are the rates of change of f with 
distance along the coordinate axes, is called the gradient of f. The symbol 

is read "del . "  
Note the value of the magnitude of the gradient: 

Thus 

_ [( Of)2 ( Of)2 ( of)2] 1/2 IVfl - - + - + - . ox oy oz 

df = Vf · dl = I Vflldll cos 8, 

where 8 is the angle between the vectors Vf and dl. 

(1-10) 

(1-11) 

(1-12) 
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What direction should one choose for dl to maximize dl? That 
direction is the one for which cos (J = 1 or (J = 0, that is, the direction of 
Vf. 

Therefore the gradient of a scalar function at a given point is a vector 
having the following properties : 

( 1) Its components are the rates of change of the function along the 
directions of the coordinate axes. 

(2) Its magnitude is the maximum rate of change with distance. 

(3) Its direction is that of the maximum rate of change with distance. 

14) It points toward larger values of the function. 

['he gradient is a vector point-function that derives from a scalar 
point-function. 

Again, we have two definitions: V I  is a vector whose magnitude and 
direction are those of the maximum space rate of change of I, and it is 
,tiso the vector of Eq. 1-9 . It is clear from the first definition that V I  is 
Irlvariant. 

Example THE ELEVATION OF A POINT ON THE 
SURFACE OF THE EARTH 

As an example of the gradient, consider Fig. 1-4 in which E, the 
elevation above sea level, is a function of the x- and y-coordinates 

x 

Fig. 1-4. Topographic map of a hill. The numbers shown give the 
elevation E in meters. The gradient of E is the slope of the hill at 
the point considered, and it points toward an increase in elevation . 
The arrow shows V E at one point where the elevation is 400 
meters. 
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measured on a horizontal plane. Points at a given elevation define 
a contour line. The gradient of the elevation E at a given point 
then has the following properties: 

( 1 )  It is perpendicular to  the contour line a t  that point. 

(2) Its magnitude is equal to the maximum rate of change of 
elevation with displacement measured in a horizontal plane at that 
point. 

(3) It points toward an increase in elevation .  

1 .3 INV ARIANCE OF THE OPERATOR V 
We have just seen that Vf is invariant. Is the operator V itself also 
invariant? This requires careful consideration because the components of 
V are not numbers , but operators. 

Let 5 and 5' be any two sets of Cartesian coordinates. Figure 1-5 shows 
two sets having a common origin, for simplicity. Then a given vector A 
has the components Ax> Ay, Az in 5, and Ax" Av" Az' in 5 ' ,  with 

Ay' = ayxAx + QyyAy + QyzAz , 

Az' = QzxAx + QzyAy + QzzAz· 

(1-13) 
(1-14) 
(1 -15) 

The a coefficients depend only on the orientation of 5' with respect to 5. 
If A is Vf, then its components are 

af 
Ax = -, ax 

v' y 

z' 

x' 

x 

( 1 -16) 

Fig. 1-5. A vector A and two 
sets of coordinates 5 and 5' 
having a common origin .  



IA FLUX 7 

and 

( 1 -17) 

Since this is true for any differentiable t, we know that 

a a a a 
-, = axx- + aXY- + axz , ax ax · ay az (1 -18) 

and similarly for a/ ay ' and a/ az ' .  
The components of  V in S ' , namely a/ax ' ,  a/ay ' , and a/az ' ,  relate to 

those of V in S, a/ax, a/ay, and a/az, in the same way as the 
components of any vector A in S ' and in S. Therefore V is invariant like 
any vector, and it transforms as a vector. We shall use this property of V 
in the following sections. 

1.4 FLUX 

It is often necessary to calculate the flux of a vector quantity through a 
')urface. By definition, the flux dIP of B through an infinitesimal surface 
dd is 

dlP = B·dd, (1-19) 

where the vector dd is normal to the surface. The flux dIP is therefore 
the component of the vector normal to the surface , multiplied by dd. For 
a surface of finite area d, 

IP = J B· dd. 
.vi 

(1-20) 

If the surface is closed, the vector dd points outward, by convention . 

Example FLUID FLOW 

Consider fluid flow. and let p be the density, v the velocity, and 
d::A an element of area situated in the fluid . The scalar 
product pv . dd is equal to the mass of fluid that crosses 
dd in 1 second, in the direction of the vector dd. Then the 
flux of pv through a closed surface , or the integral of 
pv . dd over that surface, is equal to the net rate at which 
mass leaves the enclosed volume. In an incompressible fluid 
this flux would be equal to zero . 
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Fig. 1-6. Element of volume 
dx dy dz and the vector B at the 
point P. 

1 .5 THE DIVERGENCE V· B 
The outward flux of a vector through a closed surface can be calculated 
either from the above equation or as follows. Consider an infinitesimal 
volume dx dy dz and a vector B, as in Fig .  1-6, whose components Bx, 
By, Bz are functions of x, y, z. The value of Bx at the center of the 
right-hand face may be taken to be the average value over that face . 
Through the right-hand face of the volume element, the outgoing flux is 

( 1 -21 ) 

since the normal component of B at the right-hand face is the 
x -component of B at that face. The volume being infinitesimal , we 
neglect higher-order derivatives of the components of B. 

At the left-hand face, the outgoing flux is 

( aBx dx) d<l> :::: - B --- dy dz. L x 
ax 2 ( 1-22) 

There is a minus sign before the parenthesis because Bxi points inward at 
this face and dszl. outward. 

Thus the outward flux through the two faces is 

(1-23) 

where dv is the volume of the infinitesimal element. 
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If we calculate the net flux through the other pairs of faces in the 
same manner ,  we find that the total outward flux for the element of 
volume dv is 

d _ (OBx oB)' OBz) 
<DtDt - ox + oy + oz dv. (1 -24) 

Suppose now that we have two adjoining infinitesimal volume elements 
and that we add the flux emerging through the bounding surface of the 
first volume to the flux emerging through the bounding surface of the 
second. At the common face, the fluxes are equal in magnitude but 
opposite in sign , and they cancel .  The sum, then, of the flux from the first 
volume and that from the second is the flux emerging through the 
bounding surface of the combined volumes. 

To extend this calculation to a finite volume, we sum the individual 
Iluxes for each of the infinitesimal volume elements in the finite volume, 
and so the total outward flux is 

_ J (OBx oB)' OBz) 
<Dtot - :::> + :::> + :::> dv. v vx vy vz 

At any given point in the volume , the quantity 

(1 -25) 

IS thus the outgoing flux per unit volume and is invariant . We call this the 
divergence of B at the point. 

The divergence of a vector point-function is a scalar point-function. 
According to the rule for the scalar product , we write the divergence of 

II as 

( 1-26) 

(he divergence is invariant also because both V and the scalar product 
.Ire invariant. 

1.6 THE DIVERGENCE THEOREM 

Now the total outward flux of a vector B is equal to the surface integral 
'If the normal outward component of B. Thus, if we denote by S'i the area 
'If the surface bounding v, the total outward flux is 
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J I (dBx dBy dBz) I <l>tot = B 0 d.<A = - + - + - dv = V oBdv. 
s1 " dX dY dZ " ( 1-27) 

These relations apply to any continuously differentiablet vector field B. 
Thus 

J B 0 d.<A = I V 0 B dv. 
.W v 

( 1 -28) 

This is the divergence theorem, also called Green's theorem, or Gauss's 
theorem. Note that the first integral involves only the values of B on the 
surface of area .st1. whereas the second involves the values of B throughout 
the volume v. 

Examples In an incompressible fluid. let p be the mass density and v the 
velocity at a given point. Then V· (pv) is everywhere equal to 
zero, since the outward mass flux per unit volume is zero. 

Within an explosion, V· (pv) is positive. 

1 .7 THE LINE INTEGRAL f�B· dl. 
CONSER V A TIVE FIELDS 

The integrals 

{Bodl, 
" II, B xdl, 

u 
and { fdl, 

" 

evaluated from the point a to the point b over some specified curve, are 
examples of line integrals. 

In the first , which is especially important, the term under the integral 
sign is the product of an element of length dl on the curve, multiplied by 
the local value of B according to the rule for the scalar product . 

A vector field B is conservative if the line integral of B 0 dl around any 
closed curve is zero: 

fB 0 dl = O. ( 1 -29) 

The circle on the integral sign indicates that the path of integration is 
closed. 

t A function is continuously differentiable if its first derivatives are continuous. 
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Fig. 1-7. Closed, rectangular 
path in the xy-plane, centered on 
the point P(x, y, 0) where the 

':;;;"""""'=C-������:------\7- vector B has the value illustrated 
by the arrow. The integration 
around the path proceeds in the 
direction of the arrows, in 
accordance with the right-hand 
screw rule applied to the z-axis. 

1.8 THE CURL VXB 
1m any given field B and for a closed path situated in the xy-plane, 

B . dl = Bx dx + By dy ( 1-30) 

.lI1d 

( 1 -31  ) 

Now consider the infinitesimal path in Fig. 1-7. There are two 
\\lntributions to the first integral on the right-hand side of Eg. 1 -3 1, one 
I I  v - dy /2 and one at y + dy/2: 

f ( dBx dy) ( dBx dY) 
B dx = B -- - dx - B + - - dx. x x 

� 2 x 
� 2 ( 1-32) 

I here is a minus sign before the second term because the path element at 
\ + dy /2 points in the negative x-direction . Therefore , for this in-
IlI1itesimal path , 

'\lInilarly, 

.lI1d 

f dBx 
Bx dx = - - dy dx. 

dy 

f dB,. 
By dy =-- dx dy, 

dX 

( 1 -33) 

( 1 -34 ) 
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f (OBy OB,,) B · dl =  - - - dx dy 
OX oy ( 1-35) 

for the infinitesimal path of Fig. 1-7. 
If we set 

( 1-36) 

then 

( 1 -37) 

where d.s1 = dx dy is the area enclosed by the infinitesimal path. Note 
that this is correct only if the line integral runs in the positive direction in 
the xy-plane, that is, in the direction in which one would turn a 
right-hand screw to make it advance in the positive direction along the 
z-axis. 

Consider now g3 and the other two symmetric quantities as the 
components of a vector 

V _ (OBz oBy)· � (OBx oBz) � (OBy OBx) � X B - - - - x + - -- y + --- z 
oy oz oz ox ox oy , ( 1 -38) 

which may be written as 

i j i 

0 0 0 ( 1 -39) V x B =  ox oy OZ 

Bx By Bz 

This is the curl of B. The quantity g3 is its z -component. 
If we choose a vector d.st1 that points in the direction of advance of a 

right-hand screw turned in the direction chosen for the line integral, then 
d.st1 = d.s1 i ( 1 -40) 

and 

f B • dl = ( V  X B) . d.st1. ( 1 -41) 

This means that the line integral of B . dl around the edge of the area d.st1 

is equal to the scalar product of the curl of B by this element of' area, 
with the above sign convention. 
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We have arrived at this result for an element of area dx dy in the 
\ I'-plane, Is this result general? Does it apply to any small area, whatever 
II� orientation with respect to the coordinate axes? It does if it is 
I llvariant. We have already seen that the scalar product is invariant. Thus 
I hc above line integral is invariant. We have also seen that the operator V 
; l I ld the vector product are invariant. Therefore V X B is invariant . This 
Illcans that V X B is a vector whose value , defined by Eq. 1 -41 , is 
I I ldependent of the particular coordinate axes used, as long as they form 
,I right-handed Cartesian system. Then Eq. 1-41 is indeed invariant; it 
does apply to any element of area d.rA, and 

( V X B) n = lim � J B . dl. 
d ..... O dYe ( 1 -42) 

I hus the component of the curl of a vector normal to a small surface of 
,Ilea .rA is equal to the line integral of the vector around the periphery C 
\" the surface , divided by d, when this area approaches zero. 

In general, V X B is not normal to B. See Prob. 1-7. 
The curl of a gradient is identically equal to zero: 

I \ample 

V X ( Vf) = O. ( 1-43) 

FLUID STREAM 

Near the bottom of a fluid stream the velocity v is proportional to 
the distance from the bottom. Set the z-axis parallel to the 
direction of flow and the x-axis perpendicular to the stream 
bottom. Then 

Vy =0, Vz = ex, (1-44) 

and the curl of the velocity vector is 

i y i 
0 0 0 

VXv= = -ey . 
ox oy oz (1-45) 

0 0 ex 

1.9 STOKES'S THEOREM 

I.q uation 1 -41 is true only for a path so small that V X B is nearly 
,!lnstant over the surface d.rA bounded by the path . What happens when 
Ihe path is so large that this condition is not met? We divide the 
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Fig. 1-8. An arbitrary surface of area 
d bounded by the curve C. The sum of 
the line integrals around the curvilinear 
squares shown is equal to the line 
integral around C. The positive 
direction for the vector dsi follows 
the right-hand screw rule. 

surface-any finite surfacet bounded by the path of integration in 
question-into elements of area dsIJ 1, dsIJ 2 , and so forth ,  as in Fig . 1-8 . 
For any one of these small areas, 

{B . dl = ( V  X B) . dsIJ. (1-46) 

We add the left-hand sides of these equations for all the dsIJ 's and then 
all the right-hand sides. The sum of the left-hand sides is the line integral 
around the external boundary , since there are always two equal and 
opposite contributions to the sum along every common side between 
adjacent dsIJ 's. The sum of the right-hand sides is merely the integral of 
( V  X B) . dsIJ over the finite surface. Thus 

t B . dl = J ( V  X B) . dsIJ , 
C .<1 

where .stl is the area of any open surface bounded by the curve C. 

(1-47) 

This is Stokes 's theorem. It relates the line integral over a given path to 
a surface integral over any finite surface bounded by that path. Figure 1-8 
illustrates the sign convention. 

t This must be an orientable surface , that is, a surface with two sides. Not all surfaces 
have two sides; a Mobius strip, for instance , has only one side. See J .  E. Mardsen and A. J .  
Tromba, Vector Calculus, Freeman, New York, 1976, p. 332. 

. 
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I tilmple CONSERVATIVE FIELDS 
Under what condition is a vector field conservative? In other 
words, under what condition is the line integral of B . dl around 
an arbitrary closed path equal to zero? From Stokes's theorem, 
the line integral of B . dl around an arbitrary closed path is zero if 
V X B = 0 everywhere. This condition is met if 

B =  VI 
or if 

V X B = O. 

(1-48) 

(1 -49) 

A field B that is the gradient of some scalar point-function I is 
therefore conservative. 

1. 10 THE LAPLACIAN OPERATOR V2 

I he divergence of the gradient of f is the Laplacian of f: 

( 1-50) 

where V2 is the Laplacian operator. 
The Laplacian is invariant because it is the result of two successive 

Illvariant operations. 
We have defined the Laplacian of a scalar point-function f. It is also 

Iiseful to define the Laplacian of a vector point-function B: 

2 _ 2 "2 2 
V B - V Bxx + " Bvy + V Bzz. (1-51) 

Ihe Laplacian of a vector is also invariant. Equation 1-5 1 applies only to 
( 'artesian coordinates. See Sec. 1.11.6. 

1.1 1  ORTHOGONAL CURVILINEAR COORDINATES 

It is frequently inconvenient, because of the symmetries that exist in 
l'Cftain fields, to use Cartesian coordinates. Of all the other possible 
l'oordinate systems, we shall restrict our discussion to cylindrical and 
spherical polar coordinates, the two most commonly used. 

We could calculate the gradient, the divergence, and so on, directly in 
hoth cylindrical and spherical coordinates .  However, it is easier and more 
general to introduce first the idea of orthogonal curvilinear coordinates. 

Consider the equation 
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Fig. 1-9. Element of volume in 
curvilinear coordinates . The unit  vectors 
q" q2 , q, are, respectively, normal to the 
ql' q2. q, surfaces at the point P. These 
unit vectors are mutually perpendicular 
and oriented in such a way that 
QIXQ2=Q3. 

f(x, y, z) = q, ( 1-52) 

in which q is a constant. This equation defines a family of surfaces in 
space, each member characterized by a particular value of the parameter 
q. An obvious example is x = q, which defines surfaces parallel to the 
yz-plane in Cartesian coordinates. 

Consider now three equations 

f,(x,y,z)=q3 (1-53) 

defining three families of surfaces that are mutually orthogonal . The 
intersection of three of these surfaces ,  one of each family, then defines a 
point in space, and q I, q2' q3 are the orthogonal curvilinear coordinates 
of that point , as in Fig. 1-9. 

Call dll an element of length normal to the surface q I. This is the 
distance between the surfaces ql and ql + dql in the infinitesimal region 
considered. Then 

(1-54 ) 

where hi is, in general , a function of the coordinates ql, Q2 , q3. Similarly, 

and (1-55) 

With Cartesian coordinates hi, hz, h3 are all unity. 
The unit vectors ill' il2, il3 are normal, respectively , to the ql' qz, q3 

surfaces and are oriented toward increasing values of these coordinates. 
We assign the subscripts 1,2,3 to the coordinates in order that 
ill X il2 = il3. 

The orientations of the three unit vectors vary, in general, with 
q), q2, q3· Only in Cartesian coordinates do the unit vectors point in fixed 
directions. 
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The volume element is 

(1 -56) 

We can now find the q's ,  the h's, the elements of length, and the 
ckments of volume for cylindrical and spherical coordinates. 

1.11 . 1  Cylindrical Coordinates 

III cylindrical coordinates, as in Fig. 1 - 10 ,  ql = p, q2 = ¢, q3 = Z. 
At P there are three mutually orthogonal directions defined by the 

t hree unit vectors p, �, and i. The unit vectors p and � do not maintain 
t he same directions in space as the point P moves about. However, at any 
,:lIVen point, the three unit vectors are mutually orthogonal. 

The vector that defines the position of P is 

r = pp + ZZ, ( 1 -57) 

Note that ¢ does not appear explicitly on the right-hand side; it is 
'recified by the orientation of p. 

If the coordinates ¢ and z of the point P remain constant while p 
Increases by dp, then P moves by dr = dp p. If p and z remain constant 
while ¢ increases by d¢, then dr = p d¢�. Finally, if p and ¢ are fixed 
while z increases by dz, then dr = dz i. For arbitrary increments dp, d¢, 
r/z, the distance element is thus 

dr = dp P + p d¢ � + dz Z. ( 1-58) 

Fig. 1-10. Cylindrical coordinates. 
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Fig. 1-11. Element of volume in 
cylindrical coordinates. 

Figure 1 - 1 1  shows the volume element whose edges are the elements of 
length corresponding to infinitesimal increments in the coordinates at the 
point P of Fig. 1 - 10 .  The infinitesimal volume is 

dv = p dp d1> dz. ( 1 -59) 

1 . 1 1 . 2  Spherical Coordinates 

In spherical coordinates the position of a point P has the coordinates 
r, e, 1> as in Fig. 1-12 .  Again, the unit vectors i, 8, (j, do not maintain the 
same orientations in space as P moves about . 

The vector r that defines the position of P is now simply ri, the 
coordinates e and 1> being given by the orientation of i. Also, 

--- -�--- ----- 1 

Fig. l-ll. Spherical coordinates. 
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Fig. 1-13. Element of  volume in 
spherical coordinates. 

dr = dr i + r de iJ + r sin e de/> tj,. ( 1-60) 

IlJe volume element , shown in Fig. 1 - 13 ,  is 

dv = r2 sin e dr de de/>. (1 -61 ) 

Table 1 -1  shows the correspondence between curvilinear, Cartesian, 
, \ Iindrical, and spherical coordinates. 

Note that the angle e/> in both cylindrical and spherical coordinates is 
II l l defined for points on the z-axis. 

With Cartesian coordinates, one uses the operator V for the gradient of 
I \calar point-function and for the divergence and curl of a vector 

I "lIllt-function . A single expression defines V, and we obtain the 
"I,lliient, the divergence, or the curl by performing the appropriate 

Table 1-1 

CURVILINEAR CARTESIAN CYLINDRICAL SPHERICAL 

ql x P r 
q2 y cp e 
q, z z cp hI 1 1 1 
h2 1 p r 
h3 1 1 r sin e 
q, i P r 

q2 y fj! iI 
q, i Z fj! 
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multiplication . This relatively simple situation is peculiar to the Cartesian 
coordinate system. With other coordinate systems, the divergence, 
gradient, and curl do not permit a single definition for Vbut require more 
elaborate expressions that we shall now derive. 

1 . 1 1 . 3 The Gradient 

The gradient is the vector rate of change of a scalar function f: 

For cylindrical coordinates , then , 

of _ 1 of - of _ Vf=-p +--tjJ +�z. 
op P 01> oz 

With spherical coordinates , 

of _ 1 of - 1 of-
Vf=-r+--8 + -- -tjJ 

or r oe r sin e 01> . 

(1-62) 

( 1-63) 

(1-64) 

(1-65) 

On the z-axis , 1> is undefined and both p and sin e are zero, so these 
two expressions are meaningless . 

1 . 1 1 .4 The Divergence 

To find the divergence , consider the volume element of Fig. 1-14. The 
quantity BI is the ql component of B at the center, and hi' h2' h3 are the 
h values at that point. Since the faces are mutually orthogonal , the 
outward flux through the left-hand face is 

Remember that h2 and h) may be functions of ql, just as B1 . We may 
neglect differentials of order higher than the third , and then 

(1-68) 
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/ / / _____________ 1--/ 

/ 
/ / 

Fig. 1-14. Element of volume , 
centered on P(q , .  q2. q3) where 
the vector B has the value shown 
by the arrow. 

I \v a similar argument , 

(1-69) 

I,\r the right-hand face. The net flux through this pair of faces is then 

( 1 -70) 

I f  we repeat the calculation for the other pairs of faces to find the net 
'illtward flux through the bounding surface and then divide by the volume 
,Ii the element, we obtain the divergence: 

In cylindrical coordinates, 

V . B  =l..� (pB ) +l.. aB<p + aBz 
p ap P p aep az 
Bp aBp 1 aB<p aBz =-+ - +- - +-
p ap p aep az 

In spherical coordinates, 

(1 -71)  

(1 -72) 

( 1-73) 
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V ·  B = �e [�(Brr2 sin e) + � (Ber sin e) + � (Bepr)] r SIn ar ae act> 
2 aBr Be 1 aBe 1 aBep = - Br + - + - cot e + - - + -- --r dr r r ae r sin e act> . 

(1-74) 

(1-75) 

These divergences are also meaningless on the z-aXIS, where p and 
sin e are both zero . 

1 . 1 1 .  5 The Curl 

We apply the fundamental definition given in Eq. 1-42: 

. 1 f ( V X B)I  = hm - B · dl, 
sl�O s1 (1-76) 

where the path of integration C lies in the surface q I = constant and 
where the direction of integration relates to the direction of the unit 
vector til by the right-hand screw rule. For the paths labeled a, b, c, d in 
Fig. 1-15, we have the following contributions to the line integral : 

The sum of these four terms, divided by the element of area is equal to 
the I-component of the curl of B. Neglecting higher-order differentials, 

q, 
Fig. 1-15. Path of integration for 
component 1 of the curl in curvilinear 
coordinates. 
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1 [0 0 ] = 
h2h3 Oq2 (B3h3) - Oq3 (B2h2) . 
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( 1 -77) 

( 1 -7S) 

( 'orresponding expressions for the other components of the curl follow 
II \ rotating the subscripts. Finally , 

hi'/! h2q2 hA3 
1 0 0 0 V x B = --

h[h2h3 Oql Oq2 Oq3 
( 1-79) 

hlBI h2B2 h3B3 

I II, cylindrical coordinates, 

p p� Z 
1 0 0 0 V x B = - -
P op oct> oz 

(1 -S0) 

Bp pBrf> Bz 

Illd for spherical coordinates 

r riJ r sin e� 

1 0 0 0 V x B =-- -
r2 sin e or oe oct> 

(1 -S1 ) 

Br rBf! r sin eB,p 

l lil'\e definitions are not valid on the z-axis . 

I 1 1.6 The Laplacian 

\\ l' calculate the Laplacian of a scalar function f in curvilinear coordi
I l.llc� by combining the expressions for the divergence and for the 
\'\ , Id ient: 

( 1 -S2) 

(I-S3) 
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For cylindrical coordinates, 

V2f =!� (p of) +� a2f + a2f 
p ap ap p2 a<t>2 az2 
1 of a2f 1 a2f a2f = --+ - + - - +
p ap ap2 p2 a<t>2 az2 ' 

except on the z-axis. For spherical coordinates, 

V2f = .!. � (r2 af\ + _1 __ a (Sin e _of) + -::-_1-;:-- a2f 
r2 or a;} r2 sin e ae ae r2 sin2 e a<t>2 

2 of a2f cot e of 1 a2f 1 a2f = - - + - +----+ - - + -
r or ar2 r2 ae r2 ae2 r2 sin2 e a<t>2 ' 

except ,  again, on the z-axis. 

( 1 -84) 

( 1 -85) 

( 1-86) 

( 1 -87) 

We have already seen in Sec. 1 . 10 that the Laplacian of a vector B in 
Cartesian coordinates is itself a vector whose components are the 
Laplacians of Bn By, Bz . Then 

V X ( V X B) = V( V · B) - V2B (1-88) 

is an identity in Cartesian coordinates. 
With other coordinates, V2B is, by definition, the vector whose 

components are those of V( V . B) - V X ( V X B) ,  and not the sum of the 
Laplacians of B1, B2, B3: 

V2B = V( V . B) - V X ( V  X B).  ( 1 -89) 

1 . 12 SUMMARY 

The gradient Vf is a vector whose magnitude and direction are those of 
the maximum rate of increase of the scalar point-function f with distance 
at a point . 

The flux cI> of a vector B through a surface of area .5Il is the scalar 

cI> = J B · dd. 
.'4 

(1 -20) 

If the surface is closed, the vector dd points outward, by convention. 
The divergence of B 
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aBx aBy aBz V · B = - + - +-ax ay az 

I' the outward flux of B per unit volume at a point . 
The divergence theorem states that 

f V . B dv = f B ·  dstJ, 
v stJ 

(1 -26) 

(1-28) 

\\ here .5Il is the area of the closed surface bounding the volume v. 
The line integral 

f B · dl 
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,'\Cf a specified curve is the sum of the B . dl terms for each element dl 
,>I the curve between points a and b. For a closed curve C that bounds an 
"Ilented surface S (see footnote to Sec. 1 .9) , we have Stokes 's theorem : 

f B . dl = L ( V  X B) . dstJ, (1-47) 

\\ here 

x Y i 
a a a (1-39) V X B =  ax ay az 
Bx By Bz 

I, t he curl of the vector point-function B. The above surface integral 
Il'plies to any oriented surface of area .5Il bounded by the curve C. 

I he Laplacian is the divergence of the gradient: 

V .  Vf = V2f = a2f + a2f + a2f . ax2 ay2 az2 

I Ill" Laplacian of a vector in Cartesian coordinates is defined as 

V2B = V2Bxi + V2ByY + V2Bzi. 

111 cylindrical coordinates (Figs . 1 - 10 and 1 - 1 1 ) ,  

r = pp + zi, 
dr = dp P + p d<t> � + dz i, 
dv = p dp d<t> dz. 

(1 -50) 

(1-51) 

(1-58) 
(1 -58) 
( 1 -59) 
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The formulas for the gradient , the divergence , the curl , and the 
Laplacian are given on the back of the front cover. These vector 
operators are meaningless on the z -axis, where p = o. 

In spherical coordinates (Figs . 1 - 12 and 1- 13) , 

r =  rr, 

dr = dr r + r de iJ + r sin e d</>,p, 
dv = r2 sin e dr de d</>. 

( 1 -60) 
( 1-6 1 ) 

The vector operators for spherical coordinates also appear on the back of 
the front cover. They are meaningless on the z-axis, where sin e = o. 

In other than Cartesian coordinates , one defines V2B as follows: 

V2B = V( V· B) - V x (V X B). ( 1 -89) 

We shall have occasion to use several other identities, given on the 
page facing the front cover. t 

PROBLEMS 

1 - 1 .  (1 . 1):j: Show that the angle between A = 2.i + 3y + Z and B = i - 6y + z is 
1 30 .6° .  

1 -2 .  (1 . 1) (a) Show that (A X B) · C is the volume of the parallelepiped whose 
edges are A ,  B, C, when the vectors start from the same point. 

(b) Show that (A X C) · B = -(A X B) ·  C. Observe how the sign 
changes when the cyclic order of the vectors changes. 

1 -3 .  (1 . 1) Let C be a plane closed curve. Prove that the area .511. enclosed by C 
is given by 

where the vector r goes from an arbitrary origin to the element dl on the 
curve and where the positive directions for .511. and for dl obey the 
right-hand screw rule. You can prove this as follows. 

t See Jean Van Bladel, Electromagnetic Fields, McGraw-Hill, New York, 1964, Appen
dixes 1 and 2, for an extensive collection of vector identities and theorems. 

t Section number .  
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(a) The origin is at 0, in the plane. and inside C. Show that the equation 
is valid. 

(b) The origin is at 0', again in the plane. but outside C. Show that the 
equation is still valid. 

(c) The origin is at 0", at some point outside the plane. Show that the 
integral is again valid . 

\ -4. (1 .2)  The vector r points from P'(x', y ', z ' ) to P(x, y, z ). 
(a) Show that if P is fixed and P' is allowed to move, then V'O/r) = 

rjrC, where r is the unit vector along r. 
(b) Show that, similarly, if P' is fixed and P is allowed to move, then 

V(1/r) = -rj r2. 

\-5. (1.6) (a) Show that V·r=3. 
(b) What is the flux of r through a spherical surface of radius a? 

1-6. (1. 6) Show that 

I Vfdv = Lfdsll, 
where S'l is the area of the closed surface bounding the volume v. You can 
prove this by multiplying both sides by c, where c is any vector independent 
of the coordinates . Then use Identity 3 (from inside the front cover) and 
the divergence theorem. 

7. (1.8) Since A X B is normal to B, it seems, offhand, that V X B must be 
normal to B. That is wrong. 

As a counterexample, show that (V X B) . B = - 1  if B == yi + Z. 

1 S (1. 11.1) (a) Check, by inspection of Fig. 1 - 10, that the unit vectors in 
Cartesian and cylindrical coordinates are related as follows: 

jJ = cos 1>i+ sin 1>Y, if, = -sin 1>i + C05 1> y, z = z. 

(b) Deduce from this set of equations that 

i = cos 1> jJ - sin 1> if" y = sin 1> jJ + cos 1> if" z = z. 

You can check this second set by inspection. 

1 'i (1.11. 2)  (a) Check, by inspection of Fig. 1 - 12 ,  that the unit vectors in 
Cartesian and spherical coordinates are related as follows: 

r = sin e cos 1> i + sin e sin 1> y + cos e z, 
iJ = cos e cos 1> i + cos e sin 1> y - sin e z, if, = -sin 1>i + cos 1> y. 
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(b) Show that 

i = sin e cos cp r + cos e cos cp 0 - sin cp tf" 
y = sin e sin cp r + cos e sin cp 0 + cos cp tf" i = cos er - sin fJ O. 

1-10. (1.11. 2) A vector F has the same magnitude and direction at all points in 
space. Choose the z-axis parallel to F. Then. in Cartesian and in cylindrical 
coordinates, F = Fi.. 

Express F in spherical coordinates. 

1-11. (1.11 .2)  Show, by differentiating the appropriate expressions for r, that 
the velocity; in cylindrical coordinates is pjJ + p¢tf, + ii, while in spherical 
coordinates it is ir + reo + r sin e ¢tf,. 

1-12. (1.11.5) A force F is of the form (K/r')r in spherical coordinates, where 
K is a constant. Is the field conservative? 

1-13. (1.11.6) Show that, in cylindrical coordinates, 

(a) Vp=jJ, (b) V· (pjJ) = 2, (c) VX(pjJ)=O, 

(d) VX (zjJ) =ptf" 
, I 

(e) V-p=-. 
p 

1 - 14. In the coordinate systems that we have used until now, vectors and the 
operator V all have three components . However. in relativity theory 
(Chaps . 13 to 17), it is often more convenient to consider only two 
components, one that is parallel to a given direction and one that is 
perpendicular. For example, one writes that r = rll + r[ . 

If the chosen direction is the x-axis, then 

Also, V = VII + V�, with 

Then 

Show that 

V . A = VII' A II + V 1 • A 1 • 

and r[ = yy + zi. 

A 0 A a 
V�=y-+z-. 

oy oz 
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1111'> short chapter discusses a second mathematical prerequisite for the 
I lilly of electromagnetic fields , namely, phasors. 
()ne uses phasors to represent quantities that are sine or cosine 

1 II I Iclions of the time , or of space coordinates, or of both. 
Ihe functions sin wt and cos wt play a major role in modern technol

" 1'\. mostly because of the relative ease with which they can be 
i" I IL'fated . They are also relatively easy to manipulate mathematically . 
\II other periodic functions, square waves , for example , are much more 

,1111 icult to generate and much more difficult to manipulate 
III, I t ilematically. 

()nc often has to solve linear differential equations involving sine and 
, t >'>inc functions with constant coefficients. As we shall see, the use of 
I>ildsors then has the immense advantage of transforming these 
.!lIkrcntial equations into simple algebraic equations .  

Hut first we must review complex numbers. 



·I() 

iy 
2 + 3, 

Fig. 2-1. The complex number 2 + 3j plotted 
"----'--'--__ -'--_-'--_-'1 \ in the complex plane. 

2.1 COMPLEX NUMBERS 

A complex number is of the form 
z = a + jb, (2-1) 

where j = (_1)112 and where a and b are real numbers, such as 2 .5 ,  3 ,  or 
- 10 . Complex numbers can be plotted in the complex plane, as in Fig. 
2-1. The quantity a is said to be the real part, and bj the imaginary part, 
of the complex number. 

One can express complex numbers in Cartesian form, as above, or in 
polar form, as follows. First , 

z = a + bj = r LOS (j + jr sin 8 = r(cos fJ + j sin ()), (2-2) 
where 

(2-3) 
is the modulus of the complex number z, and the angle e is its argument. 

With the angle (] expressed in radians, 

and 

(]1 84 80 cos (] = 1 - - + - - - + ... 2! 4 !  6 ! ' 

(]3 (}.'i (]7 
sin (] = (] - - + - - - + ... 3 ! 5 ! 7 ! ' 

. . (]2 j(]J (]4 j(]5 
exp ] (] = 1 + ] (] - 2! - 3! + 4! + 51 -- . . " 

cos (] + j sin (] = exp j(]. 

Of course , j Xj = -1, j xj xj = -j, etc. 
Thus, from Eq. 2-2, 

z = a + bj = r exp j(]. 

(2-4) 

(2-5) 

(2-6) 

(2-7) 

(2-8) 
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Wl' havl: hl:fl: a complex numbl:f expressed both in Cartesian form and in 
I"da r form. 

II ([ is positive , then 8 is in either the first or the fourth quadrant. If a is 
IWf!,at ive , 8 is in either the second or third quadrant. Use the proper 
.lllf!,lc! For example , the argument of -1 + j is 3;r/4, not -;r/4. 

Note that 

exp j;r = -1 ,  exp ( _ j 
3;) = _ j, exp j2;r = 1 .  (2-9) 

II 
z = a + bj = r exp j8, (2-10) 

Illl'n the complex conjugate of z is 

z* = a - bj = r exp (-j8). (2- 1 1  ) 

ro obtain the complex conjugate of a complex expression , one changes 
Ille sign before j everywhere. For example, if 

then a - bj z*= --
c - dj 

(2-12) 

2. 1 . 1  Addition and Subtraction of Complex Numbers 

With complex numbers in Cartesian form , one simply adds or subtracts 
I he real and imaginary parts separately: 

(a + bj) + (c + dj) = (a + c) + (b + d)j. (2-13) 

II  the numbers are in polar form, one first transforms them into Cartesian 
lurm. 

2. 1 .2 Multiplication and Division of Complex Numbers 

I n Cartesian form , one proceeds as follows: 

(a + bj)(e + dj) = (ae - bd) + (ad + be)j, 

a + bj _ (a + bj)(c - dj) (ac + bd) + (-ad + bc)j 
e + dj - (c + dj)(e - dj) c2 + d2 

In polar form , 

(2-14) 

(2- 15) 

(2-16) 
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(2-17) 

Remember to express the angles in radians. 

Examples 

4 + 5j 

2.2 PHASORS 

(4 + Sj) + (2 - 3j) = 6 + 2j, (2- 18) 

(4 + sd = ( 1 6  - 2S) + 40j = -9 + 40j, (2- 1 9 ) 

4 - 5" 4 - 5" 4 -S 
-----',-- = -�, = �-' = 0. 098 - O . 122j (2-20) 
(4 +Sj) (4-Sj) 1 6 + 25 4 1  ' 

( S exp j �) ( 2 exp j�) = \0 exp j 
S

6
n 

, 

S exp Un/3) _ (_ .!!.). 2 ( . /2 - 2 . S exp , . 
exp ,n ) 6 

(2-2 1 ) 

(2-22) 

Electric currents and voltages , electric fields , and magnetic fields are 
often sinusoidal functions of the time . For example , an alternating currellt 
is of the form 

I = 1m cos (WI + (Y), (2-23) 

where 1m is the maximum value of the current , W = 2:rrf is the circular, or 
angular, frequency, and f is the frequellcy. The quantity in parentheses is 
the phase, or phase angle, (Y being the phase at t = o. 

The point I of Fig . 2-2 rotates on a circle of radius 1m in the complex 
plane at an angular velocity w. Then its projection on the real axis is 

1.\ 

x 

Fig. 2-2. Poi nt I i n  the co mplex 
pla ne descr ibes a cir cle of ra dius 
1m a bo ut the or igin O. I t  
repr esents the pha sor 1m exp jwt. 
Its pro jectio n  o n  the x -a xi s  i s  
I", co s wt. 



2.2 PHASORS 33 

I = 1m cos wt. (2-24) 

We have set (Y = 0 for simplicity. Therefore 

1 = Re ( 1m exp jwt) = Re I ,  (2-25) 

where the operator Re means "Real part of what follows." The quantity 
in parentheses is the phasor I of Fig. 2-2: 

I = 1m exp jwt = 1m cos wt + jim sin wt. (2-26) 

So t he phasor I is equal to the variable I plus the parasitic imaginary term 
jIm sin wt. 

Then 

dl dn l 
dt = jw l ,  dtn = (jw rl ,  etc. (2-27) 

You can easily check that 

dl Re (jwl) = -, dt 

I n  other words, 

Re t = I, 

dl dl Re - = Rejwl = -dt dt ' 

etc . (2-28) 

(2-29) 

(2-30) 

etc. (2-31 )  

Therefore , if one replaces the variable I by the phasor I ,  then the 
operator d/ dt becomes a factor jw, and a differential equation involving 1 1  me derivatives becomes an algebraic equation ! 

A phasor can be multiplied by a complex number: 

(a + bj)1 = (a + bj)lm exp jwt = rIm exp j(wt + 8), 

where r is the modulus of a + bj and 8 is its argument. 
One can also divide a phasor by a complex number: 

I 1m --b . = - expj(wt - 8).  
a + J r 

(2-32) 

(2-33 ) 



34 PHASORS 

Instead of having a cosine function of the time t, one might have a 
cosine of a coordinate: 

E = Em cos kx. (2-34) 

The corresponding phasor would then be 

E = Em exp jkx. (2-35) 

In a wave , one has a cosine function of both t and, say, z :  

E = Em cos (wt - kz ) ,  (2-36) 

where k is the wave number. This wave travels in the positive direction of 
the z-axis. See Appendix C. In phasor form , 

and 

E = Em exp j(WI - kz) 

dE - = jwE dt ' 
dE - =  -jkE .  dz 

(2-37) 

(2-38) 

Vector quantities can also be expressed in phasor form . For example , a 
force could be a cosine function of time: 

F = (Fm cos wt)i. (2-39) 

Then 

F = (F,,, exp jwt)i (2-40) 

is both a vector and a phasor. 

2 .3  USING PHASORS 

To use phasors, one first expresses the sine or cosine functions in the 
form Xm cos (wt + 8), and then one uses the phasor 

x = Xm exp j (wt + 8) = Xm cos (wt + 8) + jXm sin (wt + 8). (2-41) 

One then performs the calculation with the phasors. The result almost 
invariably stays in phasor form . However ,  if one requires a real function, 
one simply rejects the imaginary part . 
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( a )  

F = Fill cos wI 
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Fig. 2-3. Mass m subjected to a force F = Fm cos wt, to a restoring 
force - kx  exerted by a spring, and to a damping force -b dx/dt 
exerted by a dashpot . At rest, x = O .  

SOLVING A SECOND-ORDER LINEAR 
DIFFERENTIAL EQUATION WITH PHASORS 

One of the most common types of differential equation is the 
following: 

d2x dx 
m -2 + b -+ kx = Fm cos wt. 

dt dt 
(2-42) 

Here all the terms are real. This equation describes, for example, 
the motion of a mass m subjected to the applied force Fm cos wt, 

to a restoring force -kx, and to a damping force -bu, as in Fig. 
2-3 : the product of the mass m by the acceleration d2x /dt2 is equal 
to the sum of the applied forces. 

The steady-state solution is of the form Xm cos (wt + 0), where 
Xm is the amplitude of the motion. It is a simple matter to solve 
this equation with phasors. We use the phasor 

x = Xm exp j( wt + 0), 

whose real part is the displacement x. We also set 

F = Fm exp jwt. 

Substitution into the differential equation is trivial: 

and 

-mw2x + bjwx + kx = F 

F X =  . 
k - mw2 + jbw 

. Thus , expressing the denominator in polar form, 

(2-43) 

(2-44) 

(2-45) 

(2-46) 
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bw 
(J = -arctan , . (2-47) 

k - mw� 

The actual displacement is the real part of the phasor x. or 

x = Xm cos (wt+ (J).  (2-48) 

2.4 PRODUCTS OF PHASORS 

One often requires the average value of the product of two sinusoidal 
quantities. Now if one tries to multiply phasors, one runs into trouble. 
Consider a simple example. Suppose an alternating voltage V = v,,, cos wt 
is applied across a resistance R. Then I = (V,,, cos wt)/ R. The instan
taneous power dissipated in the resistor is 

V2 cos2 wt Pins! = IV = m 
R ' 

and the average power is 

(2-49) 

(2-50) 

the average value of cos2 wt being ! . Here Vrms is the root mean square 
voltage , or the square root of the mean value of the square of V:  

v'n Vrms = 2112 = 0. 707Vm 

for a sine or a cosine function . 
If one uses the phasors 

V = Vm exp jwt and Vm exp jwt 
1 = R ' 

then 

IV = 
V� exp 2jwt 

R 

(2-51 ) 

(2-52) 

(2-53) 

whose real part (V�/ R) cos 2wt is neither the instantaneous nor the 
average power. So phasors must not be multiplied in this way . 

Suppose one has two sinusoidal quantities of the same frequency 
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A = Am cos wt and B = Bm cos (wt + 8). (2-54) 

I hen the time-averaged value of their product is 

(Am(cos wt)Bm cos (wt + 8»  
= (AmBm cos wt( cos (ut cos 8 - sin wt  sin 8» (2-55) 
= (AmBm(  cos2 wt cos 8 - cos wt sin wt sin 8) > ,  (2-56) 

where the signs ( . . .  > mean "average value of. " Now the average value 
ut cos2 wt over one full cycle is L as we saw above , while the average 
value of cos wt sin wt is zero. Then 

(A", (cos wt)Bm cos (wt + 8» = !AmBm cos 8 = A rms Brms cos 8. (2-57) 

If one uses the phasors 

A = Am expjwt and B = Bm expj(wt + 8) ,  (2-58) 

t hen the average value of the product of their real parts is given correctly 
hy 

� Re (AB* )  = ! Re {Am (exp jwt)Bm exp [ -j(wt + 8)]} 

= � Re [AmBm exp (-j8)] = !AmBm cos 8 

; IS above . 

2 . 5  QUOTIENTS OF PHASORS 

(2-59) 
(2-60) 
(2-61) 

Dividing one phasor by another of the same frequency yields a complex 
number: 

r1 exp j(wt + ct) rl .( {3) = - exPl ct -r2 exp j( wt + {3) r2 
. 

2.6 ROTATING VECTORS 

(2-62) 

I f  one expresses a rotating vector in phasor form , one runs into another 
k ind of trouble . Suppose 

E = fEm cos wt + jEm sin wt. (2-63) 
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Fig. 2-4. The vector E has a constant magnitude , but rotates counterclockwise at 
an angular velocity of w radians/second. Its time derivative is dE/dt, or jwE, in 
the direction shown. Its second time derivative is -w2E. 

Then the vector E rotates in real space as in Prob. 2 - 10  and Fig. 2-4 , and 
dE / dt is perpendicular to E. 

In phasor form, 

E = E", (exp jwt)i + E", exp j(wt - �)y 
and 

dE - =  jwE. dt 

(2-64 ) 

(2-65) 

This equation is correct . The trouble here is that it appears to say that 
dE/dt is collinear with E, which is wrong, as one can see from the figure . 
The factor j rotates a phasor by + J[ /2. 

2 . 7  NOTATION 

We have used boldface sans-serif type for phasors , and the usual lightface 
italic type for the other variables . However, it is customary to use 
lightface italic type for phasors , as for any other variable ,  and to omit the 
operator Re. So , in practice , we write 

x = Xm exp jwt, dx 
- = j(JJX, dt etc. , 

with the tacit understanding that the imaginary parts are parasitic. 

(2-66) 
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2 . 8  SUMMARY 

A complex number z is of the form a + bj, where j = ( - 1 )  112 and a and b 
are real numbers. It is the custom to plot complex numbers in the 
complex plane as in Fig. 2-1 , and thus 

z = a + bj = r exp (j8 ). (2-8) 

The complex conjugate of a complex number is its mirror image with 
respect to the real axis: 

z * = a - bj = r exp ( -j8). (2- 1 1  ) 

Addition and subtraction of complex numbers are simpler with the 
( 'artesian form: 

(a + bj) + (c + dj) = (a + c) + j(b + d) .  (2-13) 

I lowever, multiplication and division are simpler with the polar form: 

(2-16) 

(2-17) 

If one has to deal with the time derivatives of a quantity of the form 
I = I", cos wt, it is usually advisable to substitute the phasor 

I = 1m exp jwt = 1m cos wt + jIm sin wt. 

I hen 

dl - = jwL dt 

wi th the understanding that only the real parts are meaningfu l .  
The phasor 

E = Em exp j( OJt - kz) 

(2-26) 

(2-27) 

(2-37) 
I L'presents a plane wave traveling in the positive direction of the z-axis , 
where k is the wave number. The quantities E and Em can be vectors. 
! "hen E is both a phasor and a vector. 
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One occasionally requires the time average of the product of two 
sinusoidal quantities of same frequency such as I and V in an alternating
current circuit. This is given by � Re IV* , where I and V are phasors. 

The ratio of two phasors, again of the same frequency, is a complex 
number. 

PROBLEMS 

2-1 .  (2.1 )  Complex numbers in polar form are often written as rLe, where r is 
the modulus and e is the argument, expressed in radians. 

Express I + 2j in this way. 

2-2. (2.1 )  (a) Express the complex numbers I + 2j, -1 + 2j, - 1  - 2j, and 
1 - 2j in polar form. 

(b) Simplify the following expressions, leaving them in  Cartesian coordi
nates: (I + 2j)(1 - 2j ) , ( I  + 2j)2 ,  1 /( 1  + 2j )2 , ( 1  + 2j )( 1 - 2j). 

2-3 .  (2. 1 )  What happens to a complex number in  the complex plane when it  is 
(a) multiplied by j, (b) multiplied by /,  (c) divided by j? 

2-4. (2. 2 )  Find the real parts of the phasors ( 1 + 3j) exp j( wt + 2 )  and 
[exp j(wt + 2) ] 1 ( 1  + 3j) . 

2-5 . (2. 3)  Solve the following differential equation by means of phasors: 

d2x dx 
2 -, + 3 - + 4x = 5 cos 6t. 

dt- dt 

2-6. (2. 4 )  Find the rms values for the waveforms shown i n  Fig. 2-5. 

2-7 .  (2. 4)  A certain electric circuit draws a current of 1 . 00 ampere rms when it 
is fed at 120 volts rms, 60 hertz.  The current lags the voltage by TC/4 radian . 

(a) Express V and I in the form of phasors. and calculate the time
averaged power dissipation. 

(b) Now calculate the power \l;m'/,m, cos e, where e i s  TC / 4. 

2-8 . (2.5) Find the value of 

in Cartesian form. 

2-9. (2.5) Show that 

5. 1 4 exp j(wt + 3) 
3 . 72 exp j( ())( + 5) 

b 
In (a + bj) = 1 1n (a2 + b 2) + j arctan - ,  a 
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i f  a i s  positive . Then the point a + bj l ies  in  either the first or the fourth 
I.juadrant .  If a i s  not positive, be careful to use the proper angle (Sec. 2 . 1 ) .  

� - l O .  (2. 6) Show that the phasor V = v,n [x exp jwt + y exp j(wt - n/2)] repre
sents a vector of constant magnitude v,,, that rotates in  the positive 
direction in the xy-plane at the angular velocity w. 
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PROBLEMS 5R 

In Chaps . 3 to 12 we study the electric fields that result from 
accumulations of electric charges. The charges are usually stationary. 
When the charges do move, we assume that their velocities and 
accelerations are small . This ensures that the electric fields are nearly the 
same as if the charges were stationary. We also disregard magnetic fields . 

This first chapter on electric fields concerns Coulomb's and Gauss's 
laws. Both are fundamental and well established. 

3 . 1  COULOMB'S LAW 

Experiments show that the force exerted by a stationary point charge Qa 
on a stationary point charge Qb situated a distance r away is given by 
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Fig. 3-1. Charges Qa and Qb 
separated by a distance r. 
Coulomb's law gives the force Fab 
exerted by Qa on Qb if Qa is 
stationary. 

(3-1) 

I\ here the unit vector Tab points from Q" to Qb, as in Fig. 3- 1 .  This is 
( ( ) lllomb's law. t The force is repulsive if the two charges have the same 
\ Ibn . and attractive if they have different signs. The charges are measured 
1 1 1 coulombs , the force in newtons, and the distance in meters . The 
,'ol1stant E o is the permittivity of free space and has the following value : 

Eo = 8. 854 1 87817 X 1 0- 1 2 farad/meter. (3-2) 

Substituting the value of Eo ,  we find that 

newtons, (3-3) 

II i lae the factor of 9 is too large by about one part in a thousand. 
We shall not be able to define the coulomb until Chap. 22 . For the 

1 I 1oment , we may take the value of Eo to be given, and use this law as a 
1 ) lovisional definition of the unit of charge . 

To what extent does Coulomb's law remain valid when Qa and Qb are 
I I (  It stationary? 

I I )  If Q" is stationary and Qb is not , then Coulomb's law applies to the 
j ' ) lce on Qb , whatever the velocity of Qb' This is an experimental fact . 
I l ldeed , the trajectories of charged particles in oscilloscopes, mass 
',pcctrographs , and ion accelerators are invariably calculated on that 
i >d\is . 

I .' )  I f  Qa is not stationary, Coulomb's law is no longer strictly valid. 

I The exponent of r is known to be equal to 2 within one part in 1016 
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Coulomb's law applies to a pair of charges situated in a vacuum. It also 
applies in dielectrics and conductors if Fab is the direct force between Qa 
and Qb, irrespective of the forces arising from other charges within the 
medium . 

With extended charges, "the distance between the charges" has no 
definite meaning. Moreover, the presence of Qb can modify the charge 
distribution within Qa, and vice versa, leading to a complicated variation 
of force with distance . 

Electric forces in nature are enormous when compared to gravitational 
forces, for which 

m mh 
F = 6.67259 X 10- 1 1  -'-' 2- ' r (3-4 ) 

For example, the gravitational force on a proton at the surface of the sun 
(mass = 2 x 1030 kilograms, radius = 7 x lOs meters) is equal to the elec
tric force between one proton and one microgram of electrons, separated 
by a distance equal to the sun's radius. Or the electric repulsion between 
two protons (mass = 9 . 1  x 10-3 1 kilogram) is about 4.2 x 1042 times larger 
than their gravitational attraction . 

There are two reasons why, fortunately, we are not normally conscious 
of the enormous electric forces .  First, ordinary matter is truly neutral, or 
so it seems. Experiments have shown that no atom or molecule carries a 
charge greater than 10-20 times the electronic charge. Second, the 
mobility of some of the electrons in matter prevents the accumulation of 
any appreciable quantity of charge of either sign. 

3 . 1 . 1  The Ampere 

If charge flows through, say, a wire at the rate of 1 coulomb/second, then 
the current is 1 ampere. This is not an appropriate definition of the 
ampere, because it rests on the above provisional definition of the 
coulomb. See Sec. 22.3 . 1 .  

3 . 2  THE ELECTRIC FIELD STRENGTH E 

The force between two electric charges Qa and Qb results from the 
interaction of Qb with the field of Qa at the position of Qb, or vice versa. 

We thus define the electric field strength E at a point as the force 
exerted on a unit test charge situated at that point . Thus, at a distance r 
from charge Qa, 
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newtons/coulomb, or volts/meter, (3-5) 

where 1 volt equals 1 joule/coulomb . The field of Qa is the same, 
whether the test charge Qb lies in the field or not ,  even if Qb is larger 
than Qu. 

1 . 3  THE PRINCIPLE OF SUPERPOSITION 

I f there are several charges, each one imposes its own field, and the 
resultant E is simply the vector sum of all the individual E's. This is the 
I ,rincipie of superposition. 

For a continuous distribution of charge, as in Fig. 3-2, the electric field 
\ t rength at (x, y, z) is 

1 f pi E = -- - dv ' 4.7rEo v , r2 ' (3-6) 

where p is the volume charge density at the source point (x ' ,  y ' ,  z ' ) ,  as 
1 1 1  the figure, i is the unit vector pointing from the source point 
f "  (x ' ,  y ' ,  z ' ) to the field point P(x, y, z ) ,  r is the distance between these 
t wo points, and dv ' is the element of volume dx '  dy ' dz ' .  If there exist 
\ l I rface distributions of charge, then we must add a similar integral, with 

P(x, y, z) 

x 

Fig. 3-2. Charge distribution of volume density p occupying a volume v ' . The 
L"lt:ment of volume at P' (x ' ,  y ' , z ') has a field dE at P(x, y, z) , 
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p replaced by the surface charge density a and v ' by the area .st1 '  of the 
charged surfaces. 

3 . 4  THE ELECTRIC POTENTIAL V AND 
THE CURL OF E 

Consider a test charge Q ' that can move about in an electric field. The 
energy '(; required to move it at a constant velocity from a point A to a 
point B along a given path is 

'(; =  -r EQ ' · dl. (3-7) 

Because of the negative sign, '(; is the work done against the field. We 
assume that Q' is so small that it does not disturb the charge distributions 
appreciably. 

If the path is closed, the total work done on Q ' is 

(3-8) 

Let us evaluate this integral . We first consider the electric field of a 
single stationary point charge Q. Then 

1, EQ ' . dl = 
QQ' 1, r ·  :1 . 

r 4.7rEo r r (3-9) 

Now the term under the integral on the right is simply dr/r2, or -d( 1/r). 
But the sum of the increments of 1/r over a closed path is zero , since r 
has the same value at the beginning and at the end . So the line integral is 
zero, and the net work done in moving Q ' around any closed path in the 
field of Q, which is fixed, is zero . 

If the electric field is that of some fixed charge distribution , then the 
line integrals corresponding to each individual charge of the distribution 
are all zero . Thus , for any distribution of fixed charges, 

(3-10) 

An electrostatic field is therefore conservative (Example , Sec. 1 .9) . This 
important property follows from the fact that the Coulomb force is a 
central force: the force in the field of a point charge is radial . 
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Fig. 3-3. The potential 
difference VA - VB between two 
points is equal to the line integral 
of E ·  dl from A to B, where E is 
the electric field strength and dl 
is an element of the path along 
which the integral runs. The light 
lines are lines of E. 

We can now show that the work done in moving a test charge at a 
constant velocity from a point A to a point B is independent of the path . 
I ,et m and n be any two paths leading from A to B. Then these two paths 
together form a closed curve, and the work done in going from A to B 
; l long m and then from B back to A along n is zero . Then the work done 
I II going from A to B is the same along m as it is along n. 

Now let us choose a datum point R(xo, Yo , zo), and let us define a 
,calar function V of P(x, y, z )  such that 

(3- 1 1 )  

Ihis definition i s  unambiguous because the integral i s  the same for all 
paths leading from P to R. Then , for any pair of points A and B, 

(3-12) 

; IS  in Fig . 3-3, and therefore 

E =  - VV. (3- 13) 

l 'he electric potential V (x, y, z ) describes the field completely. The 
lIegative sign makes E point toward a decrease in V. 

Note that V is not uniquely defined, because point R is arbitrary . In 
fact , one can add to V any quantity that is independent of the coordinates 
without affecting E. 
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From Eq. 3-10 and from Stokes's theorem (Sec. 1 .9) , 

V X E = O. (3-14) 

This is also obvious from the fact that 

v X E = - V X VV = O. (3-15) 

Remember that we are dealing here with static fields . If  there were 
time-dependent currents , V X E would not necessarily be zero, and - VV 
would then describe only part of E. We shall investigate these more 
complicated phenomena later. 

3 .4 . 1  The Electric Potential V at a Point 

Equation 3-12 shows that E concerns only differences between the 
potentials at two points. When one wishes to speak of the potential at a 
given point , one must arbitrarily define V in a given region of space to be 
zero. In the previous section , for instance , we made V equal to zero at 
point R. When the charges extend over only a finite region , it is usually 
convenient to choose the potential V at infinity to be zero . Then, at 
point P, 

V = f E ·  dl. (3-16) 

The energy '{; required to bring a charge Q from a point where V is 
zero, by definition , to P is VQ. Thus V is '#{/Q, and the unit of V is 
1 joule/coulomb, or 1 volt. 

If the field is that of a single point charge, then 

V =  -- - = --fOO Q dr Q 
2 . 

r 41fE 0 r 41fE 0' 

The sign of this V is the same as that of Q. 

(3-17) 

The principle of superposition applies to V as well as to E, and for any 
charge distribution of density p, 

1 f P dv ' V = 41fEo u '-'- ' 
(3-18) 

with , as in Fig .  3-2 . The volume v ' encloses all the charges . If there are 
surface charges, one adds a surface integral. 
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For some geometries , this integral diverges . Then one calculates E 
directly , after which one integrates to find V. 

3 . 5  THE ELECTRIC FIELD INSIDE AND OUTSIDE 
MACROSCOPIC BODIES 

Macroscopic bodies consist of positively charged nuclei and negative 
c· lectrons . This brings up three questions . 

( 1 )  Can one calculate the field outside an electrically charged body by 
. Issuming that the charge distribution inside the body is continuous? If so, 
I hen one can calculate the field by integrating over the charge distribu
l ion . Otherwise , one must find some other form of calculation. 

It is, in fact, usually appropriate to treat the discrete charges carried by 
l1uclei and by electrons within macroscopic bodies as though they were 
c'ontinuous, Even the largest nuclei have diameters that are only of the 
mder of 10- 14 meter. Nuclei and electrons are so small and so closely 
packed , compared to the dimensions of ordinary macroscopic objects, 
t hat one may assume a smoothly varying electric charge density measured 
in coulombs per cubic meter or per square meter. 

(2) Now what about the electric field inside a charged body? Clearly 
t he electric field strength in the immediate neighborhood of a nucleus or 
( I f  an electron is enormous . Also at a given fixed point , this electric field 
changes erratically with time, since the charges are never perfectly 
\ tationary , It is not useful for our purposes to look at the electric field as 
l iosely as that. We shall be satisfied to calculate space- and time-averaged 
\ alues of E and V inside a charged body by assuming a continuous 
d i stribution of charge . 

(3) Is it, then , really possible to define the electric field at a point P 
I l l side a continuously distributed charge? It appears at first sight that the 
, I V  contributed by the charge element p dv ' at P is infinite, since r is 
lero .  In fact, it is not infinite , 

Consider a spherical shell of thickness dr and radius r centered on P. 
I he charge in this shell contributes at P a dV of (4lCr2 dr p)/  (4lCEor) = 
, ilr p. Another shell of smaller radius contributes a smaller dV. The 
( 'kctric potential V therefore converges, and the integral is finite. A 
\ l l11ilar argument shows that E also converges. 

One can therefore calculate the electric fields of real charge distribu
I Ions by the usual techniques of the integral calculus, both inside and 
" lItside the distributions, 
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3 .6  EQUIPOTENTIAL SURFACES AND LINES OF E 

The set of all points in space that are at a given potential defines an 
equipotential surface. For example, the equipotential surfaces about a 
point charge are concentric spheres . Since E = - VV (Eq . 3-13) , E is 
everywhere normal to the equipotential surfaces (Sec. 1 .2) . 

If we join end-to-end infinitesimal vectors ds pointing in the direction 
of E, we obtain a line of E that is everywhere normal to the equipotential 
surfaces . We shall return to lines of E in Sec. 6 .5 . 1 .  

3 .7  GAUSS'S LAW 

Gauss's law relates the flux of E through a closed surface to the total 
charge enclosed within that surface . 

Consider Fig. 3-4, in which a finite volume v bounded by a surface s1 
encloses a charge Q. We can calculate the outward flux of E through s1 
as follows . The flux of E through the element of area dd is 

Q ,. · dd E · dd =----z- ·  4JrEo r 

Now '" dd is the projection of dd on a plane normal to 1-. Then 

Q E · dd = -- dQ 4JrEo ' 

where dQ is the solid angle subtended by dd at the point P ' .  

(3- 1 9) 

(3-20) 

Fig. 3·4. A point charge Q located inside a volume v bounded by the surface of 
area sti. Gauss's law states that the surface integral of E . dd over sti is equal to 
Q/Eo. The vector dd points outward. 
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To find the outward flux of E, we integrate over the area d, or over a 
, , ) I id angle of 4n, Thus 

(3-21 ) 

If Q is outside the surface at P", the integral is equal to zero, The solid 
dngle subtended by any closed surface (or set of closed surfaces) is 4n at 
, \  point P'  inside and zero at a point P" outside. 

If more than one charge resides within v, the fluxes add algebraically 
,md the total flux of E leaving v is equal to the total enclosed charge Q 
,livided by E o : 

['his is Gauss 's law in integral form. t 
If the charge occupies a finite volume , then 

J E ·  dd = .! J P dv, 
Yi Eo 11 

(3-22) 

(3-23 ) 

where ,71 is the area of the surface bounding the volume v, and p is the 
dectric charge density. We assumed that there are no surface charges on 
, he bounding surface . 

If we apply the divergence theorem to the left-hand side , we have that 

J V ·  E dv = .! J p dv. 
v E o 11 

(3-24) 

Since this equation applies to any finite volume v, the integrands are 
:?qual and 

(3-25) 

at every point in space. 

t We have followed the usual custom of starting out with Coulomb's law and then 
deducing from it Gauss's law. This procedure seems rational enough, but the latter law is, 
in fact, more general. Indeed, Gauss's law applies to moving charges, whatever be their 
velocity or acceleration. while Coulomb's law, as stated in Sec. 3 . 1 .  is valid only if Qa is 
stationary. 
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This is Gauss's law in differential form. Observe that it relates the local 
charge density to the derivatives of E, and not to E itself. 

When it is expressed in differential form , Gauss's law is a local law in 
that it relates the behavior of E in the infinitesimal neighborhood of a 
given point to the value of the charge density at that point . However, 
when it is expressed in integral form , as in Eq. 3-22, Gauss's law is 
nonloeal, because it concerns a finite region and not a specific point in 
space . 

Many laws of nature, in particular the fundamental laws of electromag
netism, can be formulated in two such equivalent forms, one local and 
one non local. With the local forms of physical laws, in the guise of 
differential equations, one views phenomena as the result of processes 
occurring in the immediate neighborhood of every point in space. 

Example THE FIELD OF A UNIFORM SPHERICAL 
CHARGE DISTRIBUTION 

A spherical charge distribution has a radius R and a uniform 
density p, as in Fig. 3-5. Let us find E and V as functions of the 
distance r from the center of the sphere. By symmetry, both E and 
V are independent of the spherical coordinates e and <p. 

By symmetry , E is radial. It points outward if Q is positive. 
(a) The electric field strength E 
Outside the charge distribution, at P' where r > R, we imagine a 

sphere of radius r and surface area 4.7lr2. The enclosed charge is 

From Gauss's law, 

Q = �.7lR)p. 

Q R)p Eo = 4.7lEor2 = 3Eor2 

as if all the charge were situated at the center O. 

Fig. 3-5. Spherical charge distribution. 

(3-26) 

(3-27) 

P '  



pR' 

2'0 

pR 

3<" 

Fig. 3-6. The potential V and the electric field strength E as 
functions of the radial distance r from a spherical charge 
distribution of radius R and volume charge density p. 
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Inside the sphere, at P", the charge enclosed by the imaginary 
sphere is Q(rIR)3. Using again Gauss's law, we find that 

Q(rIR)3 Qr pr 
E· = = -- = -

, 4.7lEor2 4.7lER3 3Eo · 

Figure 3-6 shows E as a function of r. 

(3-28) 

Note that Ei = Eo at r = R. This is in accordance with Gauss's 
law because a spherical shell of infinitesimal thickness just inside 
the surface of the sphere carries zero charge . 

(b) The electric potential V 
At P' ,  

(3-29) 

because the field is the same as that of a point charge Q at O. 
To find the potential at P", we use Eq. 3-16: 

V; = r E dr = rEi dr + f Eo dr. (3-30) 

The last integral is simply the potential at r = R of a point charge 
Q situated at 0, or QI(4.7lEoR). Thus 

(3-31) 

See Fig. 3-6. 
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THE AVERAGE POTENTIAL OVER A 
SPHERICAL SURFACE. EARNSHAW'S THEOREM 

As another illustration of the use of Gauss's law, we shall prove 
that the average potential ( V )  over any spherical surface of radius 
R and center 0 has the following two properties: if there are no 
charges inside, then ( V )  is equal to the value of V at the center 
O. If there is a net charge Q inside and no charge outside, then 
( V )  is equal to Q /(41CEoR). 

(a) Let us first think of a spherical shell of radius R carrying a 
uniform surface charge density a and a total charge Q = 41CR2a, as 
in Fig. 3-7a. Then , from Gauss's law, at some point P outside, at a 
distance r from 0, 

and (3-32) 

But f a dsti Q f dsti 
V = .W  41CEor ' = 41CR2 .W  41CEor' , 

(3-33) 

where sti is the area of the shell. 
Equating these two values of V gives a purely geometric relation 

concerning a sphere of radius R and a point P at a distance r > R 
from its center: 

(3-34) 

We now shift our attention to Fig. 3-7b. We now have an 
imaginary sphere of radius R and a charge Q situated outside at a 
distance r. The left-hand side of Eq. 3-34 is equal to the potential 
at the center of the imaginary sphere , and the right-hand side is 
the average potential ( V )  on the spherical surface . So we have 
demonstrated that, in Fig. 3-7b, the average V on the sphere is 
just the value of V at the center. 

This result applies to any charge distribution situated outside 
the sphere, as in Fig. 3-7c, because of the principle of 
superposition (Sec. 3 .3) .  

Now imagine for a moment that there i s  a potential maximum at 
some point 0 in a region where p = O. Then the average potential 
over some sphere centered on 0 must be lower than the potential 
at 0, which is contrary to the above result. Thus there can never 
be a potential maximum in a charge-free region. For the same 
reason, there can never be a potential minimum either. 

This is Earnshaw's theorem. 
It is occasionally desirable to create a potential well in space so 

as to trap either ions or electrons. Earnshaw's theorem shows that 
this is impossible with electrostatic fields. 
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(a) (b) 

(d) (e) (f) 

Fig. 3-7. (a) Spherical surface carrying a uniform charge 
distribution o. (b) Point charge Q outside an imaginary spherical 
surface of radius R. (c) Imaginary spherical surface in a 
charge-free region. The average potential over the surface is equal 
to the potentiala! the center. (d) Spherical surface carrying a 
uniform charge distribution o. Point P is situated inside. (e) Point 
charge Q inside an imaginary spherical surface of radius R. (f) 
Imaginary spherical surface enclosing a charge Q. The average 
potential over the surface is equal to Q /(4rrEoR). 

(b) We can proceed in a similar fashion to find the average 
potential over a spherical surface when the charges are inside. 

We start again with a charge Q spread uniformly over the 
surface, as in Fig. 3-7d. At any point P inside, E is zero for the 
following reason . By symmetry, Ee and E</> are zero. To find En 
we apply Gauss's law to a concentric spherical surface having a 
radius smaller than R and thus enclosing zero charge. We find that 
E, = O. Then E = 0 inside, and the V at a point P inside is equal to 
the V at the surface, namely, Q/(4rrEoR). So, at P in Fig. 3-7d, 

V -
Q - f 0 dsti 

-
1 f Q dsti 

-
4rrEoR 

-
,.. 4rrEo" 

-
4rrR2 ,.. 4rrEo" · 

(3-35) 

The last term is just the average potential over the imaginary 
sphere of Fig. 3-7e. So the average potential over a spherical 
surface of radius R containing a point charge Q is Q /(4rrEoR), 
regardless of the position of Q inside! The same applies to a 
charge distribution Q of finite volume inside the sphere , as in Fig. 
3-7f. 
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THE AVERAGE E INSIDE A SPHERICAL 
VOLUME CONTAINING A POINT CHARGE Q 
Figure 3-8 shows an imaginary spherical volume of radius R 
containing a point charge Q at r', and a point P at r' + r. We wish 
to find the average E inside the sphere . 

First, at the point P, 

(3-36) 

Then, over the volume v of the sphere , the average E is 

1 f Q 
• (E ) = �  --2 r dv 

jnR " 4nEor 
(3-37) 

1 f Q i 
= -- -. -3 Z dv. 

4nE 0 " "nR r 
(3-38) 

Thanks to Gauss's law, we can find the value of this last integral 
without much effort. Suppose that, instead of having a single point 
charge Q, we had a uniform charge distribution of density 
QI(t,nR3). Then, from Coulomb's law, the E at r' would be given 
by the term on the right in Eq. 3-38, and this is pr ' /(3E,,). from 
the example on page 52. 

So, finally, the average E inside a spherical volume containing a 
charge Q situated at r' is 

Qi' 
(E ) =  - -- . 

4nEoR3 (3-39) 

Fig. 3-8. Point charge Q inside a spherical volume of radius R. 



Fig. 3·9. Positive charge Q situated at r' inside an imaginary 
sphere . The average field of Q inside the sphere points in the 
direction opposite to r' . 

The reason for the negative sign should be clear from Fig. 3-9. 

\ . 8  SUMMARY 
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rhe force exerted by a stationary point charge Qa on a point charge Qb, 
( ' i ther stationary or in motion, is given by 

(3-1) 

where Eo = 8 .85 X 1 0-12 farad/meter, r is the distance between the 
( harges, and rab is the unit vector pointing from Qa to Qb' This is 
( 'oulomb's law. 

We consider the force to result from the interaction between Qb and 
I he electric field Ea of Qa at the position occupied by Qb, and 

E Qa � a = -4 2 r, nEor 

where the unit vector r points away from Qa. 

(3-5) 

A current flowing at the rate of 1 coulomb/second has a magnitude of 
I ampere. 

According to the principle of superposition, two or more E's acting at 
1 he same point add vectorially. 
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An electrostatic field is conservative :  

t E ·  dl = 0, 
c 

(3- 10) 

where C is any closed curve . I t  follows that 

and that 

where 

V X E = O  

E =  - VV, 

1 J P dv ' V - -- --
4JrEo t" r 

(3- 14) 

(3-13) 

(3-18) 

is the electric potential at a point P. Here p is the volume charge density, 
r is the distance between P(x, y, z) and the element of volume dv ' at 
P ' (x ' ,  y ' ,  z ') ,  and v ' encloses all the charges. This integral applies to . 
finite charge distributions and it assumes that V = 0 at infinity. 

Gauss's law follows from Coulomb's law. In integral form , 

(3-2 1)  

where Q is the net charge contained inside the closed surface of area d. 
In differential form, 

V · E =
�

. 
Eo 

(3-25) 

PROBLEMS 

3-1 .  (3. 1)t  Coulomb's law 
The force of attraction between two charges of 1 coulomb and of 

opposite signs, separated by a distance of 1 meter, is about 9 x 109 newtons. 
How large is a cube of lead that has a weight of 9 x 109 newtons? Lead 

has a density of 1.13 x 104 kilograms/meter3. 

3-2. (3. 4) Electrostatic seed-sorting device 
It is possible to separate normal seeds from discolored ones and from 

foreign objects by means of a device that operates as follows. The seeds 

t Section number. 
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drop one by one between a pair of photocells . If the color is not right, 
voltage is applied to a needle that deposits a charge on the seed. The seeds 
then fall between a pair of electrically charged plates that deflect the 
undesired ones into a separate bin . One such machine can sort peas at the 
rate of 100 per second, or about 2 metric tons per 24-hour day. 

(a) If the seeds fall at the rate of 100 per second, over what distance 
must they fall if they must be spaced vertically by 20 millimeters when they 
pass between the photocells? Neglect air resistance. 

(b) Assume that the seeds acquire a charge of 1 .5  x 10-9 coulomb, that 
the deflecting plates are parallel and 50 millimeters apart, and that the 
potential difference between them is 25 ,000 volts. How long should the 
plates extend below the charging needle if the charged seeds must deflect 
by 40 millimeters on leaving the plates? Assume that the charging needle 
and the top of the deflecting plates are close to the photocell. 

3-3 . (3. 4) Rutherford discovers the nucleus 
In 1 906 . in the course of a historic experiment that demonstrated the 

small size of the atomic nucleus, Rutherford observed that an alpha particle 
(Q 1 = 2 x 1 . 6  X 10- 1 9  coulomb) having a kinetic energy of 7 .68 x 106 
electron volts (7.68 x 10° x 1 .6 x 10 1 <) joule) rebounds backward in a 
head-on collision with a gold nucleus (Q2 = 79 x 1 . 6  x 10- 19 coulomb). 

(a) What is the distance of closest approach where the electrostatic 
potential energy is equal to the initial kinetic energy? Express your result in 
femtometers (10- 1 5  meter) . 

(b) What is the maximum force of repulsion? 
(c) What is the maximum acceleration in g 's? The mass of the alpha 

particle is about 4 times that of a proton, or 4 x 1 .  7 X 10-27 kilogram. 

3-4. (3. 4) Electrostatic ion thruster 
Ion thrusters correct either the attitude or the trajectory of satellites. 
The force exerted by a thruster is equal to m ' v, where m ' is the mass of 

propellant ejected per second and v is the exhaust velocity with respect to 
the thruster. 

Figure 3-10 shows a schematic diagram of a thruster that ejects a beam of 
charged particles. The propellant enters at P and is ionized in S. Electrodes 

Fig. 3-10 
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A and B form a lens that accelerates the positive ions. A beam of positive 
ions exits on the right at a velocity determined by the accelerating voltage 
V. The ions of mass m carry charges ne, where e is the magnitude of the 
electronic charge. The current is I. Electrons emitted by the filament F 
neutralize the beam so as to prevent the satellite from charging up. 

(a) Show that the thrust is given by F = I[2Vm/(ne)]
II

2. 
(b) What is the value of F for a O . I-ampere beam of protons when 

V = 50 kilovolts? 
(c) If P is the power IV spent in accelerating the particles, show that 

F = (2Pm 't2 = 2P = p
( 2m ) ll2

. v neV 

Thus, for given values of P and m ', the thrust is independent of the 
charge-to-mass ratio of the ions. Or, for a given P, F is inversely 
proportional to v. The last expression shows that, for a given power 
expenditure P, it is preferable to use heavy ions carrying a single charge 
(n = 1) and to use as low an accelerating voltage V as possible. 

(d) If the electron source is turned off and if the beam current I is 
1 ampere , how long will it take the body of the rocket to attain a voltage 
equal to the accelerating voltage, if V is 50 kilovolts? Assume that the 
rocket is spherical and that it has a radius of 1 meter. At that point the 
thruster ceases to operate because the ions follow the satellite. 

3-5. (3. 7) Possible and impossible fields 
An electric field points everywhere in the z-direction. 
(a) What can you conclude about the value of the partial derivatives of E 

with respect to x, y, z (i) if the space charge density p is zero and (ii) if p is 
not zero? 

(b) Sketch lines of E for one possible and for one impossible field, on the 
assumption that V X E = O. 

3-6. (3. 7) The conduction electron density at the surface of electrically 
charged copper 

A copper atom has a diameter of about 0 .3  nanometer. 
(a) Calculate (i) the approximate number of atoms per square meter, (ii) 

the approximate charge density that would result if each atom gained one 
free electron , and (iii) the corresponding electric field strength . 

(b) The maximum possible electric field strength in air is 3 x 106 volts/ 
meter. How far apart are the excess electrons at that value of E? 

3-7 . (3. 7) The earth's electric charge 
The electric field strength in the atmosphere near the surface of the earth 

is about 100 volts/meter and points downward. The potential increases with 
increasing height, up to about 300,000 volts. This field is maintained by 
thunderstorms, which deposit negative charge on the earth at the average 
rate of about 103 amperes. 

Calculate the electric charge carried by the earth . 

3-8. (3. 7) The coaxial line 
Figure 33-4 shows a coaxial line. 
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Show that, at a distance P from the axis in the region between the two 
conductors , E = M(2nEop), where A is the charge per unit length on the 
inner conductor. The vector E points outward if A is positive. 

3-9. (3. 7) The force between a point charge and a line charge 
A uniform linear distribution of charge of A coulombs/meter is situated 

at a distance , from a point charge Q of opposite sign. 
(a) Calculate the force of attraction. 
(b) Show that the force is the same as if the linear distribution were 

replaced by a single charge Q I = 2A' situated at the foot of the perpendicu
lar drawn from Q. 

1 - 10. (3. 7) Proton beam 
A LOa-microampere beam of protons is accelerated through a difference 

of potential of 10 ,000 volts . 
(a) Calculate the charge density in the beam, once the protons have been 

accelerated , assuming that the current density is uniform over a diameter of 
2 .00 millimeters and is zero outside. 

(b) Calculate the radial E both inside and outside the beam. 
(c) Draw a graph of the radial E for values of , ranging from a to 

10.0 millimeters. 
(d) The beam is situated on the axis of a grounded cylindrical conducting 

tube with an inside radius of 10.0 millimeters. Draw a graph of V inside the 
tube. 

(e) Calculate the electric charge density per unit length on the inside of 
the tube. 

I- I I .  (3. 7) The field of an atomic nucleus 
The radial dependence of the electric charge density inside a certain 

atomic nucleus of radius a is roughly described by p = Po(1 - ,z/aZ), for 
, 5  a, where Po = 5 . 0  X 1025 coulombs/meter3 and a = 3. 4 femtometers. 

(a) What is the total charge Q? 
(b) Find E and V outside the nucleus. What are the values of  E and V at 

the surface? 
(c) Find E and V inside the nucleus. What is the value of V at the 

center? 
(d) Show that E is maximum at , / a = 0.745. 
(e) Draw graphs showing E/(2Po/15Eo) and V /(2Po/15Eo) as functions 

of , for , / a = a to 5 .  

\ · 12 .  (3. 7) Van d e  Graaff accelerator 
A Van de Graaff particle accelerator has a high-voltage electrode 

maintained under pressure in gaseous SFr, in a metal tank. It is possible to 
maintain much higher voltages in this way than if the electrode were in air. 

Assume that the electrode is spherical and that its radius is '1 ' Its voltage 
is V. The tank has a radius '2 and is grounded. The electric field strength is 
highest at the surface of the electrode. You are required to find values of 'l 
and '2 that will minimize this E. 

For a given value of '1 1 the optimum value of 'z is infinite, which is 
absurd. Of course, cost, weight, and space limit '2' So you must optimize '1 
for a given '2 , which is 483 millimeters in one specific case. 
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(a) Show that E at the surface of the high-voltage electrode (, == '1) has a 
minimum value of 2V /'1 when '1 == '2/2. 

(b) Explain qualitatively why there is an optimum radius '1 ' 
(c) Identifying an optimum condition is not sufficient. You must also 

evaluate how critical the condition is. So plot E / V at , = " for '2 = 0.483 meter 
and for values of '1 ranging from 100 to 400 millimeters. 

(d) What range of values of 'l is permissible if E can be 10% larger than 
2V/'I? 

(e) Calculate 2V /'1 for V = 5 X 105 volts and for the optimum 'I ' 
3-13 .  (3. 7) The equilibrium potential at the surface of a star 

(a) Calculate the escape energy for a particle of mass m and charge q 
situated at the surface of a star of mass M, charge Q, and radius R. 

(b) Calculate the equilibrium potential V of the star. Assume a sphere of 
fully ionized atomic hydrogen , with the electrons and protons at the same 
temperature and zero net current . The fraction of the electrons, or protons, 
that possess enough energy to escape is 

( escape kinetic energy) 
exp -

kT ' 

where k is Boltzmann's constant, 1 .37 X 10 2" joule per degree . At equi
librium, the electron and proton currents are equal. It is this phenomenon 
that causes the solar wind. 

(c) Show that V = 103 volts for the sun. 
This phenomenon does not appear to have any appreciable astrophysical 

significance . Even giant galaxies have center-to-surface potential differences 
that are only of the order of 1000 volts, like the sun. 

3-14. (3. 7) Electrostatic precipitation 
Electrostatic precipitation serves to eliminate dust particles from in

dustrial gases, for example, to eliminate fly ash from the smoke of 
coal-fired electric power plants. A corona discharge ionizes the gas, and 
the ions charge the dust particles, which drift in the electric field to the 
electrodes , where they collect. Periodically. the electrodes are shaken, and 
the dust falls into a container. 

In one type of precipitator, the anode is a grounded cylinder having a 
radius R of 150 millimeters , and the cathode is an axial wire maintained at a 
potential V of -50 kilovolts. The gas ionizes , and ions of both signs form in 
the corona discharge near the wire. The positive ions quickly reach the 
center wire, while the negative ions move out radially to the cylinder. The 
space charge is thus negative over most of the volume of the cylinder. 

Under those conditions, experiments show that E is approximately 
uniform and equal to V / R for all values of ,. If the dust particles are at 
least slightly conducting, they acquire a negative charge Q of 12.1lEoEa2, 
where a is their radius. The charge is somewhat smaller if they are 
nonconducting. 

(a) Let 1 be the radial electric current per meter and .At the mobility 
(speed/ E) of the negative ions. 
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Show that, for any r, 1 = 2J'CrpAtE, where p is the space charge density 
EoE/r. 

(b) The drift velocity of the dust particles is given by Stokes's law: it is 
the force EQ divided by 6J'C1'/a, where 1'/ is the viscosity of the gas. 

Show that their drift velocity v is 2EoE2a/1'/. 
(c) Calculate I, p, v, and the time required for a dust particle to drift 

from the cathode to the anode when At = 2 X 10-4 meter/(volt-second), 
a = 5 micrometers , and 1'/ = 2 X 10-5 kilogram/(meter-second). 

This simplified theory neglects turbulence , which is important in practice . 

3-15.  (3. 7) The expansion of the universe 
In 1959 Lyttleton and Bondi suggested that the expansion of the universe 

could be explained on the basis of Newtonian mechanics if matter carries a 
net electric charge. 

Imagine a spherical volume V of astronomical size containing un-ionized 
atomic hydrogen of uniform density N atoms per cubic meter, and assume 
that the proton charge e p is equal to (1 + y)e, where e is the magnitude of 
the electron charge. 

(a) Find E at the radius R. 
(b) Show that, for y > 10- 18, the electric repulsion becomes greater than 

the gravitational attraction , so the gas expands. 
(c) Show that the force of repulsion on an atom is then proportional to 

its distance R from the center and that, as a consequence , the radial 
velocity of an atom at R is proportional to R. Assume that the density is 
maintained constant by the continuous creation of matter in space. 

(d) Show that the velocity v is R/T, where T is the time required for the 
radial distance R of a given atom to increase by a factor of e. This time T 
can be taken to be the age of the universe . 

(e) In the Millikan oil-drop experiment, an electrically charged droplet 
of oil is suspended in the electric field between two plane horizontal 
electrodes. It is observed that the charge carried by the droplet changes by 
integral amounts within an accuracy of about 1 part in 105. 

Show that the Millikan oil-drop experiment leads us to believe that y is 
less than about 10- 16• 

J-16. (3. 7) The volume average of E over a spherical volume is equal to the 
value of E at the center. An alternative proof. 

We know that the force exerted by a uniform spherical charge distribu
tion on an outside charge is the same as if the spherical charge were 
concentrated at its center. 

(a) Use this fact to show that the field of a point charge is such that its 
volume average over a sphere is equal to its value at the center. 

(b) Show that the same applies to any electrostatic field in a charge-free 
region. 
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Poisson's equation relates the local volume charge density p to the spatial 
rates of change of the potential V. This is again a fundamental relation. It 
follows immediately from Gauss's law .  Laplace's equation is Poisson's, 
with p equal to zero. Both equations serve to calculate electric fields. We 
shall return to them in Chaps. 1 1  and 12. 

Charge conservation is an experimental fact . Whatever the circumstan
ces, the net electric charge carried by a closed system is constant. We 
shall frame that law in a simple mathematical form and then apply it a 
few sections later. We shall return to it on several occasions. 

The major part of this chapter pertains to conductors. Ordinary electric 
conductors contain conduction electrons that drift in the direction 
opposite to the applied E. We shall find, among other things, that this 
drift velocity is surprisingly low and that the net volume charge density is 
normally zero. 
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4 . 1  THE EQUATIONS OF POISSON AND 
OF LAPLACE 

Let us replace E by - VV in Eq. 3-25 . Then 

65 

(4-1 )  

This i s  Poisson's equation. I t  relates the space charge density p at  a given 
point to the second space derivatives of V in the region of that point. 

In a region where the charge density p is zero, 

(4-2) 

which is Laplace's equation. 
The general problem of finding V in the field of a given charge 

distribution amounts to finding a solution to either Laplace's or Poisson's 
equation that will satisfy the given boundary conditions .  

Example THE FIELD OF A UNIFORM SPHERICAL 
CHARGE DISTRIBUTION 
Consider again a spherical charge distribution of uniform volume 
denstiy p and radius R as in Fig. 3-5 .  

Outside the sphere, p = 0 and 

(4-3) 

Now, by symmetry, Vo is independent of both () and ljJ. Therefore, 
from Sec. 1 . 1 1 .6, 

� (r2 avo) = 0 ar ar ' 
A 

Eo = - 2 '  r 
(4-4) 

(4-5) 

where A is a constant of integration. This is in agreement with Eq. 
3-27 with A = -Q /(4lfEo) . 

Inside the sphere , 

(4-6) 

(4-7) 
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Example 

2 av; r3 
r - =  -p - + B, (4-9) ar 3Eo 

pr B 
E = - - - (4-10) , 3Eo r2 ' 

where B is another constant of integration. 
It is intuitively obvious that E, cannot become infinite at r = 0;  

so B is  zero and 

(4-11)  

as in the example in Sec. 3.7 on page 52. 

THE VACUUM DIODE 

Let us find the potential distribution between the plates of a 
vacuum diode whose cathode and anode are plane. parallel, and 
separated by a distance s that is small compared to their linear 
extent , as in Fig. 4-1 . 

We assume that the cathode is at zero potential and the anode 
at a positive potential Va. The hot cathode emits electrons that 
accelerate in the direction of the anode . We also assume that the 

Fig. 4-1. Schematic diagram of a plane-parallel vacuum diode. 
The cathode, on the left, emits electrons. An electron of charge 
-e drifts in the direction of the anode at a velocity v. We have 
shown widely separated electrodes for clarity. 
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electrons have zero initial velocity and that the current is not 
limited by the cathode temperature but can be increased at will by 
increasing Va' 

Since V depends only on x, by hypothesis,  Poisson's equation 
reduces to 

(4-12) 

where the electron space charge density p is negative. Thus 
d2V / dx2 is positive, but we have not yet found p. 

Now p is equal to the current density divided by the electron 
velocity v, so 

where J is the magnitude of the current density. 
By conservation of energy, 

mv2 
- = eV 

2 ' 

(4-13) 

(4-14) 

where m is the mass of an electron and -e is its electric charge: 
e = + 1 .6 X 10- 19 coulomb. Then 

d2V J 
dx2 Eo(2eV/m)1I2 ' (4-15) 

To integrate, we multiply the left-hand side by 2(dV / dx) dx and 
the right-hand side by 2dV. Then 

(dj2 _ 4J(mV /2e)1/2 

dx - + A, 
Eo 

where A is a constant of integration. 

(4-16) 

We now find the value of A. At the cathode, V = 0 and 
A = (dV / dx )2. But dV / dx is zero at the cathode for the following 
reason. If one applies a voltage to the anode when the cathode is 
cold, dV /dx is positive and equal to Va/so If now one heats the 
cathode, it emits electrons, there is a negative space charge, and 
dV / dx decreases. As long as dV / dx is positive at the cathode, the 
emitted electrons accelerate toward the anode and cannot return 
to the cathode. The current is then limited by the thermionic 
emission and not by Va. This is contrary to what we assumed at the 
beginning. However, if dV / dx was negative , electrons could never 
leave the cathode, and there would be zero space charge , which is 
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absurd. So dY / dx can be neither positive nor negative. So it is 
zero, and A is also zero. (However, see below.)  Then 

dY ( 1 ) 1I2(m) 1I4 
- = 2 - - yII4 
dx Eo 2e ' ( 4-17) 

( 1 ) 1I2(m 114 
y3/4 = 1. 5 

Eo 2J x + B. ( 4-18) 

The constant of integration B is zero because Y is zero at x = o. So 

When x = s, Y = Va . Therefore 

(X)4/3 y = v -a 
S 

Also, disregarding the sign of E, 

E = 
� Ya (::) 113

, 3 s S 

4E (2e / m)IIZy3/Z y3/Z 
I = 0 

9 2 
a = 2. 335 X 1O-6 -+-

S s 

( 4-19) 

( 4-20) 

(4-21) 

amperes/meter, 

(4-22) 

( 4-23) 

Equation 4-22 is known as the Child-Langmuir law. This law is 
valid only for a plane-parallel diode with negligible edge effects 

1 .0 

x ) s  
Fig. 4·2. The space charge density p, the electric field strength E, 
and the potential V as a functions of the distance x from the 
cathode of a plane-parallel diode. The subscript a refers to the 
value of the variable at the anode. 
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and for electrons emitted with zero velocity. However, for any 
geometry, J is proportional to V�/2. 

Figure 4-2 shows V, E, and p as functions of x/so 
In an actual diode, the emission velocity of the electrons is finite 

and there is a potential minimum immediately in front of the 
cathode . Only electrons with an initial velocity larger than a 
certain value get past this minimum. 

1 . 2  THE LAW OF CONSERVATION OF 
ELECTRIC CHARGE 

( onsider a closed surface of area .sIl enclosing a volume v. The volume 
\ barge density inside is p. Charges flow in and out , and the current 
, knsity at a given point on the surface is J amperes/meter. 

I t  is a well-established experimental fact that there is never any net 
, ( cation of electric charge. Then any net outflow depletes the enclosed 
, barge Q:  at any given instant, 

f J . dd = -
d f p dv = 

d dt v 

dQ 
dt ' (4-24) 

II here the vector dd points outward, according to the usual sign 
I \ Invention. 

Applying now the divergence theorem on the left, we find that 

f V ·  J dv = -f ap dv. 
v v at (4-25) 

Wc have transferred the time derivative under the integral sign, but then 
lI t'  must use a partial derivative because p can be a function of x, y, Z, as 
Il t ' l l  as of t. 

Now the volume v is of any shape or size. Therefore 

V · J =  ap 
at ' (4-26) 

Lquations 4-24 and 4-26 are, respectively, the integral and differential 
II I( illS of the law of conservation of electric charge. 

·1 . .  \ CONDUCTION 

(" good conductors such as copper or aluminum, each atom possesses 
" I l l' or two conduction electrons that are free to roam about in the 
1 1 I ; l l erial . 
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Table 4-1 

Conductor 

Aluminium 
Brass (65 .8 Cu, 34.2 Zn) 
Chromium 
Copper 
Gold 
Graphite 
Iron 
Mumetal (75 Ni, 2 Cr, 5 Cu ,  18 Fe) 
Nickel 
Seawater 
Silver 
Tin 
Zinc 

Conductivity G, 
siemens/meter 

3 .54 X 107 
1 .59 X 107 
3 .8 X 107 

5 .80 X 107 
4 .50 X 107 
7 . 1 x l04 
1 .0  X 107 

0. 16 X 107 
1 .3  X 107 

-5 
6 . 15  x 107 

0.870 X 107 
1 .86 X 107 

Semiconductors may contain two types of mobile charges: conduction 
electrons and positive holes. A hole is a vacancy left by an electron 
liberated from the valence bond structure in the material . A hole behaves 
as a free particle of charge + e, and it moves through the semiconductor 
much as an air bubble rises through water. 

In most good conductors and semiconductors, the current density J is 
proportional to E:  

J = aE, (4-27) 

where a is the electric conductivity of the material expressed in siemens 
per meter, where 1 siemenst is 1 ampere/volt. This is Ohm's law in a 
more general form. As we shall see later, an electric conductivity can be 
complex. We shall find a still more general form of Ohm's law in Chap. 
23 . 

Table 4-1 shows the conductivities of some common materials. 
Ohm's law does not always apply. For example , in a certain type of 

ceramic semiconductor, J is proportional to the fifth power of E. Also 
some conductors are not isotropic. 

4 . 3 . 1  Resistance 

If Ohm's law applies, the resistance between two electrodes fixed to a 
sample of material is 

t After Ernst Werner von Siemens (1816-1892). The word therefore takes a terminal s in 
the singular: one siemens. The siemens was formerly called a "mho ."  
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R == !::" 
I '  (4-28) 

where V is the potential difference between the two electrodes and I is 
the current. 

I�xamples For a cylinder of cross section d, length L, uniform conductivity 
a, and with electrodes on the ends as in Fig. 4-3a, 

Inner radius R\ 
Outer radius R, 

adV 1 = sIiJ = daE = -
L ' 

(b) 

(4-29) 

Fig. 4-3. (a) Cylinder of weakly conducting material with 
electrodes at both ends. (b) Tube of weakly conducting material 
with electrodes on the inner and outer surfaces. 



72 

L 
R = - .  

ad 

ELECTRIC FIELDS II 

(4-30) 

The tube of Fig. 4-3b has inner and outer radii Rl and Rz, 
respectively, a length L, and a uniform conductivity a. There are 
copper electrodes on the inner and outer cylindrical surfaces. The 
resistance of a cylindrical element of thickness dr is dr / a2:rcr L. 
Then 

(4-31) 

4 .3 .2  Conduction in a Steady Electric Field 

For simplicity, we assume that the charge carriers are conduction 
electrons. 

The detailed motion of an individual conduction electron is exceedingly 
complex because, every now and then, it collides with an atom and 
rebounds. The atoms, of course, vibrate about their equilibrium posi
tions , because of thermal agitation, and exchange energy with the 
conduction electrons. 

However, on the average , each electron has a kinetic energy of �kT, 
where k is Boltzmann's constant and T is the temperature in kelvins. 
Thus, at room temperature, the velocity Vth associated with thermal 
agitation is given by 

and 

2 m�th = �kT = � ( 1 . 38 x 10-23 X 3(0) = 6 X 10-21 joule , 

( 12 X 10-21 ) 112 Vth = 3 1 = 105 meters/second. 9. 1  x 10-

(4-32) 

( 4-33) 

Under the action of a steady electric field , the cloud of conduction 
electrons drifts at a constant velocity Vd such that 

J = aE = -Nevd' (4-34) 

where Vd points in the direction opposite to J and to E, and N is the 
number of conduction electrons per cubic meter. 

The drift velocity is low. In copper, N = 8.5 x 1OZS. If a current of 
1 ampere flows through a wire having a cross section of 1 millimeter , 
J = 106 and Vd works out to about 10-4 meter/second, or about 
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H)O millimeters/ hour ! Then the drift velocity is smaller than the thermal 
, lgitation velocity by nine orders of magnitude! 

In Eq. 4-34 Vd is small ,  but Ne is very large. In copper, 

Ne = 8 .5 x 1028 x 1 .6  X 10-19 = lOlD coulombs/meter3 • (4-35) 

The low drift velocity of conduction electrons is the source of many 
I ,aradoxes . For example , a radio transmitting antenna is about 75 meters 
l ( l ng and operates at about 1 megahertz. How can conduction electrons 
l � ()  from one end to the other and back in 1 microsecond? The answer is 
I hat they do not . They drift back and forth by a distance of the order of 1 
, I t omic diameter, and that is enough to generate the required current. 

L 3 . 3  The Mobility JU of Conduction Electrons 

Ihe mobility of conduction electrons 

.M = IVdl = �  
E Ne (4-36) 

1 \ ,  by definition, a pOSItive quantity . t  It is independent of E in linear 
, ' lI1ductors. Thus 

a = Ne.M (4-37) 

\\ here , as usual , we have taken e to be the magnitude of the electronic 
, harge . 

I f the driving electric field is constant, then the drift velocity is 
, ( l l1stant . This means that the time-averaged net force on a conduction 
, kdron is zero, or that the average braking force due to the collisions 
l i l \t cancels the -eE force exerted by the field. 

What is the magnitude of this braking force? It is 

(4-38) 

I I  I lm the definition of the mobility .M. The braking force and Vd point in 
" I lposite directions. 

( 'his situation is analogous to that of a body falling through water; after 
I w h ile,  the viscous force exactly cancels the gravitational force, and the 
1 I 1 ; lgnitudes of the two opposing forces are equal. 

I Some authors assign to the mobility the sign of the charge carrier. 
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The quantities N, Al, and a for good conductors (gc) and for 
semiconductors (sc) are related as follows: 

( 4-39) 

4 . 3 . 4  Conduction in an Alternating Electric Field 

If we disregard thermal agitation, there are thus two forces acting on a 
conduction electron: the driving force eE and the braking force of Eq. 
4-38. 

In an alternating electric field these two forces are unequal, and the 
equation of motion is 

dVd e m *  -d = - eEm exp jwt - - Vd , t Al (4-40) 

where m * is the effective mass. This quantity takes collisions into 
account . As a rule, m * is smaller than the mass of an isolated electron. 

In silicon m * = 0.97m, but in gallium arsenide (GaAs) the effective 
mass is only 0.07m. Electron velocities in solid-state devices are of the 
order of 105 meters/second in silicon and about 4 times larger in GaAs. 

Replacing the time derivative by jw and simplifying , we find that 

Al Vd = - 1 . * ii/ Em exp jwt. + ]wm JIlL e 

But J = aE = -NeVd' It follows that 

NeAl a = -----1 + jwm * Al/e . 

(4-41) 

(4-42) 

With w = 0 we revert to Eq . 4-37. This relation does not apply at 
frequencies of the order of 1 gigahertz (f = 109) or higher, where atomic 
phenomena become prominent . 

For copper at ambient temperature, 

wm * Al wma --e- =  Ne2 
21ft x 9. 1 x 10-3 1 x 5 .8  X 107 

8. 5 X 1028 x ( 1 . 6  x 1O-1 9f 
= 1 . 5  x 10-13[. 

(4-43) 

(4-44) 

(4-45) 
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I he imaginary term in Eq. 4-42 is negligible for f «  7 x 1012• Up to about 
I gigahertz the cloud of conduction electrons moves in phase with E, and (J = Ne.At. 

Decreasing the temperature increases the mean free path of the 
carriers, which increases the mobility .At. At very low temperatures the 
conductivity of pure metals is complex: 

Ne2 
a =  -j -- .  m*w 

· + ' 3 . 5  The Volume Charge Density p i n  a Conductor 

(4-46) 

( 1 )  Assume steady-state conditions and a homogeneous conductor. 
I hen ap/ at = 0 and, from Sec. 4.2 ,  V ·  I = O. If I is the conduction 
l urrent density in a homogeneous conductor that satisfies Ohm's law 
J = aE, then 

V . I = V ·  aE = aV . E = 0, V · E = O. (4-47) 

Hut the divergence of E is proportional to the volume charge density p, 
1 10m  Sec. 3 .7 .  Thus, under steady-state conditions and in homogeneous 
I I  mductors (a independent of the coordinates) , p is zero . 

As a rule , the surface charge density on a conducting body carrying a 
l li rrent is not zero . 

(2) Now suppose that one injects charge into a piece of copper by 
hombarding it with electrons. What happens to the charge density? In 
I hat case, from Sec. 4.2, 

Hut ,  from Sec. 3 .7 . 

ap 
V ' I =  -- . at 

ap 
V ' I =  aV ' E = - , 

ErEO 

(4-48) 

(4-49) 

where Er is the relative permittivity of the material (Sec. 9.9) . Thus 

ap ap - = - --
at ErEO' p = Po exp ( -�) , 

ErEO 

; l IId p decreases exponentially with time. 

(4-50) 

The relative permittivity Er of a good conductor is not measurable 
he cause conduction completely overshadows polarization. One may 
presume that Er is of the order of 3, as in common dielectrics. 
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The inverse of the coefficient of t in the above exponent is the 
relaxation time. 

We have neglected the fact that a is frequency-dependent and is thus 
itself a function of the relaxation time. Relaxation times in good 
conductors are, in fact, short; and p may be set equal to zero, in practice. 
For example, the relaxation time for copper at room temperature is 
about 4 x 10-14 second, instead of =10- 19 second according to the above 
calculation. 

(3) In a homogeneous conductor carrying an alternating current, p IS 
zero because Eq. 4-47 applies. 

(4) In a nonhomogeneous conductor carrying a current, p is not zero. 
For example, under steady-state conditions, 

and 

V ' J = V · (aE) = ( Va) · E + aV · E = O  

v . E = L = _ ( Va) . E
. 

ErEO a 

(4-51) 

( 4-52) 

(5) If there are magnetic forces on the charge carriers, then J = aE 
does not apply and there can exist a volume charge density. See Sec. 
22.4. 1 .  

4.3.6 The louIe Effect 

In the absence of an electric field, the cloud of conduction electrons 
remains in thermal equilibrium with the lattice of the host conductor. 
Upon application of an electric field, the electrons gain kinetic energy 
between collisions, and they share this extra energy with the lattice. The 
conductor thus heats up. This is the louie effect. 

What is the kinetic energy gained by the conduction electrons? 
Consider a cube of the conductor, with side a. Apply a voltage V 
between opposite faces. The current is I. Then the kinetic energy gained 
is VI, and the power dissipated as heat per cubic meter is 

(4-53) 

watts/meter3 . (4-54) 
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If E and J are sinusoidal functions of the time, 

P' E 1 E2 J�s av = nns rInS = a rms = -(f 
(4-55) 

4 . 4  ISOLATED CONDUCTORS IN STATIC FIELDS 

If one charges an isolated homogeneous conductor, the conduction 
electrons move about until they have reached their equilibrium positions 
and then, inside the conductor, there is zero E. 

It follows that (1) all points inside the conductor are at the same 
potential ; (2) the volume charge density is zero, from Eq. 4-47; (3) any 
net static charge resides on the surface of the conductor; (4) E is normal 
at the surface of the conductor, for otherwise charges would flow along 
the surface; (5) just outside the surface, E = (feh/EO, where (feh is the 
surface charge density, from Gauss's law. 

Note the paradox: one can express E at the surface of a conductor in 
terms of the local surface charge density alone, in spite of the fact that E 
depends on the magnitudes and positions of all the charges, whether they 
reside on the conductor or elsewhere. 

What if the conductor is not homogeneous? For example, one might 
have a copper wire pressed onto a gold-plated terminal. Then conduction 
electrons drift across the interface and establish a contact potential, 
usually of a fraction of a volt. The magnitude and sign of the contact 
potential depend on the nature of the materials. 

Example HOLLOW CONDUCTOR ENCLOSING A 
CHARGED BODY 

Figure 4-4 shows a cross section of a hollow conductor with a net 
electric charge Q within the cavity. The Gaussian surface lying 
within the conductor in a zero E encloses a zero net charge, 
because of Gauss's law. Then the surface charge on the inside 
surface of the conductor is - Q. 

If the ';onductor carries a zero net charge, then the total charge 
on the outside surface is Q. 

The surface charge density at a given point on the outside 
surface of the conductor is independent of the distribution of Q in 
the cavity. It is the same as if the conductor were solid and carried 
a net charge Q. 

Inversely, the field inside the cavity is independent of the field 
outside the conductor. The conductor then acts as an electrostatic 
shield. 
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Fig. 4-4. Section through a hollow conductor enclosing a body that carries a net 
charge Q. The dashed line is a section through a Gaussian surface lying entirely in 
the conducting material, where E = O. 

4.5  SUMMARY 

Poisson's equation follows from the differential form of Gauss's law and 
from the relation E = - VV : 

(4-1) 

Setting the volume charge density p equal to zero yields Laplace's 
equation : 

(4-2) 

The law of conservation of electric charge states that, whatever the 
circumstances, the net electric charge of a closed system is constant. 
Mathematically ,  

v · J = 
ap 
at ' 

where J are p are, respectively , the current and charge densities. 
Most conductors obey Ohm's law :  

J = aE, 

where a is the conductivity, expressed in siemens per meter. 

(4-26) 

(4-27) 
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In a time-independent electric field, 

J = aE = -NeVd, (4-34) 

where N is the number of charge carriers per cubic meter, -e is the 
, harge on one of them, and Vd is their drift velocity. The mobility is 
defined by the equation 

, l Ild 

JU = IVd l = � 
E Ne 

a = NeJU. 

(4-36) 

(4-37) 

In an alternating electric field the conductivity a is complex: 

NeJU a = ------1 + jwm* JU/e ' 

where m * is the effective mass of a charge carrier. 

(4-42) 

If the current density is 1 and the electric field strength is E, then the 
l i me-averaged power dissipated per cubic meter in the form of heat is 

P ' E 1 E2 l;ms 
av = rms rms = a rms = --a 

I his is the louie effect. 

watts/meter3• ( 4-55) 

Under static conditions there exists a net electric charge solely at the 
\urface of a conductor ,  and E is zero inside. Just outside, E is normal to 
I he surface, and its magnitude is ach/ Eo, where ach is the surface charge 
density. 

P ROBLEMS 

I I .  (4. 3) The conduction electron density in copper 
The object of this problem is to illustrate the enormous magnitude of the 

electric charge densities in matter. 
We take the example of the conduction electrons in copper. A copper 

atom contains 29 electrons, one of which is a conduction electron . Copper 
has an atomic weight of 64 and a density of 8.9 x 103 kilograms/meter3• 
Suppose that you have two copper spheres, each one having a volume of 
I centimeter3 • The spheres are depleted of their conduction electrons and 
separated by a distance of 100 millimeters. 
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Calculate the force of repulsion. Show that this force is equal to about 
0.5% of the force of attraction between the sun and the earth. See the table 
of physical constants on the page facing the back cover. 

4-2. (4. 3) The drift velocity of conduction electrons 
Copper has an atomic weight of 64 and a density of 8.9 x 103 kilogramsl 

meter3• 
(a) Calculate the number of atoms per cubic meter and the approximate 

diameter of an atom. 
(b) Calculate the charge A carried by the conduction electrons in 1 meter 

of copper wire 1 millimeter in diameter. There is one conduction electron 
per atom. 

(c) Calculate the drift velocity of the conduction electrons in meters per 
hour when the wire carries a current of 1 ampere. 

4-3. (4. 3) Refraction of lines of E at the interface between media of different 
conductivities 

We shall see in Sec. 10.2 .3 that the tangential component of E is 
continuous at the interface between two media. 

Show that, at the boundary between two media of conductivities a) and 
az, a line of E, or a line of J, is "refracted" in such a way that 
tan 8)/a) = tan 8zlaz, where 81 and 82 are the angles formed by a line of E 
with the normal to the interface. 

4-4. (4. 3) The surface charge density at the interface between media of 
different conductivities. 

A current of density J flows in the direction normal to the interface 
between two media of conductivities aco) and acoz• The current flows from 
medium 1 to medium 2. 

Show that the surface charge density ach is ErEoJ(1 1 acoz - II aCO) ' 

Assume that Er has the same value on both sides. If the current is not 
normal to the interface , then the above J is the normal component of the 
current density. 

4-5 .  (4. 3) Conduction in a nonhomogeneous medium 
In a nonhomogeneus medium, the conductivity a is a function of the 

coordinates. 
Show that, under static conditions, or when E = - VV, and if a is 

nowhere equal to zero, 

where T = In a. 

4-6. (4. 3) Geophysical prospecting by the resistivity method 
One can locate resistivity anomalies in the ground as in Fig. 4-5 . The 

current I flowing between electrodes CI and Cz establishes an electric field 
in the ground, and one measures the voltage V between a pair of electrodes 
PI and Pz maintained at a fixed spacing b. With b « a, V Ib is equal to E at 
the position x. Anomalies in ground conductivity show up in the curve of E 
as a function of x. 
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Fig. 4-5. 

Show that if the substrate conductivity is uniform and equal to a, then 

V 2ax! 
b - .na(x2 - a

2? . 

The electrodes are of finite size . However, you can perform the 
calculation on the assumption that they are infinitely small, disregarding the 
fact that E and J would then be infinite at their surfaces. 

You can use the principle of superposition as follows. The current in the 
ground is the sum of a radial distribution emanating from C1 plus another 
radial distribution converging on �. Thus, at a point rv r2, 

( -7 .  (4. 3. 1) The resistance of a spherical shell 
A spherical shell of uniform conductivity has inner and outer radii R I and 

R2 , respectively. It has copper electrodes plated on the inner and outer 
surfaces. 

Show that the resistance is (II R 1 - II R2)1 
4.na. 

( -x .  (4. 3. 1) Resistive film 
A square film of Nichrome, an alloy of nickel and chromium, has copper 

electrodes deposited on two opposite edges. 
Show that the resistance between the electrodes depends only on the 

thickness of the film and on its conductivity, as long as the film is square. 
This surface resistance is expressed in ohms per square. 

( (J . (4. 3. 1) A theorem on the resistance of a plate 
A rectangular plate ABCD has a thickness s and a conductivity a. With 

conducting electrodes on edges AB and CD, the resistance is RI • With 
electrodes on BC and DA, the resistance is R2• 

Show that R\R2 = I / (a2s2). 
This equation also applies to any region bounded by equipotentials and 

lines of current flow. We shall use this theorem in Prob. 33.5. It  was first 
proved by Isukada. t 

: I ) .  J .  Epstein , Pror:. IEEE, vol. 56, p. 198 ( 1968) . 
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R 

Fig. 4-6. 

4-10. (4.3. 1)  E and J inside a battery 
A battery feeds a resistance R as in Fig. 4-6. The battery acts as a pump, 

forcing conduction electrons toward the negative electrode. The battery is 
cylindrical , of length s and cross-sectional area d, with electrodes at each 
end . Then 1 VVI = V Is and , inside the battery, J = a(Ep - I  VVI) ,  where Ep 
is the "pumping field ."  

Find the output voltage as  a function of the current. Set R = s I ad as  the 
output resistance of the battery . 

4-1 1 .  (4.3. 4)  Mobility and electron drift 
A simple model for the drift of a conduction electron is the following. 

The electron describes a ballistic trajectory for a while, under the action of 
the ambient electric field , and then the electron suffers an impact. Its 
velocity just after the impact is unrelated to its velocity before the impact, 
and we set it equal to zero. The electron then starts out on another ballistic 
trajectory, and the process repeats itself. Let the mean time between the 
collisions be M and the effective mass (Sec. 4.3 .4) be m ' .  

Find the mobility i n  terms of !1t  and m * . 

4-12.  (4. 3. 4) Conduction by holes 
We derived Eq. 4-40 on the assumption that the charge carriers are 

electrons. Suppose the carriers are holes. Then the charge changes sign, 
and both terms on the right are positive . If that is so, the complementary 
function, which one obtains on disregarding the forcing term eEmjwt, is 

Then Vd increases exponentially with time , which is absurd. 
Show that, if the charge carriers are holes, then 

and that 

, dVd . e 
m -d = +eEm exp Jwt - - Vd, 

t .M 

Vd = +
l . 0 " 1  Em exp jwt, 

+ Jwm JIlL e 
.M Ne.M 

a = -----
1 + jwm ' .Mle · 
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Fig. 4-7. 

4-13 .  (4. 3. 6) The resistojet 
Figure 4-7 shows the principle of operation of a resistojet used as a 

thruster for correcting the trajectory or the attitude of a satellite . 
Assuming complete conversion of the electric energy to kinetic energy, 

calculate the thrust for a power input of 3 kilowatts and a flow of 0.6 gram 
of hydrogen per second. 
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Electric multipoles are sets of point charges possessing certain sym
metries . Their interest lies in the fact that real charged objects, such as 
antennas and atomic nuclei , possess electric fields that may be expressed 
as sums of multipole fields. 

Aside from the monopole, which is a single point charge , the most 
useful type of multi pole is the dipole, which consists of two charges of 
equal magnitudes and opposite signs, some distance apart. Most mole
cules act like small dipoles. Also many antennas radiate like oscillating 
electric dipoles . 

5 . 1  THE ELECTRIC DIPOLE 

The electric dipole is a common type of charge distribution . We return to 
it later in this chapter and in Chaps. 37 and 38. 

The electric dipole consists of two charges ,  one positive and one 
negative, of the same magnitude, and separated by a distance s. We find V and E at a point P situated at a distance r »  s, as in Fig. 5- 1 .  At P, 
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z P(r, fI, <1» 

+ Q  

- Q  

Fig. 5-1. Two charges + Q  and - Q  separated b y  a distance s and forming a 
dipole. The dipole moment is p. We calculate the potential at point P by 
summing the potentials of the two charges. 

where 

r� = r2 + G) 2 + rs cos e. 

We now divide both sides by r2 and take the inverse: 

r [ ( S )2 S ] -lI2 - = 1 + - + - cos e 
ra 2r r 

1 ( S2 S ) 3 ( S2 S )2 
= 1 - - - + - cos () + - - + - cos () - . . . . 2 4r2 r 8 4r2 r 

I I  we neglect terms of order (s/r)3 and higher, then 

(5-1) 

(5-2) 

(5-3) 

(5-4) 

(5-5) 
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Similarly, 

and 

r s S2 3 cos2 e - 1 - = 1 + - cos e + - ----rb 2r 4r2 2 

Qs V = -
4
--2 cos e 
:reEor 

(5-6) 

(5-7) 

Note that the potential in the field of a dipole falls off as l/r2, whereas 
the potential of a single point charge varies only as l/r. This comes from 
the fact that the charges of a dipole appear close together for an observer 
some distance away, so their fields cancel more and more as the distance 
r increases. 

The dipole moment p = Qs is a vector that is directed from the negative 
to the positive charge. Then 

(5-8) 

We can now find the electric field strength E. In spherical coordinates , 

av 2p cos e E = - -r ar 4:reE or3 ' 

1 av p sin e Eo = - - - = ---
r ae 4:reEor3 ' 

1 av E = - -- - = 0 <P r sin e a¢ 
, 

E = � (2 cos e,. + sin eiJ) .  
4:reE or 

Thus E falls off as the cube of the distance r. 

(5-9) 

(5-10) 

(5- 1 1 )  

(5-12) 

Figure 5-2 shows lines of E and equipotential lines for an electric 
dipole .  Rotating equipotential lines about the vertical axis generates 
equipotential surfaces. 

More generally, the dipole moment of a charge distribution is 

f r'p dv ' 
p = f r'p dv ' = Q v '  = Qi' , 

v '  LP dV ' 
(5-13) 
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Fig. 5·2. Lines of E, shown with arrows, and equipotential lines for the electric 
dipole of Fig. 5- 1 .  In the central region the lines become too close to$ether to be 
,hown. The central arrow is the vector p. 

where Q is the net total charge occupying the volume v /, an d i' defines 
t he position of the center of charge, by analogy with the cente J" of mass in 
mechanics. 

If Q = 0, then i' � 00 and Qi' is indeterminate. However,  the integral 
" \  r/ p dv / still provides the correct value of p. If Q = 0, the dipole 
I J loment is independent of the choice of the origin (Prob. 5-1" 

i f  Q * 0, the dipole moment of the distribution is zero whe:1l the origin 
'" at the center of charge, for then i' = 0. 

) . 2 THE LINEAR ELECTRIC QUADRUPOLe 

J 'he linear electric quadrupole is a set of three charges, as in Fig. 5-3. The 
'cparation s is again small compared to the distance r to tJhe point P. 
At P, 

(5-14) 
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P(r, e, ,'\) 

Fig. 5·3. Charges + Q, -2Q, + Q  forming a linear quadrupole, 

We can expand the ratios rlra and rlrb as previously, except that s now 
replaces s /2. Thus, if we neglect terms of order (sir? and higher, 

and 

r s S2 (3 cos2 (J - 1 )  - =  1 - -cos (J + - -'-------------'-
ra r r2 2 ' 

2Qs2 (3 cos2 (J - 1 )  V = -- -'--------'-
4nEor3 2 

(5- 15) 

(5-16) 

(5-17) 

The potential V of a linear electric quadrupole varies as 1/r3, whereas 
E, calculated as for the dipole, varies as 1 /r4. The fields of the three 
charges cancel almost completely for r » s. 

*5 .3  ELECTRIC MULTIPOLES 

It is possible to extend the concept of dipole and quadrupole to larger 
numbers of positive and negative charges, Such charge arrangements are 

• Starred sections can be omitted without losing continuity, However, the Legendre 
polynomials of Sec. 5 .4 , 1 are required for the starred Sec, 1 2 ,  I ,  
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known as multipoles. A single point charge is a monopole. A dipole is 
obtained by displacing a monopole through a small distance SI and 
replacing the original monopole by another of the same magnitude but of 
opposite sign . Likewise , a quadrupole is obtained by displacing a dipole 
by a small distance S2 and then replacing the original dipole by one of 
equal magnitude but of opposite sign. For the linear quadrupole, S2 = Sr . 

The multipole concept can extend indefinitely. For example, the 
quadrupole can be displaced by a small distance S3 , and the original 
quadrupole replaced by one in which the signs of all the charges have 
been ch�nged. This gives an octupole. A i-pole requires I displacements 
S l ,  S2 , . . .  , SI' 

We have seen that the dipole potential varies as l/r2 and that the 
quadrupole potential varies as l /r3. For the 2/-pole, V varies as l/rl+l and 
E as l/rl+2. 

We have calculated the potential V in the field of a dipole and of a 
quadrupole in the following way. We found the sum of the potentials of 
the individual charges, expanded the sum as a power series, and then 
t runcated. This approach is straightforward, and it has the advantage of 
showing exactly what approximations are involved. Problems 5-5 and 5-6 
explore a different method that is more elegant, but that does not reveal 
the exact nature of the approximations. 

*5 .4 THE ELECTRIC FIELD OUTSIDE A CHARGE 
DISTRIBUTION, EXPANDED IN TERMS OF 
MULTIPOLES 

A charge distribution of density p(x ' ,  y ' , z ') occupies a volume v ' and 
extends to a maximum distance r:nax from an arbitrary origin 0, as in Fig .  
:'1-4. We select 0 either within the volume or close to it . 

We shall see that the potential V at a point P outside the charge 
distribution such that r > r:nax is the same as (1)  the potential VI of a 
point charge, or monopole, equal to the net charge of the distribution, 
plus (2) the potential V2 of a point dipole with a dipole moment equal to 
t hat of the charge distribution, plus (3) the potential V3 of a point 
quadrupole with a quadrupole moment equal to that of the charge 
d istribution, and so on, the monopole, dipole, quadrupole, etc. , being all 
located at the arbitrary origin. 

Similarly, the E at point P is the sum of the E's of the above 
monopole, dipole , quadrupole, etc. 

If Q = 0, then V2 is independent of the choice of origin. More 
generally, Yt is independent of the choice of origin if all the multipole 
moments up to the 2/- 1 -pole are zero . 
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Fig. 5-4. Arbitrary charge distribution enclosed within a volume v ' .  The potential 
at P is the same as if one had , at the origin ,  a monopole, plus a dipole , plus a 
quadrupole , plus an octupole, etc. However, r must be larger than the maximum 
value of r ' . 

Since the V of a monopole decreases as 1 /r, that of a dipole as 1 /r2, 
that of a quadrupole as 1 /r3, etc. , then a long distance away, where 
r » r:nm the field of any charge distribution is simple. It is that of a point 
charge at the origin and V = Vj . Closer in, V = Vj + Vz. Still closer in,  V3 
becomes discernible, then V4, etc. , and the field becomes more and more 
complex. 

*5 .4 . 1 The Value of V. The Legendre Polynomials 

We wish to find V at some point P such that r >  r:nax .  From Fig. 5-4, this 
is 

where 

f p dv ' 
V =  --,, ' v , 4nEor 

r" = I r - r ' l  = [(x - x '? + (y - y ' )2 + (z - Z ,)2P/2. 

(5-18) 

(5-19) 

The point P(x, y, z ) is fixed. Thus r" is a function of x ' , y ' ,  z ' , and we 
can expand 1 /r" as a Taylor series near the origin . 

Let 

1 w(u) = 1 I ' ur' - r 
(5-20) 



5 . 4  THE ELECTRIC FIELD OUTSIDE A CHARGE DISTRIBUTION 

The factor u is dimensionless. We require w(l) ,  which is l/r": 

1 ( OW) 1 (02W) w(l )  = -;; = w(O) + - + , -2 + " ' , 
r OU u = o  2 .  ou u =o 
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(5-21 )  

where w(O) = l/r. To calculate the derivatives on the right-hand side, we 
require the partial derivative of l ur' - rl with respect to u :  

o 0 - I ur' - rl = - [ (ux '  - X)2 + (uy ' - y)2 + (uz ' - Zfp/2 OU ou (5-22) 

1 ..., ..., ') 
I ' I (2ux '- - lx 'x + 2uy '� - 2y 'y + 2uz '- - 2z 'z) 2 ur - r 

Thus 

and 

OW 
ou 

ur, 2 - r' . r = (ur' - r) . r' 
l ur' - rl l ur' - rl 

1 (ur' - r) · r' 
l ur' - r l2  iur' - r l 

(ur' - r) . r' 
l ur' - rio 

( OW) = ':..:...!� = i ·  r' 
= 

r '  cos (1' 

ou u =o r' r2 r2 ' 

where i and (1' are as in Fig. 5-4. Also , 

:md 

In general, 

where 

02W 3[ (ur' - r) . r'f r ,2 

ou2 l ur' - rl5 l ur' - r l3 

1 d" p. (cos (1') - - (cos2 ", 1 )"  " - 2" ' d( )" U -n .  cos (1' 

(5-23) 

(5-24) 

(5-25) 

(5-26) 

(5-27) 

(5-28) 

(5-2<) 

(5-30) 
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Table 5-1 Legendre polynomials 

n 

o 
1 

2 

3 

4 

5 

cos (t' 

3 cos2 (t' - 1 

2 
5 cos3 (t' - 3 cos (t' 

2 
35 cos4 (t' - 30 cos2 (t' + 3 

8 
63 cos5 (t' - 70 cos3 (t' + 1 5  cos (t' 

8 

is a Legendre polynomial. Table 5-1 gives the first five, while Fig. 5-5 
shows the first four as functions of the angle ll'. For any ll', 

Thus from Eq. 5-2 1 ,  

Since IFn (cos ll') 1 S 1 as  above, this series converges for r:nax < r. 
Substituting in Eq . 5-18, we finally have that 

v = _1_ f p dv I + -4 
1 

2 f r I cos ll' P dv I 
4.7rEor v ' .7rEor v ' 

1 f 2 3 cos2 ll' - 1 d . I + --- r '  p v 4.7rEor3 v '  2 
1 f 3 5 cos3 ll' - 3 cos ll' d + ---4 r ' p v '  4.7rEor v ' 2 
1 f 14 35 cos4 ll' - 30 cos2 ll' + 3 d I + --- r p v + ' "  4.7rEor5 l/ '  8 

Let us examine the first three terms in succession. 

(5-3 1 )  

(5-32) 

(5-33) 

(5-34) 



93 

1 . ( )"-l!I'::�------------------:_ 

0.5 

O I-_+-+_-T1I----'Irl--+_��_+-+?yl_\__+-+___1 

- 0. 5  

- 1 .0 
Fig. 5-5. The first four Legendre polynomials Pn(cos a} 

*5 .4 .2  The Monopole Term 

The first term is the V that one would have at P if the whole charge was 
concentrated at the arbitrary origin: 

(5-35) 

where Q is the net charge in the distribution. This is the monopole term. 
It is zero if the net charge is zero. Its value depends on the position 
chosen for the origin .  

*5 .4 .3  The Dipole Term 

The second term varies as 1 /rz, like the electric potential of a dipole. 
From Eq. 5-33 

Vz = __ 1-z f r' cos cr p dv '  = � ·f r'p dv ' ,  
4.7rEor u ' 4.7rEor u ' 

(5-36) 

where the integral on the right is the dipole moment of the charge 
distribution: 

Thus 
p = f r'p dv ' . 

u ' 
(5-37) 

(5-38) 
as in Eq . 5-8 . 



94 ELECfRIC FIELDS III 

*5 .4 .4 The Quadrupole Term 

Now consider the term V3 of Eq.  5-33. It involves a l/r3 factor , like the V 
of the linear quadrupole of Sec. 5 .2. If we calculate V3 for the linear 
quadrupole with charges Q, -2Q, and Q at z = s, 0, and -s, 
respectively, we find that it is equal to the V of Eq. 5-17. Then V3 is the 
same as if one had a small quadrupole at the origin. Now 

Set 

= _1-3 f � [3(r ' r ' )Z - r ,2]p dv ' . 4.7rEor v '  

r = IX + my + ni, 
where l, m, n are the direction cosines of r and where 

Then expand and group terms. This yields 

V3 = -4 
1 

3 (3mnf y 'Z 'P dv ' + 3nlf z 'x 'p dv '  .7rEar v '  v '  

f 3[2 - 1 f + 3lm x 'y 'p dv ' + -- x ,2p dv '  
v ' 2 v '  

(5-39) 

(5-40) 

(5-4 1) 

(5-42) 

These integrals, like the integral of Eq. 5-37, depend solely on the 
distribution of electric charge within v ' , and not on the coordinates 
x, y, z of the field point P. They specify the nine components of the 
quadrupole moment of the charge distribution : 

Pxx = f X '2p dv ' = QX ,2, 
v '  

(5-43) 

Pyy = f y 'Zp dv ' = Qy 'Z, 
v ' (5-44) 

pzz = f z ,zp dv ' = QZ ,2, 
v '  (5-45) 
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pyz = PZy = f y 'z 'p dv ' = Qy 'z ' ,  
u ' (5-46) 

Pzx = Pxz = f z 'x 'p dv ' = Qz 'x ' ,  
u '  

(5-47) 

Pxy = Pyx = f x 'y 'p dv ' = Qx 'y ' , 
u ' (5-48) 

The bar indicates, as usual, an average value, Thus 

V3 = _1-3 (3mnpvz + 3nlp=x + 31mpxy 4lT6or . 
312 - 1 + -2-Pxx 
3m2 - 1 3n2 - 1 ) + 2 Pyy + 2 Pzz (5-49) 

If the charge distribution displays circular symmetry about the z-axis, 

Pyz = Pzx = Pxy = 0, Pxx = Pyy ' (5-50) 

I t  is then convenient to define a single quantity 

(5-51 ) 

that is also called the quadrupole moment of the charge distribution, 
Then, remembering that z2 + m2 + n2 = 1 , we find that 

(5-52) 

at the point r, 8, cP in spherical coordinates. 
We can, of course, deduce the electric field strength from the relation 

E = - VV. 

F.xample THE FIELD OF A SET OF SIX POINT CHARGES 
SET SYMMETRICALLY ABOUT THE ORIGIN 

Figure 5-6 shows six charges. A point P in space is at a distance 
r > a from the origin .  The potential at P is given by the series of 
Eq. 5-34. Let us calculate the first three terms. From Eq. 5-35 

12Q 
V1 =-- · 4.7fEor 

(5-53) 
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Q 

Q a 4 Q  
a a 

4Q 

Q 

Fig. 5-6. Six charges arranged symmetrically about the origin O. 

From Eqs. 5-37 and 5-38, 

p =  2:- ,'Q = 0, (5-54) 

From Eqs. 5-43 to 5-48, 

(5-55) 

pyz = Pzx = Pxy = O. (5-56) 

Finally, from Eq. 5-49, 

and 

(5-60) 
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It turns out that V
4 

= 0, and that 

Qa4 lis = ---5 [35(r + m4 + 4n4) - 90n2 - 12] .  (5-61) 
16.7rE'or 

At P, 

(5-62) 

(5-63) 

Since the direction cosines [, m, n are each at most of the order 
of unity, with [2 + m2 + n2 = 1, the coefficient of a2/r2 is also of the 
order of unity, and at r � lOa the series reduces to its first term 
with an error of at most 1% .  The terms V3, V5 , • • •  become 
progressively more prominent as ria decreases. 

5 . 5  SUMMARY 

The electric dipole consists of a pair of charges of equal magnitudes Q but 
of opposite signs, separated by a distance s. Its dipole moment p is Qs, a 
vector directed from the negative to the positive charge. 

At a distance r from the dipole, 

(5-8) 

The linear electric quadrupole consists of four charges Q, -2Q, Q, as 
in Fig . 5-3 . Then 

2QS2 (3 cos2 e - 1 ) V = -- -'------� 
4.7rEor3 2 ' 

where cos e = Z . r. 

(5-17) 

Some distance outside a charge distribution the potential can be 
written as a series 

(5-34) 

Here VI is the potential at P due to a single charge, called a monopole, 
equal to the net charge of the distribution and situated at the position of 
the arbitrary origin .  Similarly , V2 is the potential at P due to a dipole 
whose dipole moment is equal to that of the distribution and also situated 
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at the origin ,  etc . :  

p '  r V2 = -4--2 , lrEo' 

(5-35) 

(5-38) 

3/2 - 1 3m2 - 1 3n2 - 1 ) 
+ --2- PxX + 2 Pyy + 2 Pzz , (5-49) 

where I, m, n are the direction cosines of the vector , defining the 
position of P and where 

_ Q---r2 Pxx - x , Q----,z Pyy = Y , _ Q----,z pzz - Z , (5-43), (5-45) 

Pyz = Pzy = Qy 'z ', PZX = Pxz = Qz 'x ', Pxy = Pyx = Qx 'y ' . 
(5-46), (5-48) 

PROBLEMS 

5-1 .  (5. 1 )  The dipole moment of a charge distribution whose net charge is zero 
Show that, if the net charge Q is zero, then the dipole moment of a 

charge distribution is independent of the choice of origin . 

5-2. (5. 1 ) The dipole moment of parallel line charges 
Two line charges + Q  and - Q  extend, respectively, from (-a, 0, c) to 

(a, 0, c) and from (-a, 0, -c) to (a, 0, -c). Calculate their dipole moment. 

5-3 . (5-1) The dipole moment of a spherical shell of charge 
Calculate the dipole moment of a spherical shell of radius R bearing a 

surface charge density a = ao cos O. 

5-4. (5. 1 )  The dipole moment of a spherical shell of charge 
(a) Calculate the dipole moment of a spherical shell of radius R whose 

surface charge density is ao(1 + cos 0). 
(b) What is the dipole moment if the center of the sphere is at Zi? 
(c) What is the dipole moment if the center of the sphere is at 

Xi + Yj + Zi.? 
5-5. (5. 1)  An alternate expression for the potential in the field of an electric 

dipole 
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We found that, in the field of an electric dipole, 

V = 4;EJt - �). 
Refer to Fig . 5-7 . Show that , if the length of the dipole is small, then 

V =� [� (�)] 4JrEo dz ' r' z , �o
' 

where z '  is the position of a point on the z-axis and r' = xi + yy + (z -
z ' )i. 

Q 

r-----f--------� \' 

1 / 
1 /  

x _ _ _ _ _ _ _ _ _ _ _ _ _ _  J/ 
/ 

/ / 

/ / / 

Fig. 5-7. 

5-6. (5.2) An alternate expression for the potential in the field of an electric 
quadrupole 

See Prob. 5-5 and refer to Fig. 5-8. Show that the potential in the field of 
a linear electric quadrupole is V _ ps [ d (COS B)] - 4JrEo dz ' 7 z ' �o 

5-7. (5. 4) Multipolar expansion of the field of a single point charge 
A single point charge Q is situated at P ' (O, 0, s) as in Fig. 5-7. 
First expand its potential at point P in terms of multipoles. The vector r 

that defines the position of P forms an angle B with the z-axis, and r »  s. 
The distance from Q to P is r ' .  Disregard terms of the order of (slrt and 
higher. Then write out the values of Vj , V2, v,. 

5-8. (5. 4. 4) The potential close to a dipole 
Calculate V for a dipole exactly, and identify the quadrupole and 

octupole terms . The octupole term varies as (slr)4. You can therefore 
disregard terms in (slr)5, (s I r)6, etc. 

5-9 . (5. 4. 4) The field of a charged cube 
A cube of side 2a carries a uniform volume charge density p. The origin 

of coordinates is at the center. Calculate Vj , V2, V3• 

5 · 1 0. (5. 4. 4 )  The field of a line charge 
A line charge Q extends from z = -a12 to z = a12. 
(a) Calculate the monopole, dipole, and quadrupole terms in the 

expansion for V. 
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P IX , .' , : )  

Fig. 5·8. 

(b) For what value of the distance r to the center of the charge is the 
quadrupole term less than 1% of the monopole term, if 3n

2 
- 1 is of the 

order of unity? 

5-1 1 .  (5. 4. 4) The field of a set of six equal point charges 
In Fig. 5-6, let all the charges be Q. Calculate V. and 1/.;.  
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This chapter concerns the energy stored in an electric field and the 
resulting forces exerted on charged conductors . Capacitors are devices 
designed to store electric energy. 

0 . 1  THE POTENTIAL ENERGY 'if; OF A CHARGE 
DISTRIBUTION EXPRESSED IN TERMS OF 
CHARGES AND POTENTIALS 

0 . 1 . 1  The Potential Energy of a Set of Point Charges 

Imagine a set of N point charges distributed in space as in Fig . 6-1 .  There 
are no other charges in the neighborhood. A given charge occupies a 
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Q2 �12 / .  
Q J // . . / 

Fig. 6-1. Set of point charges 
Q1 . Q2 . Q3 • . . .  separated by 
distances '12 .  r13 •  '14. etc. 

point where the potential due to the other charges is V. That particular 
charge therefore possesses a potential energy, which is either positive or 
negative. The system as a whole possesses a potential energy 't; that we 
shall calculate. 

Assume that the charges remain in equilibrium under the action of 
both the electric forces and restraining mechanical forces .  

The potential energy of  the system i s  equal to  the work performed by 
the electric forces in the process of dispersing the charges out to infinity. 
After dispersal, the charges are infinitely remote from each other, and 
there is zero potential energy. 

First, let QJ recede to infinity slowly, keeping the electric and the 
mechanical forces in equilibrium.  There is zero acceleration and zero 
kinetic energy. The other charges remain fixed. The decrease in potential 
energy 't;J is equal to QJ multiplied by the potential VI due to the other 
charges at the original position of Q J :  

(6- 1 )  

All the charges except Q I  appear in  the series between parentheses . 
With Q J  removed, let Q2 recede to infinity, to some point infinitely 

distant from QI .  The decrease in potential energy is now 

(6-2) 

The series for 't;2 has N - 2 terms. We continue the process for all the 
remaining charges, until finally the Nth charge can stay in position, since 
it lies in a zero field. 
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The total potential energy of the original charge distribution is then 

'if; = 'if;1 + 'if;2 + 'if;3 + . . . 'if; N (6-3) 

= � (0 + Q2 + Q3 + Q4 + . . .  + QN) 
4JrEo '12 '13 '14 'I N 

QN +-- (0 + 0 + 0 + 0 + ' "  + 0) .  4JrEo (6-4) 

We now rewrite this array, adding, to the left of and below the diagonal 
line of zeros, terms that are equal to their counterparts to the right of and 
above the diagonal .  Then every term of the series appears twice and 

(6-5) 

On the right , the first line is QI VI , the second line is Q2 V2, and so forth, 
where V; is the potential in the undisturbed system due to all the charges 
except Qi at the point occupied by Qi'  Thus 

(6-6) 

and the potential energy of the initial charge configuration is 

(6-7) 

The reason for the factor of :! follows from the above calculation . Let 
all the charges be positive. Then the potential at the position of a given 
charge , just before it moves out to infinity , is less (except for Q 1) than 
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the potential at the same point in the original charge distribution. On the 
average, the potential just before removal is one-half the potential in the 
original charge distribution . 

This energy 'll, which does not include the energy required to assemble 
the individual charges themselves, can be positive, negative, or zero. For 
example , for two charges of the same sign , 'll is positive. For charges of 
opposite signs, 'll is negative . For a single charge , 'll is zero. 

But what is the energy required to simply modify a charge distribution , 
without dispersing it to infinity? This energy is clearly equal to the final 
potential energy minus the initial potential energy, whatever method one 
may choose to effect the change. 

6 . 1 .2 The Potential Energy of a 
Continuous Charge Distribution 

For a continuous electric charge distribution , we replace Qi by P dv and 
the summation by an integration over any volume v that contains all the 
charge: 

'll = 1f VP dV. 
,. 

(6-8) 

This integral is equal to the work performed by the electric forces in 
going from the given charge distribution to the situation ' where p = 0 
everywhere, by dispersing all the charge to infinity, or by letting positive 
and negative charges coalesce, or by both processes combined. 

At first sight, this is an obvious extension of the previous equation . It is 
not, because we have now included the energies required to assemble the 
individual macroscopic charges. In fact , as we shall see in Sec. 6.2 ,  the 
above integral is always positive. 

Observe that the potential V under the integral sign does not include 
the part that originates in the element of charge p dv itself. We saw in 
Sec. 3 .5  that the infinitesimal element of charge at a given point 
contributes nothing to V. 

If there are surface charge densities a, then their stored energy is 

'll = 1LaV dsi, (6-9) 

where si includes all the surfaces carrying charge. 

6 . 1 .3 True Point and Line Charges 

Suppose we have a spherical charge Q of uniform volume density and 
radius R. Then, using the value of V that we calculated in Sec. 3 .7. 1 ,  
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l lR (  Q ) [ Q (3 r2 ) J 2 
3Q2 

't; = 2 0 4nR3/3 4nEoR 2 - 2R2 
4nr dr = 

20nEoR . 
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(6-10) 

II R is zero, then 't; is infinite , which is nonsense. Electrons are 
I ' lesumably true point charges, and dealing with this absurd result poses 
d i lticult problems whose solutions are well beyond the scope of this book. 
Wi th a true line charge, 't; is similarly infinite. 

True point and line charges are therefore not allowed in the present 
, ' ) Il text . Nonetheless, we follow the usual custom of speaking loosely of 
I "  l i nt and line charges when the radius is negligibly small . True surface 
, harges cause no problems. 

() 2 THE POTENTIAL ENERGY 't; OF AN 
ELECTRIC CHARGE DISTRIBUTION 
EXPRESSED IN TERMS OF E 

We have expressed the potential energy 't; of a charge distribution in 
I l'IITIS of the charge density p and the potential V. Now both p and V are 
r " I ated to E. So it should be possible to express 't; solely in terms of E. 
I h i s  is what we shall do here. We shall find that 

't; = J EO£2 dv 
v 2 

' (6- 1 1 )  

I I  here the volume v includes all the regions where E exists . Thus we can 
, . r 1culate 't; by assigning to each point in space an electric energy density 
" I  coE2/2. 

Since the above 't; is positive, that of Eq . 6-8 is also always positive. 
I 'hese two equivalent expressions for 't;, one in terms of p and V and 

\ 1 1 ,' other in terms of E, are both important . They emphasize different , 
I I I I I  complementary, aspects of electrical phenomena. With the first 
, \ pression , 't; is the potential energy of a system of charges ; with the 
, , ( )nd. 't; is the energy stored in a field. 

We first apply the above formula to the field of a charged spherical 
. " l louctor , and then we give a general proof. 

I \ I/mple THE POTENTIAL ENERGY 't; OF A CHARGED 
CONDUCTING SPHERE 
We find the potential energy l: of a conducting sphere of radius R 
carrying a charge Q in three different ways. 

First method 
The whole charge Q is at the potential Q /4TCEoR. Then 
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1 Q Q2 'l; = - Q--=
--, (6-12) 

2 4nEoR 8nEoR 
Second method 
Imagine that the radius of the charged spherical conductor 
increases slowly and eventually becomes i nfinite. The total 
mechanical work performed by the charges is equal to the initial 
potential energy. 

During the expansion,  the field outside remains unaffected 
(Gauss's law again ! ) ,  An element of charge a dSli = E"E dSli is 
subjected to an electric field strength equal to E/2 (Sec. 6 .5 ) ,  and 
the work performed by this element , when the radius of the 
sphere increases by dR, is (E E"E2 

d'f, = (E"E dSli) 2) dR =Tdv, (6-13) 

where dv is the element of volume swept by the element of area 
dSli. After the radius has expanded to infinity, the total work 
performed by the charges is 

'l; JX EOE' d JX E" (' Q ) 2
4 C d Q' 

= R 
�

2
-

v = R :2 4nE"r2 
nr r 

= 8nEoR 

as above . 

/ ,/ 

,/ /' ,/ 

--- ---
/ .r / � �  "- '- "-"-"-"-
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Fig. 6·2. Spherical conductor carrying a charge Q, and a con
centric imaginary spherical surface of area SIi(r). 
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Third method 
Let SIi(r) be the area of any surface of radius r, concentric with 
the conducting sphere and outside it, as in Fig. 6-2. Then, from 
Gauss's law (Sec. 3.7) ,  

� = �QV = � f  EoE dSli rEdr. 
>1(r) JR 

Since the two integrals are independent of each other, 

� = � r(f EoE dSli) Edr 
JR >1(r) 

as previously. 

h .2 . 1 The Potential Energy � of a Charge Distribution 
Expressed in Terms of E :  General Proof 

(6-15)  

(6-16) 

(6-17) 

(6-18) 

We exclude unrealistic cases where V would be discontinuous, for this 
would require an infinite E. We also set V = 0 at infinity, which excludes 
charges of infinite extent. Then V has a finite maximum Vrnax and a finite 
minimum Vrnin, with Vrnax 2: 0, Vrnin ::s  O.  

Let Vrnin be negative and imagine a conductor that occupies all points 
where V = Vmin . The conductor expands out to the equipotential Vrnin + 
d V, This does not affect the rest of the field. Eventually, the conductor 
reaches the equipotential V = O. In the course of the expansion, any 
charge encountered accumulates on the surface of the conductor .  

According to the second method above , the work performed by the 
charges is equal to the integral of £OE2/2 over the volume swept out . 

Now let Vmax be greater than zero, and imagine another conductor 
( )ccupying the region where V = Vrnax . It expands as above until it reaches 
t he equipotential V = O. Again the work performed is the integral of 
( "E2/2 over the volume swept out. 

If the two conductors meet, then, immediately before contact, the 
,urface charge densities are equal in magnitude (same E), opposite in 
'iign , and at the same potential . They cancel . The charge density is now 
lero everywhere, either because the charges are dispersed to infinity or 
hecause positive and negative charges have neutralized. 

The initial stored energy is thus given correctly by the integral of 
( "E2/2. 
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6 .3  THE CAPACITANCE OF AN 
ISOLATED CONDUCTOR 

ELEcrRIC FIELDS IV 

Imagine a finite conductor situated a long distance from any other body 
and carrying a charge Q. If Q changes, the conductor's potential also 
changes. As we shall see, the ratio Q I V is a constant. The capacitance of 
the isolated conductor is 

( 6-19) 

Thus the capacitance of an isolated conductor is equal to the extra charge 
required to increase its potential by 1 volt .  The unit of capacitance is the 
farad, or coulomb per volt. 

The energy stored in the field of an isolated conductor is 
QV CV2 Q2 � = 2 = -2- = 2C ' (6-20) 

We now show that the capacitance C of an isolated conductor depends 
solely on its size and shape. The conductor is in air. The potential in the 
region surrounding the conductor is V (x, y, z ) .  It obeys Laplace's 
equation, and it is zero at infinity because the conductor is of finite size, 
by hypothesis. At the surface of the conductor the charge density a is 
EoE (Sec. 4.4) , or Eo times the rate of change of Vex, y, z ) in the 
direction normal to the surface . An immediate consequence is that the 
value of the conductor potential determines the surface charge density 
a = - Eo I VV I on the conductor. Therefore the conductor potential also 
determines the total charge Q on the conductor. 

Observe now that the equation V2 V = 0 is linear, so that any multiple 
of V ex, y,  z ) is also a solution. If V increases everywhere by some factor 
a, this new V obeys Laplace's equation outside the conductor, is zero at 
infinity, and is equal to av" on the conductor. Furthermore , it is the only 
continuous function of x, y, z that satisfies these three conditions. We 
conclude that if the conductor's potential increases by the factor a, then 
V increases everywhere by the same factor a, and both a and Q likewise 
increase by the same factor. 

The charge Q on an isolated conductor is thus proportional to its 
voltage, and its capacitance C = Q IV depends solely on the size and 
shape of the conductor. 

Example THE CAPACITANCE OF A 
CONDUCTING SPHERE 
If an isolated conducting sphere of radius R carries a charge Q, 
the potential at its surface is Q /4JrEoR and 
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C = 4ltEoR = 1 . 1 1  x lO- IOR farad 
= l 11R picofarads. (6-21) 

hA THE CAPACITANCE BETWEEN 
TWO CONDUCTORS 

We now have two uncharged isolated conductors. Transferring a charge 
() from one to the other establishes a potential difference V between 
t hem. By definition, the capacitance between the conductors is Q IV. The 
capacitance depends solely on the geometry of the conductors and on 
t heir relative positions. 

Pairs of conductors arranged specifically to possess capacitance are 
called capacitors. 

THE PARALLEL-PLATE CAPACITOR 

A parallel-plate capacitor (Fig. 6-3) consists of two conducting 
plates of area sil, separated by a distance s. The plates carry 
charges Q and - Q. We neglect edge effects. From Gauss's law, 

Then 

a Q Qs 
E = - = - , V = - . (6-22) 

Eo silEo silEo 

(6-23) 

Also , the stored energy is 

or 

+ 
V 

QV CV2 Q2 Q2s 
'!g = - = - = - = --

2 2 2C 2Eosil ' 

Fig. 6-3. Parallel-plate capacitor connected to a battery. 

(6-24) 
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Example 

Q, 
c, 

- Q, 

v 

Q, 
c, 

- Q, 

v 1 '1 
- Q  '1 

(b) 

Fig. 6-4. (a) Two capacitors connected in parallel. (b) Two capac
itors connected in series. 

CAPACITORS IN PARALLEL AND IN SERIES 
Capacitors connected in parallel share the same voltage. Thus, for 
two capacitors. as in  Fig. 6-4(a) . 

' 

(6-26) 

Capacitors connected in series carry the same charges, as in Fig. 
6-4(b) .  Then 

(6-27) 

(6-28) 

So capacitors connected in parallel add as resistors in series, and 
capacitors connected in series add as resistors in parallel. 

6 .5  ELECTRIC FORCES ON CONDUCTORS 

An element of charge a d.s4 on the surface of a conductor experiences the 
electric field of all the other charges and is therefore subjected to an 
electric force. Under static conditions this force is perpendicular to the 
surface, for otherwise there would be a tangential field and a tangential 
current. The force also acts on the conductor, to which a d.s4 is bound by 
internal electric forces . 

To calculate the magnitude of the electric force, consider a conductor 
carrying a surface charge density a with an electric field strength E near 



(J - -n 2Eo 

1 1 1  

Fig. 6-5. The local surface charge density a on a conductor gives two oppositely 
di rected electric fields, as shown by the two arrows on the left. All the other 
charges together give the field shown on the right. The net result is a field 
,trength of aj E o  outside and zero inside. The unit vector ii points outward, as 
usual. 

the surface . From Gauss's law, this E is aleo. Now the force on adsi is 
! lot Ea dsi, because the field that acts on a dsi is only that of the other 
charges in the system. 

We can find the field of a dsi itself from Gauss's law. The flux of E 
emerging from a dsi is a dsi / Eo, half of it inward and half outward, as in 
Fig. 6-5 . Then a dsi provides exactly half the total E at a point outside, 
close to the surface , and cancels the field of the other charges, inside. 

Therefore the E acting on a dsi is a/2Eo, and the force on the element 
llf area dsi of the conductor is 

a a2 
dF = - a dsi = - dsi. 

2Eo 2Eo 

The surface force density is 

dF a2 E E2 
F' - - - (I - - - - - --

dsi 2Eo 2 newtons/meter2 • 

(6-29) 

(6-30) 

The force per unit area on a conductor is equal to the energy density in 
the field. 

The net electrostatic force on a conductor of area si is 

(6-31 ) 
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where the vector dsll points outward. The local electric force tends to 
pull the conductor into the field. In other words , an electrostatic field 
exerts a negative pressure on a conductor. The net force on a conductor 
depends on the way a and E vary along its surface . In air, or in a 
vacuum, electric forces are usually negligible . However, they can be quite 
large in dielectrics. 

6.5 . 1  Electric Forces and Lines of E 

Figure 6-6 shows lines of E for four pairs of line charges. 
In Fig. 6-6(a) and (c) , the force is attractive and the lines of E are 

clearly "under tension . "  Indeed, the tensile force per square meter is 
EoE2/2, as we can infer from the previous section. 

In Fig. 6-6(b) and (d) , on the other hand, we can see lines of E 
"repelling" each other laterally . The repulsive surface force density in the 

(a) 

(b) 
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(e ) 

I 
I 

/� 
\\� 

\ 
\ 

I U )  

hg.  6·6. Lines of E between pairs of l ine charges. It is useful to visualize 
" I ractive electric forces as being caused by a tension in the lines of E. as in (a) 
. l l l d  (c). Similarly . repulsive electric forces may be thought of as being caused by 

I l ateral repulsion between lines of E, as in (b) and (d) . In (c) and (d) the charge 
" 1 1 the left is twice as large as the other. 

I cgion where the lines of E are parallel is also EoE2/2. See Prob. 6-8. 
Later we shall see that magnetic fields behave similarly . 

( , 6 CALCULATING ELECTRIC FORCES BY THE 
METHOD OF VIRTUAL WORK 

Wc can also calculate electric forces by the method of virtual work. This 
I i l c thod consists in postulating an infinitesimal displacement and then 
l [ lplying the principle of conservation of energy. We first define a system. 
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and then we calculate the I energy fed into it in the course of the 
displacement .  This energy is equal to the increase in the internal energy 
of the system. 

The method of virtual work is a general and reliable method for 
calculating forces , but on two conditions: ( 1 )  one must be perfectly clear 
about exactly what system one is talking about , and (2) one must be 
particularly careful to use the proper signs. 

Example THE PARALLEL-PLATE CAPACITOR 

A parallel-plate capacitor is connected to a battery supplying a 
fixed voltage V. See Fig. 6-7. We assume that the distance s 
between the plates increases by ds, and we apply the principle of 
virtual work .  We are going to calculate energies related to the ' 
capacitor . Thus the net energy fed into the capacitor in the course 
of the displacement ds of the top plate will be equal to the 
increase in the electric energy stored in the capacitor. 

Let 'br be the mechanical energy fed into the capacitor by the 
force F, let '[;/1 be the electric energy fed in by the battery. and let 
'br be the increase in  the electric energy of the capacitor. Then 

(6-32) 
with 

I'f = P ds ,  '[;R = V dQ, ( 6-33) 

where dQ is the extra charge fed into the capacitor by the battery. 

F 

+ 

Fig. 6-7. Parallel-plate capacitor connected to a battery supplying 
a fixed voltage V. We can calculate the force of attraction between 
the plates by imagining an equal but opposite force F thaI pulls 
one of the plates away by an infini tesimal distance ds. The dashed 
curve reminds us that we apply the principle of the conservation of 
energy to the capacitor alone. 
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Here 

, 2 En/d 2 ds 2 �B = V( V dC) = V  d- = - V End , = - (Eo£ ) (d ds) .  (6-34) 
s s -

I f  ds i s  positive .  dC is negative and  energy flows from the 
capacitor into the battery. 

Finally , since £ = V / s, 

Co = d (Eo£2 ) = d( EoV2SiS) = 
siV2 ( _ ds) = _ Eo£2 

d l'E ') ds ., 2 E" 2 2
.eIl s. _ � 2 s 

(6-35) 

Note the negative sign! The energy density Eo£2/2V decreases 
faster than the volume .eIls increases. 

Thus 

E £2 F = _o- si 
2 ' 

(6-36) 

( 6-37) 

and the force per unit area is equal to the energy per unit volume . 
as previously. 

Half the energy supplied by the source becomes mechanical 
energy , and the other half becomes electric energy . This is a 
general rule. 

1 1 '1 SUMMARY 

I i l L' potential energy of a charge distribution is given by either one of two 
1 l l l cgrals: go = !J VP dV 

L' 
(6-8) 

<£. = 1J EoE2 dv. 
L '  

(6- 1 1 )  

I I ' the first integral the volume v contains all the charges, while in the 
'L'l:ond it includes all the field . The assignment of an electric energy 
'/ < ' I lsity EoE2/2 to every point in space leads to the correct potential 
\ ' I I LTgy of a charge distribution. 

If the potential of an isolated conductor is V when its charge is Q, then 
1 1 \  capacitance C is Q/V farads. This quantity depends solely on the 
" ,L'ometry of the conductor. The capacitance between two conductors is 
, I ga i n  Q / V, where Q is now the charge transferred from one to the other 
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and V is the potential between them. In both cases the stored energy is 

QV CV2 Q2 
i{; = - = - = -

2 2 2C (6-20) 

The force per unit area exerted on a conductor situated in an electric 
field is equal to the electric energy density at the surface : 

E £2 a2 F ' = _o- = -
2 2Eo ' 

where a is the surface charge density. 

(6-30) 

It is useful to visualize electric forces as being caused by lines of E that 
are under tension and that repel each other laterally . 

We can also calculate the electric force on a conductor by the principle 
of virtual work, which is simply the principle of conservation of energy 
applied to an infinitesimal disturbance of a system . 

PROBLEMS 

6-1 .  (6. 1 )  The dipole and the quadrupole 
Calculate the potential energies of an electric dipole and of an electric 

quadrupole. 

6-2. (6. 1)  The potential energy of a sphere of charge 
(a) Calculate the electric potential energy of a sphere of radius R 

carrying a total charge Q uniformly distributed throughout its volume . 
(b) Calculate the gravitational potential energy of a sphere of radius R '  

and total mass M. 
(c) Calculate the gravitational potential energy of the moon. See The 

Table of Physical Constants at the end of the book. 
(d) Imagine that you can assemble a sphere of protons with a density 

equal to that of water. What would be the radius of this sphere if its electric 
potential energy were sufficient to blow up the moon? 

(e) What is the voltage at the surface of the sphere of protons') 

6-3 . (6. 2) The energy in the field of a sphere of charge 
A sphere of radius R contains a charge Q, uniformly distributed 

throughout its volume. Calculate (a) the energy, (b) the energy stored in 
the field inside the sphere. and (c) the energy stored in the field outside the 
sphere. There is five times more energy outside than inside. 

6-4. (6. 4) The reciprocity theorem for electrostatics 
Consider a set of n conductors of arbitrary sizes, shapes . and positions. 

Conductors 1 ,  2. 3, . . . carry charges Q "  Q" Q" . . . , and their voltages 
are V" V2 • V3 , • . • •  Without disturbing the conductors. you change the 
charges to Q; ,  Q�, Q;. 
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According to the reciprocity theorem for electrostatics, 

or 

We shall find analogous reciprocity theorems in Chaps, 8 and 27. 
You can prove this theorem by calculating the energy required to change 

the charges from Q to Q '  and equating this energy to � Q ' V '  /2 - � QV /2. 
To do this, set the charge and voltage on conductor 1 equal to (1 - x )Q, + 
xQ ; and (1 - x) V, + X V ;. Then you can go from one state to the other by 
letting x go from zero to unity. 

6-5 .  (6. 4) Cylindrical capacitor 
(a) Show that the capacitance per unit length of a cylindrical capacitor is 

C' = 2nfo/ln (R2/ R 1) , where R, and R2 are the inner and outer radii. 
(b) Calculate the capacitance per meter when Rz/R, = e = 2. 7 18. 

6-6, (6. 4) Spherical capacitor 
(a) Show that the capacitance of a spherical capacitor of inner and outer 

radii R 1 and R2 is 

(b) Calculate the capacitance when R, = 100 millimeters and Rz = 
200 millimeters. 

6-7, (6. 4) Connecting charged capacitors in parallel 
Two capacitors C, and C2 are charged to voltages VI and Vz, respectively, 

and then connected in parallel ,  positive terminal to positive terminal and 
negative to negative. 

(a) What is the final voltage? 
(b) What happens to the stored energy? 

6-8. (6. 5. 1 )  Electric forces and lines of E 
(a) Use the method of Sec. 6 . 5 . 1  to calculate the force of attraction 

between two charges Q and - Q  separated by a distance 2D. 
(b) Repeat the calculation for two charges of equal sign. 

6-9. (6. 5) High-voltage generator 
Imagine the following mechanism for generating high voltages. One plate 

of a parallel-plate capacitor is fixed and connected to ground. The other 
plate is movable. When the plates are close together at a distance s, a 
contact closes and the movable plate charges to the voltage V. Then the 
contact opens, the movable plate moves out to a distance ns, and its voltage 
increases to n V, disregarding edge effects. At this point another contact 
closes, and the movable plate discharges to ground through a load 
resistance R. 

(a) Verify that there is conservation of energy. 
(b) Can you suggest a more convenient geometry for such a high-voltage 

generator? 



118 ELECfRIC FIELDS IV 

6-10. (6.5) The surface force on a balloon carrying an electric charge 
It is suggested that a balloon made of light conducting material could be 

kept approximately spherical by connecting it to a high-voltage supply. The 
balloon has a diameter of 100 millimeters, and the maximum breakdown 
field in air is 3 megavolts/meter. 

(a) What is the maximum permissible voltage? 
(b) What gas pressure, in atmospheres, inside the balloon would have 

the same effect? 
(c) How large could the surface mass density of the balloon be? 

6-1 1 .  (6. 6) Stored energy 
Four charges + Q, - Q, + Q, - Q  occupy the corners of a square of side 

a, with the positive charges on one diagonal and the negative charges on 
the other. 

(a) Calculate the stored energy 'if}, and sketch a curve of 'if} as a function 
of a. 

(b) A mechanism constrains the charges to stay at the corners of a 
square but allows a to vary. What will happen? 

(c) Calculate the forces on the charges by the method of virtual work . 
(d) Compare with the values deduced from Coulomb's law. 

6-12. (6. 6) The forces on the plates of a parallel-plate capacitor 
Show that the force of attraction between the plates of a parallel-plate 

capacitor that is not connected to a battery is EoE2sl/2, as in Sec. 6.6 .  

6-13. (6. 6) Half the battery energy becomes mechanical work , and the other 
half is stored in the electric field. 

Rewrite Eq. 6-32 in the form 'if}B = 'if}E - 'if}F' and show that , if ds is 
negative, one-half of the energy supplied by the battery becomes electric 
energy, while the other half performs mechanical work . 
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I h is is the first of four chapters on electric circuits. For the moment, we 
[ l lnit ourselves to resistive and capacitive components. The next chapter 
dl:als with circuit theorems and is general, even though it appears to 

• Chapters 7 and 8 are not required for what follows. However, Chap. 7 is a prerequisite 
I < lf Chap. 8. 
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suffer from the same limitation. We have to wait until Chaps . 24 and 25 
to study inductive circuits and transformers. 

Unless specified otherwise, we assume that all circuit components are 
linear and time-independent. 

If you are not familiar with phasors , you should read Chap. 2 before 
working on the material on alternating currents that starts in Sec. 7 .3 .  

7 . 1  SYMBOLS AND DEFINITIONS 

Figure 7-1 shows the circuit-related standard symbols that we use in this 
book. An ideal voltage source supplies a voltage that is independent of 
the current drawn. A good commercial voltage-stabilized power supply is 
close to ideal, up to a specified current ,  after which the voltage drops off, 
as in Fig. 7-2. Similarly, an ideal current source supplies a current that is 
independent of the output voltage. Commercial current-stabilized power 
supplies are nearly ideal, up to a specified voltage , beyond which the 
current drops, as in Fig. 7-3. 

Figure 7-4 shows part of an electric circuit. Points such as A, B, C are 
called nodes ; connections between nodes such as AB, or BC, are 
branches ; and a closed circuit such as ABC is a mesh. 

--I � G -([)- -0- -0-
Source of direct Source of altemating Current source Voltmeter 

voltage voltage (al: or dc) (as�umeu to Urav. 
:\!l1rll('(L'J" 

( a�,,,,,ullll'd to L';JU,""C 
leTO \ ph;.!1!l' drop) 

Capacitor 

lero CUITL'nt ) 

[nJuL'tanc(' I m pendance Diode 
( the current 
tlows in the 
uirecrion of 
the aITOW ) 

Sw itch 

Fig. 7-1. Symbols for circuit components. 

Fig. 1-2. Typical curve of output 
voltage as a function of output 
current for a commercial voltage
stabilized power supply. 
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Fig. 7-3. Typical curve of output 
current as a function of output 
voltage for a commercial current-

'----------------- \' stabilized power supply. 

I 
I 

A 

o 
R, \ I, ) 

Fig. 7-4. Section of an electric circuit. This mesh has three branches and three 
nodes. 

An active circuit comprises sources , while a passive circuit does not .  A 
circuit component is said to be linear if the current passing through it is 
proportional to the applied voltage. 

By convention, current flows from plus to minus, outside a source, in 
the direction opposite to the electron drift. 

7 . 2  KIRCHHOFF'S LAWS FOR DIRECT CURRENTS 

Kirchhoff's two laws are self-evident and appear trivial. They are , in fact , 
the fundamental laws of circuit theory, and they are completely general :  
they are valid for both linear and nonlinear, and for both passive and 
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active circuits. They remain valid even if the components are time
dependent or if they display hysteresis. t 

They also apply, whatever be the time dependence of the voltages or 
currents or whatever be the initial conditions. All circuit theorems derive, 
in some way, from these two laws. Kirchhoff's laws serve to calculate 
branch currents and node voltages in circuits comprising known sources 
and known components . 

We disregard alternating currents until Sec . 7 .3 . 
The Kirchhoff current law (KCL) states that the algebraic sum of the 

currents entering a node is equal to zero. This stands to reason because, 
otherwise , charge would accumulate at the nodes. A node, by itself, has 
zero capacitance to ground. If a given connection A possesses an 
appreciable capacitance to ground, then that capacitance must appear on 
the circuit as a separate branch between A and ground. 

The Kirchhoff voltage law (KVL) is equally obvious: the sum of the 
voltage drops round a mesh is equal to zero. 

7 .2 . 1  The Mesh Method for Calculating Branch Currents 

With the mesh method one assigns mesh currents la , lb ' Ie, . . .  , as in Fig. 
7-4 . This current distribution satisfies the KCL automatically . The meshes 
may be chosen arbitrarily, as long as no branch is left out. Then the KVL 
provides one equation for each mesh. Solving yields the mesh currents, 
the branch currents , and then the node voltages , as we shall see in the 
examples below. 

If the circuit comprises only sources and resistors, then the equations 
are algebraic. However, if there are also capacitors , then the equations 
involve time derivatives. 

Example SIMPLE TWO-MESH RESISTIVE CIRCUIT WITH A 
VOLTAGE SOURCE 

Refer to Fig. 7-5. Choosing mesh currents as in the figure , we 
apply the KVL to the two meshes, starting at B in both cases. For 
mesh a, 

(7-1) 

For mesh b, 

-(h - la)R - 2hR = o. (7-2) 

Solving, we find that 

t Hysteresis is a property of certain devices or media whose parameters depend on their 
previous history. Ferroelectric media are hysteretic (Sec. 10. 1 .5) .  
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Fig. 7-5. Two-mesh resistive circuit fed by a source supplying a 
steady voltage V. 

R 1\ R 

B 

Fig. 7-6. Two-mesh resistive circuit fed by a source supplying a 
steady current Ia " 

0. 6V ]" = R' O.2V 
h = -

R . (7-3) 

The downward current in branch AB is 0.4 V / R amperes, and thus 
the voltage at A i s  0 .4  V volts. 

SIMPLE TWO-MESH RESISTIVE CIRCUIT WITH A 
CURRENT SOURCE 
We now have the circuit of Fig. 7-6 , with a current source 
substituted for the voltage source of Fig. 7-5. Now the current I" is 
known,  but the voltage V across the source is unknown. Equations 
7-1 and 7-2 stil l  apply . Solving, we find that 

I" 
h = 3 · (7-4) 
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SIMPLE TWO-MESH RC CIRCUIT WITH A 
VOLTAGE SOURCE.  SOLVING AN ORDINARY 
DIFFERENTIAL EQUATION WITH CONSTANT 
COEFFICIENTS 

The circuit of Fig. 7-7 is similar to that of Fig. 7-5 , except that we 
have added a switch and substituted a capacitor for one of the 
resistors. The switch closes at t = O. The mesh equations are now 
as follows for t � 0: 

v - laR - (/" - h)R = 0, 

Q -(h - la)R - loR - C = O. 

(7-5) 

(7-6) 

Rewriting, with Ib = dQ / dt if Ib and Q are chosen as in the figure, 

dQ 
2IaR - R dt = V, 

dQ Q 
I R  - 2R - - - = 0  a 

dt C 
. 

Eliminating now la yields 

3R 
dQ + 2 Q =  V. 
dt C 

(7-7) 

(7-8) 

(7-9) 

This is an ordinary differential equation with constant 
coefficients. The term ordinary refers to the fact that the equation 
comprises ordinary, and not partial, derivatives. The equation is 
nonhomogeneous because its right-hand side is not a function of 
Q. It is linear because it comprises only the first powers of the 
variable Q and of its derivatives and no products such as Q" or 
Q(dQ/dt). 

R A s R 

+ + 

B 

Fig. 7-7. RC circuit fed by a voltage source. Switch S remains 
open until t = O. 
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As we shall see, there exist an mfinite number of solutions Q(t) 
that satisfy this equation. However, it is a simple matter to select 
the correct one , in a particular situation . 

We first find one obvious solution that we call Qp : 

Q =
CV 

p 2 · (7-10) 

You can easily check that this is a solution, by substitution. This is 
the particular solution. We found it by conserving only the last 
term on the left. 

Now let Q be some other solution. By definition, it also satisfies 
Eq. 7-9. Then the function 

(7-11) 

satisfies the homogeneous equation 

(7-12) 

The function Qc is the complementary solution. 
In other words, the general solution Q is the sum of Qp and Qc : 

Now the solution of Eq. 7-12 is simple. Rewriting, we get 

and 

dQc 2 
Tt= - 3RC

Qc 

Q = A exp (- �) c 3RC ' 

where A is a constant of integration. 
Thus 

CV ( 2t ) Q = - + A exp - - . 
2 3RC 

(7-13) 

(7-14) 

(7-15) 

(7-16) 

Since A is any constant, there exists an infinite number of 
solutions. For given conditions, the value of A follows from, say, 
the value of Q at t = O. In this example, Q = 0 at t = 0, and 
A = - CV/2. Thus 

(7-17) 

Figure 7-8(a) shows Q as a function of t for CV = 2 and RC = 2. 
For t »  3RC/2, Q = l. Then Ib = 0 and the voltage across the 
capacitor is equal to the voltage between A and ground. Figure 
7 -8(b) shows h = d Q / dt as a function of t. 

We have here a circuit that can exist in two states, first with S 
open and then with S closed. With S open and until t = 0, 
Ia = V /2R, Ib = 0, Q = O. With S closed and t »  3RC/2, the same 
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1 .0 

Q 0 .5  

(a) 

0.3  

0.2 

0. 1 

o 

(b )  

Fig. 7-8. (a) The charge Q on the capacitor of Fig. 7-7 , as a 
function of the time, for CV = 2, RC = 2. (b) The current in mesh 
b as a function of the time. 

values of fa and fb apply, but Q = CV /2. In the interval between 
t = 0 and t »  3RC/2, the circuit adapts itself to the new situation. 
Phenomena that occur during such periods of adaptation are 
called transients. 

7 .2 .2  The Node Method for Calculating Node Voltages 

The node method is an alternative to the mesh method. As a rule, one of 
the two methods requires a smaller number of simultaneous equations 
and is therefore preferable . 

We assume that one of the nodes is at ground potential (V = 0) and 
that the other node voltages Va , Vb , Ve o . . . are unknown. Application of 
the KCL at each node in succession yields the node voltages and thus the 
branch currents. 

We illustrate the node method with a single example. 
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Example SIMPLE TWO-MESH RESISTIVE CIRCUIT WITH A 
VOLTAGE SOURCE 

Refer again to Fig. 7-5. According to the KCL, 11 = 12 + 13, with 

Therefore 

Solving, we find that 

VA 1 - -
2 - 2R' 

V - VA VA VA 
--- = - + - .  

R 2R R 

VA = O.4V, 

(7-18) 

(7-19) 

(7-20) 

as in the first example in Sec. 7.2 .1 .  The values of the branch 
currents 11 , 12, 13 follow immediately. 

Observe that with the node method we had a single equation to 
solve, namely Eq. 7-19, versus two with the mesh method that we 
used for the same circuit in the first example in Sec. 7 .2. 1 .  With 
this particular circuit, the node method is simpler. 

7 . 3  ALTERNATING CURRENTS 

Most electric and magnetic devices operate with either fluctuating or 
alternating currents. There are many reasons for this , but the two major 
nnes have to do with power technology and with the transmission and 
processing of information. 

First, with alternating currents, the electric power supplied by a source 
at a given voltage can be made available at almost any other convenient 
voltage by means of transformers. This makes electric power adaptable to 
;1  broad variety of uses. (The power supplied by a direct-current source 
l'an also be changed from one voltage to another. This is done by first 
switching the current periodically, to obtain an alternating current, next 
feeding this to a transformer, and then rectifying and filtering the output. 
l'he operation is relatively costly . )  

The second reason for using alternating, or fluctuating, currents is  that 
they can transmit information. For example, a microphone transforms 
the information contained in a spoken word into a complex fluctuating 
current. 

We assume that the voltages, currents, and charges are all cosine 
functions of the time, with appropriate phases. This is not always the 
case . The current through a microphone is not normally sinusoidal. Or 
one might have only the positive part of the cosine function or a cosine 
function whose amplitude is a function of the time. However, any 
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periodic function is the sum of an infinite series of sine and cosine terms 
called a Fourier series (Sec. 1 1 .3 ,  example) . 

7 .3 . 1  Three-Wire Single-Phase Alternating Currents 

In North America electric utilities supply electric power to individual 
houses and apartments at both 120 and 240 volts rms, 60 hertz, as in Fig. 
7-9. This is the three-wire single-phase alternating-current system. Thus 

VA = 120 x 1 . 414 cos (2n x 60t) = 170 cos (2n x 60t) , (7-21) 

Vc = - 120 x 1 . 414 cos (2n x 60t) = - 170 cos (2n x 60t) , (7-22) 

VA - Vc = 240 x 1 . 414 cos (2n x 60t) = 340 cos (2n x 60t) .  (7-23) 

Low-power devices operate at 120 volts rms across AD or CD, while 
high-power devices such as water heaters operate at 240 volts rms across 
A and C. 

I ,  
.4 

+ 
V '\., 

B 
.-----4�---..... -----;. D R 

I ,  - 12 

-=- +  
V '\., R ,  

c 

Fig. 7-9. Three-wire single-phase ac system. The plus and minus signs mean that 
the two sources have opposite phases. If R\ = Rz, the connection BD is 
unnecessary . 

7 .3 .2  Three-Phase Alternating Current 

Figure 7- 1O(a) shows three sources of alternating current feeding resistors 
R1,  Rz, R3 • We have oriented the sources 1200 apart on the figure so as to 
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..::.....---------------"' c B 
(a )  

r-------��------------��,E 

B 
(b )  

Fig. 7-10. (a) Three identical sources of alternating current, with phase 
differences of 120°, feeding three resistors R I , R2 ,  R3• (b) Three-phase supply. If 
the resistances are equal,  the connection DE is unnecessary. 

reflect their relative phases. For example, if the phase at A is zero at 
t = 0, then 

VA = Vm cos wt, 

VB = Vm cos ( wt + 
2;) , 

Vc = Vm cos ( wt + 
4.7C) . . 3 

(7-24) 

(7-25) 

(7-26) 

If the three resistances are equal , the sum of the currents flowing in the 
three grounded wires is 
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'; [cos wt + COS ( wt + 2;) + cos ( wt + 
4
;) ]  = O. (7-27) 

Then the wire DE in Fig. 7-1O(b) can be dispensed with . If the resistances 
are unequal , the currents do not completely cancel in DE. We now have 
four wires doing the work of six , with low PR losses in the wire DE. 

A set of three sources , star-connected and phased as in Fig .  7-1O(b) , 
supplies three-phase alternating current. The main advantage of three
phase current is that it can generate the revolving magnetic fields of large 
electric motors. See Prob. 18-6. 

Electric power stations usually generate three-phase alternating cur
rent. That is why ordinary high-voltage transmission lines have either 
three or six wires, plus one or two light wires. Three-wire single-phase 
power is obtained from a transformer whose primary is connected 
between one phase of a three-phase line and ground . 

Except for a few problems at the end of this chapter ,  we shall be 
concerned henceforth solely with single-phase currents. 

7 .4  ALTERNATING CURRENTS IN RESISTORS 

Figure 7-1 1  (a) shows an alternating voltage source connected to a 
resistor. Let 

v = Vm cos wt, (7-28) 

where Vm is the maximum, or peak, voltage ; w = 2nf is the circular 
frequency, expressed in radians per second ; and f is the frequency 
expressed in hertz. In the figure, 

Vm cos wt 
1 =  

R 
= 1m cos wt, Vm 

1 = m 
R 

The current is in phase with the applied voltage , as in Fig .  7-1 1 (b). 
At any given instant the power dissipated in the resistor is 

Pins! = VI = (Vm cos wt) (lm cos wt) = VmIm cos2 wt 
V2 = � cos2 wt = 12 R cos2 wt 
R 

m . 

(7-29) 

(7-30) 

Since the average value of cos2 wt is t the average power dissipation is 
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R 
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w w 

(b) 

Fig. 7·11. (a) Resistor R connected to a source supplying a voltage V and a 
current I. (b) V and I plotted as functions of t for a resistor. 

as in Fig .  7-12. 

(7-31 ) 

(7-32) 

Recall that the subscript "rms" stands for root mean square, or the 
square root of the mean value of the square (Sec. 2.4) . In practice , the 
subscripts "av" and "rms" prove to be unnecessary, and we simply write 
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w w w w 

Fig. 7·12. Instantaneous and average power dissipated in a resistor. 

V 1 = R ' (7-33) 

as with direct currents. We shall nonetheless use the subscript "rms" 
wherever it applies. 

Unless stated explicitly otherwise, all voltmeters and ammeters show 
rms values . 

If the voltage or current is an alternating but not a sinusoidal function 
of the time , then the ratio VnnslVm depends on the nature of the function . 
For example, if a voltage simply alternates between + Vm and -Vm, the 
rms value is Vm . 

7 . 5  ALTERNATING CURRENTS IN CAPACITORS 

Figure 7-13(a) shows a source of alternating current connected to a 
capacitor. Then 

Q = CVm cos wt, 

dQ ( n) I = dt = -wCVm sin wt = wCVm cos wt + 2" . 

The current leads the voltage by nl2 radians, as in Fig. 7- 13(b) . 
In phasor notation (Chap. 2),  

1 = jwQ = jwCV, 

(7-34) 

(7-35) 

(7-36) 
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c 

(a) 

I = <uCVrr> cos (wt + ; ) 

(b) 

Fig. 7-13. (a) Capacitor C connected to a source supplying a voltage V. The 
circled V and I represent a voltmeter and an ammeter. (b) V and I as functions of 
the time for a capacitor. The current leads the voltage by 90° and wC = 0. 5, here. 

where I, Q, V are all phasors. At a given instant the energy stored in the 
capacitor is 

CV2 
jgmst = -2-

and the average stored energy is 

CV;;' cos2 wt 

2 

jg = CV;;,/2 CV;ms 
av 2 2 

(7-37) 

(7-38) 
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7 .6  THE IMPEDANCE Z AND THE ADMITTANCE Y 

By analogy with Ohm's law for dc circuits, we have Ohm's law for ac 
circuits : 

V 
1 = 

z '  (7-39) 

where both I and V are phasors and Z is the impedance of the circuit. 
The impedance of a resistance is R. 

For a capacitor, from Eq. 7-36,  

1 Z = - . jWC (7-40) 

Impedances in series and in parallel operate like resistances in series 
and in parallel. 

Impedances are in general complex and thus of the form 

Z = R  + jX, (7-41 )  

where X i s  the reactance. Given a two-terminal passive and linear circuit 
that comprises only resistors and capacitors, however complex , the 
impedance between its terminals is a complex number R + jX. 

This reactance X is negative for the following reason. The reactance X 
of a single capacitance C is negative : 

X 
1 

] = jwc' 
1 

X = - - .  
wC 

(7-42) 

Now the current in a capacitor leads the applied voltage , and intuitively, 
you can guess that , whatever the arrangement of resistors and capacitors, 
the current at the input terminals will lead the voltage. Thus the 
reactance for the complete circuit will be negative , or capacitive . 

Thus the circuit of Fig . 7-14(a) is equivalent to that of Fig. 7-14(b) with 

Rs = R, 1 Cs = - - ,  wX 

The inverse of an impedance is an admittance : 

1 1 Y = Z = R + jX = G + j8, 

(7-43) 

(7-44) 
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o 

R + jX R" c p o----T--' c 

I bl (e) 
Fig. 7-14. (a) Any passive and linear circuit comprising only resistors and 
capacitors. The impedance at the input terminals is R + jx. (b) Equivalent series 
circuit. (c) Equivalent parallel circuit. 

where G is the conductance and B is the susceptance. The admittance Y 
of a capacitor is jwC, and its susceptance B is we. 

Any two-terminal passive and linear RC circuit is equivalent to a 
conductance in parallel with a susceptance as in Fig. 7-14(c) . You can 
easily show that 

R R 
G == R2 + X2 = Z2 ' 

G G 
R = G2 + B2 = y2 ' 

B = 

X = 

X X (7-45) R2 + X2 Z2 '  

B B (7-46) G2 + B2 y2 ' 

The quantity G is positive . like R, while B is either positive or negative, 
like X. 

If a given circuit comprises only resistors and capacitors, then X is 
negative and B is positive . Also, 

(7-47) 

v = wC" ,  (7-48) 

Example I SIMPLE RC CIRCUIT 

In the circuit of Fig. 7-15(a) the source feeds an impedance 
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V "'-'  

R 

B 

(a) 

R "  

(c) 

R 

C" 

+ 

C v "'-' 

(b) 

Fig. 7-15. (a) Simple RC circuit. (b) Equivalent serie' c ·.rcuit. (c) Equivalent 
parallel circuit. 

Z = R + R[R + l /UwC)] '= 
R 

2 + 3RjwC 
2R + l /UwC) 1 + 2RjwC (7-49) 

= R 
(2 + 3RjwC)(l - 2RjwC) = R 

(2 + 6R2w2C2) - RjwC 
1 + 4R2w2C2 1 + 4R2w2C2 

(7-50) 

In effect, this means that the circuit of Fig. 7-15(a) has the same 
impedance as that of Fig. 7-15(b) , where the real part of Z, 

1 + 3R2w2C2 
R ' = 2R (7 5 1 )  

1 + 4R2w2C2 ' 
-

is frequency-dependent. The value of C' is given by the imaginary 
part of Z:  

_R2jwC 
jWC' 1 + 4R2w2C2 ' 

1 + 4R2w2C2 1 
C' = 

R2w2C R2w2C 
+ 4C. 

(7-52) 

(7-53) 

The value of C' is also frequency-dependent .  Indeed, the 
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components of such equivalent circuits are almost invariably 
frequency-dependent. 

The circuit of Fig. 7-1S(a) is also equivalent to that of Fig. 
7-1S(c) , with G '  and B '  given by Eq. 7-4S : 

R '  R '  G '  = R ' 2 + X'2 = 
Z , 2 ' B ' = _ X' = _ _ X_' 

R '2 + X'2 Z '2 ' (7-S4) 

where jX ' = l /UwC) and X' = - l /(wC). After simplification, 
we find that 

(7-SS) 

Then 

(7-S6) 

In Fig. 7-1S(c) , the resistor has a conductance G '  and hence a 
resistance 

R" = �  
G "  

A s  to the capacitance, 

jB ' = jwC, C,, = B ' . 
w 

(7-S7) 

(7-S8) 

Let R = 1000 ohms, w = SOO radians/second, C = 1 microfarad. 
Then, from Eq. 7-S0, 

(2 + 6 x 106 X S002 X 10- 12) - j10] X SOO X 10-6 
Z = 1 000 (7 S9) 

1 + 4 X 106 X S002 X 10- 1 2 
-

= 17S0 - 2S0j 

= 1768 exp [j arctan ( - 1�S
S�) ] 

= 1768 exp (-0 . 142j) ohms. 

Angles are expressed in radians. If V is 10 volts rms, 

10  

(7-60) 

(7-61 )  

1 = - exp (0. 142j) = S . 66 exp (0. 142j) 
1768 

milliamperes rms. 

(7-62) 

The current leads the voltage by 0 . 142 radian, or by 8 . 1 3  degrees .  
The instantaneous value of  the current i s  

1 = 2112 x S . 66 cos (SOOt + 0. 142) 
= 8.00 cos (SOOt + 0. 142) milliamperes. 

7.7 POWER IN AC CIRCUITS 

(7-63) 

Suppose a resistance R is in series with a capacitor C. One applies a 
mltage Y,,, exp jwt to the combination . Then 
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where 

Vm exp jwt . 
1 = 

Z 
= Im exP l (wt - (J) ,  (7-64) 

1 ( 1 ) \ /2 
Z = R + -. - = R2 + ----z-:z exp j(J, 

lWC w C 
(J = arctan (- _1_) , (7-65) 

RwC 

(7-66) 

The average power dissipation is 

(7-67) 

from Sec. 2.4 .  The term cos f} = RI IZ I  is the power factor of the 
impedance Z. 

According to Sec . 2.4,  we can also write 

f.1V = 1 Re VI * ,  (7-68) 

where the operator Re means "real part of" and where /* is the complex 
conjugate of / (Sec. 2. 1 ) .  One occasionally writes that 

(7-69) 

where the term on the left is the complex power, Pay is the time-averaged 
power, and Qav is the time-averaged reactive power. 

7 .8  KIRCHHOFF'S LAWS FOR 
ALTERNATING-CURRENT CIRCUITS 

Both the Kirchhoff current law and the Kirchhoff voltage law apply to 
alternating-current circuits if one uses phasors and impedances. 

Example SIMPLE RC CIRCUIT SOLVED BY BOTH THE 
MESH AND NODE METHODS 

(a) Referring to Fig. 7·16 ,  we use mesh currents and apply the 
KVL as if we had direct currents: 

v - laR - (fa - Ih )R = 0 ,  (7-70) 

I" 
-(h  - la )R - I"R - -. - = o. 

]We 
(7-71 ) 

Solving yields 
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R A R 

I" R c 

B 

Fig. 7-16. Simple RC circuit. 

Ia = V [2� + 
6R + 4�(jWCJ V 

Ib = 
3R + 2/(jwC) 

. (7-72) 

At A ,  

1 + RjwC 
VA = V - I R = V -,----------''------a 2 + 3RjwC 

(7-73) 

The ratio V / Ia should be equal to the impedance Z that we 
calculated in the example in Sec. 7.6 . Let us check: 

V 2R[6R + 4/(jwC)] 
L = 

6R + 4/(jwC) + 2R 

as previously. 

2R(6RjwC + 4) = R 
2_+_3R...:.j_w_C 

8RjwC + 4 1 + 2RjwC ' 
(7-74) 

(b) With the node method, we apply the KCL at node A, 
where we have, as with a dc circuit, 

with 

Thus 

7 .9  SUMMARY 

11 = 12 + 13 , 

V - VA II = -R-' 

II = la , 12 = Ib ,  

I _ VA 
2 - R + l/(jwC)' 

VA VA 

IJ = Ia - Ib' 

VA 13 = - , 
R 

--"-"--- + -
R + l/(jwC) R ' 

(7-75) 

(7-76) 

(7-77) 

V 1 + RjwC 
VA = 

2 + RjwC/(l + RjwC) 
= 

2 + 3RjwC V. (7-78) 

Kirchhoffs current law (KCL) states that the algebraic sum of the 
currents entering a node is equal to zero. According to Kirchhoffs 
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voltage law (KVL) , the sum of the voltage drops around a mesh is equal 
to zero. 

These two laws serve to calculate voltages and currents at various 
points in a circuit, given the sources and the impedances. With the mesh 
method we assign mesh currents la , lb . In . . . to each mesh. We then 
apply the KVL to each mesh in succession to find the mesh currents. 
With the node method we assign node voltages Va, Vb , Vo " . to each 
node . One of the nodes is set at V = O. Then we apply the KCL to each 
node in succession to obtain the node voltages. 

If the circuit is purely resistive , then either method gives a set of 
simultaneous algebraic equations. If the circuit comprises both resistors 
and capacitors , we obtain a set of simultaneous differential equations. 

The alternating current in a true resistor is in phase with the applied 
voltage. The time-average dissipated power is 

(7-31 ) ,  (7-32) 

where 1m is the maximum value of I and Irms is the root mean square 
value of I. In practice , the subscripts "av" and "rms" are unnecessary . 

The alternating current in a capacitor leads the applied voltage by 90°: 

I = jwCV. 

The time-averaged stored energy is CV;msl2. 
More generally, 

V 
1 = 

Z 

(7-36) 

(7-39) 

where Z is the impedance of the device across which the voltage is V. For 
a resistor, Z = R. For a capacitor, Z = l /(jwC). Impedances are usually 
complex: 

Z = R  + jX, (7-41 )  

where X is the reactance of the circuit . The inverse of an impedance is an 
admittance : 

1 Y = - . 
Z 

The time-averaged power dissipated in a circuit is 

(7-44) 
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(7-67) 

where cos e is the power factor R / IZ I  of Z. Also 

Pav = !  Re V/* .  (7-68) 

Kirchhoff's current and voltage laws apply to alternating-current 
circuits. 

PROBLEMS 

7-1 .  ( 7. 2) The potentiometer 
Figure 7-17  shows a potentiometer circuit. Show that, when 1 = 0, 

R2 
Y,, = --- v,. 

R\ + Rz 

This is a common type of circuit. It serves to measure a voltage, in this 
case Vb , without drawing current. In curve plotters the current I, after 
amplification, actuates a motor that displaces the pen and simultaneously 
moves the tap in the direction that decreases I. The resistances R\ and R2 
act as a potential divider. 

7-2. ( 7.  2) The operational amplifier 
Figure 7-18(a) shows a common type of amplifier. 
The triangular figure is an operational amplifier whose gain is -A. Such 

amplifiers have gains of the order of 104 to 109 and draw a negligible 
amount of current at their input terminals. The accuracy of the gain of this 
circuit is limited only by the stability of the ratio R2/R\ .  The drift in R2/R\ 
due to aging, temperature changes, and so forth is normally smaller than 
the drift in A by orders of magnitude. 

As a first approximation , (a) the operational amplifier draws zero 
current, and the same current I flows in R \  and in R2, (b) A is infinite, and 
the potential at the junction between R\ and R2 is therefore zero. Then 
1 =  V,/R1 = - Vo/R2 '  and the gain is about -R2/R 1 •  

(a) Find a more accurate expression for the gain Vo/V,.  You can take 
into account the fact that the gain is not infinite by setting Vo = -A VA in 

+ 
� 

Fig. 7-17. 
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(al R ,  

( b) R ,  R ,  

� ,  � ;  , J ;, b----(b�-� Fig. '·18. 

Fig. 7-18(b) . The approximation -R2/R, is valid only if A »  1 and if 
A »  R2/ R , .  

(b) What i s  the minimum value of A i f  R I  = 1000 ohms, R,  = 2000 ohms, 
and the circuit gain must be equal to 2 within 0. 1 %? 

7-3 .  ( 7.2)  The R /2R ladder network 
Figure 7-19 shows a so-called R/2R ladder network that serves for both 

digital-to-analog (D/ A) and analog-to-digital (A /D) conversion. See 
Prob. 7-4. 

Show that the resistance between A and ground, called the input 
resistance, is 2R, whatever be the number of stages. 

7-4. ( 7.2 )  Digital-to-analog conversion 

A 

The R/2R ladder network of Prob. 7-3 can convert a binaryt number to 
an analog voltage . The usual convention is that of positive logic, in which 

R [j R c R [) 

2R 

Fig. '·19. 

t A binary number uses only the digits 0 and 1 :  one = 0 I ,  two = 1 0 ,  three = 1 1 , 

four = 100, five = 101 , etc, 
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2R 2R 

D 

Fig. '·20. 

v = 0 means 0 and V = V ' means 1 ,  where V '  is a precisely regulated 
positive voltage. 

Refer to Fig. 7-20. Say V '  = 1 volt. The voltmeter connected between A 
and ground draws essentially zero current. The binary number enters at the 
terminals B, C, D, . . .  and the analog number appears at A. For example, 
if the number is 4, or 100, VB = 1, Vc = 0, Vo = O. 

Use the result of Prob. 7-3 to find the value of VA when 
(a) VB = l , Vc = O, and VD = O; 
(b) VB = 0, Vc = 1 ,  and Vo = 0 ;  
(c) VB = O, Vc = O, and VD = l . 

7-5 . ( 7. 2) Charging a capacitor through a resistor 
A source charges a capacitor C through a resistor R to a voltage V. 

Calculate the energy supplied by the source, that dissipated by the resistor, 
and that stored in the capacitor, after an infinite time. 

You should find that the resistor dissipates half the energy and that the 
capacitor stores the other half. 

7-6. ( 7.2 )  RC differentiating circuit 
Figure 7-21 shows an RC differentiating circuit. The load resistance 

connected at Vo is large compared to R. 
(a) Show that , if the voltage drop across R is negligible compared to that 

across C, then 

dV, 
V = RC -o dt 

(b) The input is a square wave. Sketch V,,(t). 

Fig. '·21. 
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(a) R 

r 
v, 

Fig. 7·22. 

7-7 . ( 7.2) Differentiating circuit using an operational amplifier 
The circuit of Fig. 7-21(a) is simple and inexpensive, but Vo « v,. Figure 

7-22(a) shows a much superior, but more complex, differentiating circuit. 
The triangle represents an operational amplifier as in Prob. 7-2. Figure 
7-22(b) shows the equivalent circuit. Show that 

V = _RC
dV, 

o dt ' 

as long as A »  1 and iVo I IRC » IdVoldt l /A.  Note that RC can be much 
larger than unity, so that Y" need not be much smaller than v, .  

7-8. ( 7.2)  RC integrating circuit 
Figure 7-23 shows an RC integrating circuit. The current through the load 

connected at Vo is negligible compared to dQ I dt in C. 
(a) Show that as long as the voltage across C is small compared to that 

across R, 

1 i' Vo = - V, dt. 
RC 0 

As in Prob. 7-6, Vo « v,. We assume that Vo = 0 at t = O. 
(b) Sketch a curve of the output voltage as a function of time if V, is a 

square wave. 

R 

:�i ___________ C_' -��--------o 
Fig. 7·23. 
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c 

( a j  

( hi Fig. 7-24. 

7-9. ( 7. 2) Integrating circuit using an operational amplifier 
The integrating circuit shown in Fig. 7-24(a) performs integrations 

without the limitation Vo « V, that applies to the circuit of Fig. 7-23 . The 
triangle represents an operational amplifier, as in Prob. 7-2. Show that 

1 I
' 

v" = - - V, dt, 
RC 0 

if A »  I and if I V;, I /(RC) « A  IdV,,!dt l .  Use the equivalent circuit of Fig. 
7-24(b) , and set 

: - 10 .  ( 7. 2) Motion transducer 
Figure 7-25 shows how the differentiating circuit of Prob. 7-7 can serve 

to measure a displacement .  
Show that , with an alternating voltage at the input , the output voltage is 

proportional to the spacing s of the parallel-plate capacitor, neglecting edge 
effects. 

' - 1 1 .  ( 7. 7) Compensated potential divider 
The potential divider of Prob. 7-1 is not useful as such at high frequencies 

for the following reason. There are stray capacitances due to the wiring in 
parallel with R, and R2 . If the frequency is high enough, these stray 
capacitances carry an appreciable current and Vo/V, is a function of the 
frequency. 

Show that, with the circuit of Fig. 7-26, the relation of Prob. 7-1 applies if 
R I C, = R,Cc '  If the added capacitances are large compared to the stray 
capacitances, the potential divider is said to be compensated. 
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R 

\ .  

Fig. 7-25. 

7- 12 .  ( 7. 7) Impedance bridges: The Wien bridge 
There exist a wide variety of impedance bridge circuits for measuring the 

impedance of components. These bridges have now been largely super
seded by network analyzers that can perform many sophisticated measure
ments on complex circuits. Figure 7-27(a) shows such an impedance bridge. 
If Z, / Z2 = Z,/ Z4 , then V = O. The impedances must satisfy two independent 
equations to satisfy both the real and the imaginary parts of this equation. 

One common type is the Wien bridge shown in Fig. 7-27(b).  As a rule , 
one sets R ,  = Rj2, R ,  = R4 • C, = C4 • Find the condition for balance. 

The Wien bridge is used in tuned amplifiers and in oscillators as well as 
for measuring or monitoring a frequency. To measure a frequency, one 
changes R ,  and R4 simultaneously until R ,wC, is equal to unity . 

7- 1 3 .  ( 7. 7) Phase shifter 
It is often necessary to shift the phase of a signal . Figure 7-28 shows a 

simple circuit for doing this without affecting the amplitude of the signal .  
The resistances are adjustable ,  but equal .  Use the polarities shown. They 
mean that V, is the voltage of the top terminal with respect to the bottom 
one, and v" is the voltage of the right-hand terminal with respect to the 
left-hand one . 

(a) Show that V;.! v,  = exp {2j arctan [ l /(RwC)] } .  

Fig. 7-26. 
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(a) 

(b) 

A 
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Fig. 7-27. 

(b) Draw a graph of the phase of Vo with respect to V; in the range 
RwC = 0. 1 to 10. Use a logarithmic scale for RwC. 

7-14. (7. 8) Direct-current high-voltage transmission lines 
From many points of view, alternating current is much preferable to 

direct current for power distribution . However,  line losses are lower with 
direct current. 

On a high-voltage overhead transmission line, the maximum operating 
voltage depends on several factors, such as corona losses (current losses 

+ 

Fig. 7-28. 
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through ionization of the air) , the size of the insulators, etc. So, for a given 
line, the instantaneous voltage between one conductor and ground must 
never exceed a certain value, say Va. Otherwise , the downtime and the cost 
of maintenance become excessive. The cost of a line increases rapidly with 
its voltage rating. 

The current in the line can be made nearly as large as one likes without 
damaging it, since the conductors are well cooled by the ambient air. 
However, the power loss increases as the square of the current. So, the 
lower the current, the better. 

With direct current, two conductors operate at + Va and - V;) with respect 
to ground. The power delivered to the load is 2V;,Ide. With single-phase 
(SP) alternating current, there are two wires at + V;) cos wt and - V;) cos wt. 

(a) Show that for the same power at the load, the rms current Isp is 
2112 Ide .  The P R losses in the line with single-phase alternating current are 
twice as large as those with direct current. 

(b) With three-phase (TP) alternating current, we have three wires at 
V;) cos wt, V;) cos (wt + 2n /3), and V;) cos (wt + 4n /3). We assume that the 
three load resistances connected between these wires and ground are equal. 
Then the current in the ground wire is zero. Show that for the same total 
power delivered to the three load resistances, the rms currents lIP are 
(n2112 Ide = Ide. 

With three-phase alternating current, the rms currents are thus about the 
same as with direct current, but there are three current-carrying wires 
instead of two, so that the losses are 50% larger than with direct current. A 
three-wire line is also more expensive than a two-wire one. 
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Generally speaking, circuit theorems serve to simplify calculations, There 
exists a seemingly infinite number of circuit theorems, but the eight that 
follow are probably the most useful. The delta-star transformations of 
Sec , 8 ,9 are even more usefuL 

All the material in this chapter is general and is not restricted to RC 
circuits. We, however , assume that all components are linear and 
time-independent, as in Chap. 7. A linear component is one that follows 
Ohm's law ,  I = V /2. 

8 . 1  THE PRINCIPLE OF SUPERPOSITION 

The principle of superposition of Sec. 3 . 3  applies to linear circuits: each 
source acts independently of all the others . In other words, the current 

• Chapters 7 and 8 are not required for what follows. However, Chap. 7 is a prerequisite 
for Chap. 8 .  
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that flows through one branch is equal to the sum of the currents 
ascribable to each individual source . 

8 . 2  THE SUBSTITUTION THEOREM 

The substitution theorem is an obvious consequence of the Kirchhoff 
voltage law (KVL) : if the voltage drop across a passive component in a 
circuit is V, then one can replace that component by an ideal voltage 
source supplying the same voltage, without disturbing any of the branch 
currents. Clearly, this does not disturb the voltage drops around the 
meshes . Figure 8-1 shows a trivial example. 

+ 
v 0\ �I )R) 

+ 

( a )  

R 

( h )  

M.\ � .1R) 

Fig. 8-1. The substitution theorem. (a) The voltage drop across the resistance on 
the right is V /3.  (b) Replacing that resistance by a battery V /3 of the correct 
polarity leaves the mesh currents unchanged. 

8 . 3  THE-VENIN'S THEOREM 

Thevenin 's theorem states that any active , linear, two-terminal circuit is 
equivalent to an ideal voltage source in series with an impedance Zo> 
called the output impedance of the circuit , as in Fig . 8-2 . As a rule , this 
impedance is resistive, and the source is said to have an output resistance 
Ro o A good voltage source has a low output resistance. 

Thevenin's theorem applies to simple sources such as flashlight 
batteries, but it also applies to complex circuits such as audio amplifiers, 
power plant generators, etc . When applied to simple sources, Thevenin's 
theorem is an experimental fact, at least for a limited range of output 
currents. Granted that the theorem applies to simple sources ,  then it also 
applies to complex circuits (Prob. 8-3 ) .  

Thevenin's theorem i s  useful for calculating branch currents. We write 

(8- 1 )  
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(h)  

Fig. 8-2. Thevenin's theorem. (a) An active circuit A feeds current to a resistance 
R. (b) Circuit A is equivalent to an ideal voltage source \1;, in series with an 
output impedance Zo o As a rule, Zo is a resistance Ro. (c) One can measure Ro by 
plotting V = \1;, - Raj as a function of I. Decreasing R increases I and decreases 
V. The slope of the curve is -Ro. 

where V:, is the voltage that would appear between the nodes at the ends 
of a branch b if the branch were removed, and Zrh is the impedance 
calculated at the cut ,  including the impedance of the branch , with all the 
sources replaced by their output impedances. In other words, 

(8-2) 

where Zo is the output impedance of the circuit feeding the branch. 

Example THE ZINC-CARBON BATIERY 
A zinc-carbon battery, like the ones used in flashlights, performs 
as if it comprised an ideal voltage source set at \1;, = 1 . 5  to 1 . 6  
volts, depending on  the actual materials used, in series with a 
resistance Ro. For a fresh size-D cell ,  R" = 0. 27 ohm. The value of 
Ro increases gradually with use and with time and eventually 
grows by many orders of magnitude . With time ,  Vo falls to zero. 

A high-resistance voltmeter connected across the terminals 
measures \1;, . To measure R" one can either proceed as in Fig. 8-2, 

or measure both \1;, and the "flash" (peak short-circuit) current. 
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8 .4  NORTON'S THEOREM 

Norton 's theorem is the dual of Thevenin's. It states that any active , 
linear, two-terminal circuit is equivalent to an ideal current source 10 in 
parallel with an output admittance Yo ,  which is usually a conductance . 
See Fig. 8-3 . A good current source has a low y,) ' 

It is easy to show that , for a given device , 

Zo y,) = 1 ,  (8-3) 

at least when Zo and y,) are real . From Fig. 8-2, Ro is equal to minus the 
slope of the V versus I curve. But, from Fig. 8-3 , Go is minus the slope of 
the I versus V curve. So Gu = 1 /  Ro and RoG" = 1 .  

Norton's theorem i s  useful for calculating branch voltages. We again 
consider the complete circuit minus the branch as a source , and the 
branch as a load . Thus 

(a) 

(c) v 

v: - �--,-I,,� h 
-

y,) + Y,, ' 

, - - - - - - - - 1 
I I I 
I 
I 
I 
I 
I 
I I L- _ _ _ _ _ _ _ _  ----J 

(h )  

Fig. 8-3. Norton's theorem. (a) An active circuit A feeds a resistance R.  

(8-4) 

(b) Circuit A is equivalent to an ideal current source in parallel with an output 
admittance Yo ' As a rule, Yo is real and is thus a conductance Go. (c) One can 
measure Go by plotting I = 10 - Go V as a function of V. Increasing R increases V 
and decreases I. The slope of the curve is - Go. 
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where 10 and Yo are the parameters of the Norton source and Yb is the 
admittance of the branch, 

To calculate 10 and Yo, we again remove the branch, Then 10 is the 
current through a zero-resistance ammeter connected to its terminals, 
and Yo is the admittance calculated at those terminals , with all the 
sources replaced by their output admittances, 

8 .5  MILLMAN'S THEOREM 

Millman's theorem serves to calculate the potential at a specific node in a 
circuit, and hence the incoming branch currents. It is a simple application 
of Kirchhoff's current law (KCL) . It is best explained by an example. 

In Fig. 8-4 , Ij + 12 + 13 = O. Then 

V = VI YI + V2 y2 + v, r;  
Yj + Y2 + Y3 

This is Millman 's theorem. Of course , 

II = (VI - V) Y} ,  etc. 

v 

l i 

-< 00( 
-< .  -< ZI 00( Z, 

() 
v, 

(8-5) 

(8-6) 

(8-7) 

� ) 00( .)z, 
.) ) 

() 
v, 

o 

Fig. 8-4. Millman's theorem relates the voltage V at a node to the Y's and V's 
connected to it. The squares represent unspecified circuits that may be either 
passive or active. 
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+ 
v, 

R 

R 

(u) 

v 

R R 

(b l  

Fig. 8-5. (a) Simple circuit for testing Millman's theorem. (b) The same circuit ,  
redrawn to resemble that of Fig. 8-4. 

There can be any number of nodes connected to the specific node 111 

question. 

Example In  Fig. 8-5 , V is clearly equal to V,,/3. Applying Millman's 
theorem,  we find that 

v,,/ R v" 
V = -- = -

3(1/ R) 3 ·  
(8-8) 

8 .6  TELLEGEN'S THEOREM 

Tellegen's theorem, in its original form, is like Kirchhoff's laws: it is 
self-evident and appears trivial. Again, this is a false impression; 
Tellegen's theorem is related to at least 150 other circuit theorems !t 

Suppose we have only direct voltages and currents in a circuit .  Set Vb 
equal to the voltage across branch b and Ib equal to the current flowing 
through it .  Also, choose the signs of Vb and Ib in such a way that Vb1b is 
the power flowing into that branch at that instant, as in Fig. 8-6. Some 
branches comprise sources , others not. Then , according to Tellegen's 
theorem, 

(8-9) 

t Paul Penfield, Jr. , Robert Spence, and Simon Duinker, Tellegen's Theorem and 
Electrical Networks, Research Monograph 58, M.LT. Press, Cambridge, Mass . ,  1970. 
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Fig. 8-6. The sign convention for Tellegen's theorem. 

where the summation runs over all the branches of the circuit at that 
instant. This is simply a statement of the law of conservation of energy. 
You will be able to show in Prob. 8-7 that Tellegen's theorem follows 
from both the KCL and the KVL.  

Now suppose that we have alternating currents in  a circuit comprising 
only sources and linear passive components. Then the complex power 
(Sec. 7.7) flowing into branch b is VbI� /2, and the sum of the complex 
powers is zero, 

(8-10) 

for the following reason. Substitute for each starred branch current the 
difference between the neighboring starred . mesh currents. Then, rear
ranging the sum, we have the first starred mesh current multiplied by the 
voltage drop around it , plus the second starred mesh current multiplied 
by the voltage drop around it , etc . Each term of this sum being zero, 
according to the KVL, the above equation is correct. 

So the sum of the complex powers in a circuit is zero. 
As a rule , a circuit comprises pairs of terminals called input ports that 

serve to feed either power or a signal. For example, in the Wheatstone 
bridge of Fig. 8-7 , one connects a battery to the input port . As a rule , 
circuits also comprise one or more output ports, as exemplified again by 
the Wheatstone bridge. Tellegen's theorem, as stated above, applies to 
the complete circuit, including sources and load . 

It is useful to rewrite Tellegen's theorem in a form that shows explicitly 
the power at the input and output ports . With the sign convention of Fig. 
8-8 for the ports, the theorem becomes 

(8-1 1) 
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Fig. 8-7. Wheatstone bridge. The input port is AB, and the output port is CD. 

v 

Fig. 8-8. The sign convention for Tellegen's theorem, as stated in Eq. 8-1 1 .  

where the primed summation over the branches excludes the ports, and 
where the power with subscripts p is the power flowing out of the devices 
connected to the ports. Thus 

(8-12) 

8 .6 . 1 A More General Form of Tellegen's Theorem 

We again limit ourselves to direct currents . Suppose that we have two 
circuits that are unrelated, except that they share the same geometry. The 
branch voltages and currents are Vb and Ib for one circuit, and V� and I� 
for the other. What is the value of I: VbI�? This is admittedly a weird 
expression, but we shall use it in the next section .  

First we substitute for I� the difference between the neighboring mesh 
currents in the primed circuit. Rearranging the sum ,  we have the first 
mesh current of the primed circuit ,  multiplied by the voltage drops 
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around the first mesh of the unprimed circuit . the second . . .  etc. Each 
term of this new series is zero , because of the KVL,  and 

(8-13) 

By symmetry . 

2: V�h = O. (8-14 ) 

8 . 7  THE RECIPROCITY THEOREMS 

The reciprocity theorems are most useful . We use the above form of 
Tellegen's theorem to prove one of them. 

Figure 8-9(a) and (b) shows a two-port circuit P connected to external 
elements x in two different ways. Circuit P is passive and linear. The x's 

can be either sources or passive linear elements. 
We now rewrite Eqs . 8-13 and 8-14 in the form of Eq . 8-12 ,  with the 

power flowing out of the devices connected to the ports on the left-hand 
side of the equations and the power flowing into P on the right-hand side: 

VII ;  + V2I� = 2: VbI�. ( 8-15) 
p 

VUI + V;Iz = 2: V�h · (8-16 ) 
p 

We can easily show that the sums on the right are equal . Say the 
resistance of branch b of circuit A is Rb . Then 

(8-17) 

It follows that, in Fig. 8-9, 

(8-18) 

(a)  I b) 
Fig. 8-9. Identical passive and linear circuits P connected to external elements in 
two different ways. As usual, a circled V represents an infinite-resistance 
voltmeter , and a circled I a zero-resistance ammeter. The signs and the arrows 
show which directions are taken to be positive. 
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l a )  ( 0 )  

Fig. 8-10. (a) Circuit P with an ideal voltage source on the left and an ammeter 
on the right. (b) The same circuit P, with a voltage source on the right and an 
ammeter on the left. The most commonly used reciprocity theorem states that the 
ratios V II are equal . 

Now connect P as in Fig. 8- IO(a) , which makes V2 = O. Reconnect P as 
in Fig. 8- IO(b) so as to make V ;  = O. Then, from Eg . 8- 18 ,  

(8- 19) 

Setting VI = V� makes I; = 12 • 
In other words, interchanging the voltage source and the ammeter does 

not affect the ratio V II. We have assumed steady direct currents and 
linear elements, but the result is general . 

This is an important result . It means that given any linear and passive 
circuit with one input port and one output port , the short-circuit output 
current ,  for a given input voltage , is unaffected if the roles of the input 
and output ports arc interchanged . In other words , the ratio V II remains 
the same. The output impedance of the source need not be zero , but the 
impedance of the ammeter must be zero. This is the most commonly used 
reciprocity theorem. 

This result is unexpected, because circuit P need not be symmetric at 
all. The power supplied by the source is not the same in the two 
configurations. 

Figure 8-1 1  illustrates the four reciprocity theorems. 

Example Let us check the reciprocity theorem illustrated in Fig. 8- 10(a) and 
(b) by applying it to the circuit of Fig. 8- 1 2(a). We first apply V 
volts at port 1 and connect an ammeter at port 2, as in Fig. 
8- 1 2(b). We require the current In when port 2 is short-circuited by 
the ammeter. Let us calculate In in three different ways: by the 
mesh method of Sec. 7 .2 . 1 ,  by the node method of Sec. 7 .2 .2 ,  and 
by Millman's theorem of Sec. 8 .5 .  

With the mesh method, we apply the KYL to meshes a and b in 
succession: 

Solving, 
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1 )2 1  I ,  I , = -\'; ' I ; I h) 

Fig. 8-11.  The four reciprocity theorems. In all cases P is any passive and linear 
circuit .  (a) ,  (b) Interchanging the positions of the ideal voltage source and of the 
ammeter does not alter the ratio fi V. (c), (d) Interchanging the ideal current 
source and the voltmeter does not alter the ratio V II. (e) ,  (f) and (g) , (h) Two 
other reciprocity theorems. 

(8-21 ) 

With the node method, we set the sum of the currents flowing 
into node A equal to zero: 

V - VA \14 VA -- = - + - .  RJ R, R2 
Solving, we find the same value for fb : 

R2R3 
V VA = , R�R) + R3R , + R , R2 

(8-22) 

(8-23) 
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R, R" R, A R, 

Ii (0 
(a )  ( h i  

R ,  R, 

( e )  

Fig. 8- 12. (a)  Simple circuit for testing the reciprocity theorem of Fig. H- IO(a) 
and ( \1 ) .  (\1) We have added a voltage source on the left and an ammeter on the 
right .  (c) We have now interchanged the source and the ammeter. 

Example 

VA R 1 V  I, = - = -------� 
, R ,  R,R, + R , R , + R , R, 

(8-24) 

We can apply Millman 's theorem \1y referring again to Fig. 
H- l2(\1 ) :  

VIR ,  
VA = ------'----

l /R ,  + llR,  + l/R l  
(H-2S) 

This yields the same value for VA and the same for I" . 
Now, to check the reciprocity theorem,  we interchange the 

voltage source and the ammeter of Fig. 8- 12(b) to obtain Fig. 
8-12(c) .  We require 1" . That i s  easy! Circuit (d) is identical to 
circuit (b), except for the fact that R ,  and R 2  are interchanged.  So 
we can write down the 1" of circuit (d) by interchanging R] and R, 

in the above expression for the I, of circuit (b) .  The two currents 
are the same . 

Problem 6-4 concerns a reciprocity theorem for electrostatic 
fields. 

SEARCHING FOR ANOMALIES IN 
GROUND CONDUCTIVITY 

Geophysicists use many methods for locating potential ore bodies . 
Figure 4-7 shows one method . The ground acts as c i rcuit A .  port 1 
is the pair of electrodes c"Cb •  and port 2 is the pair PuP, . 
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According to the reciprocity theorem illustrated in Fig. 8-1 1 (c) 
and (d) , the ratio V!  I would be unaffected if, instead, the current 
was injected at PaPb and the voltage measured at Cueb• 

8 . 8  THE POWER�TRANSFER THEOREM 

The power-transfer theorem states that the condition for maximum power 
transfer to a load is that 

(8-26) 

where ZL is the load impedance and Z; is the complex conjugate of the 
source output impedance. 

The proof is simple. According to Thevenin's theorem (Sec_ 8 .3) ,  a 
real source is equivalent to an ideal voltage source in series with an 
impedance Zo > as in Fig .  8-13 .  Let 

Then the power dissipated in the load is 

V2 
P = PR = R L L (R + R )2 + (X + X )2 L ' o L (} L 

To maximize PL , set XL = -Xu' Then 

P = RL V2 L (Ru + RL? . 
, - - - - - - - - - - - - ---1 
I I 
I Z" I I I 
I I 
I }--+----. 
I 
I 
I 
\ f'v 
I I I I I I I I 
! I - - - - - - - - - - - - - - - - � 

(8-27) 

(8-28) 

(8-29) 

Fig. 8-13. Source , whose output impedance is Zo > connected to a load impedance 
Z/ . 
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For a given source, with a given value of Ro, we set dPL/dRL = 0 and find 
that RL = Ro . So PL is maximum when 

(8-30) 

as above. 
Under those conditions, the power expended in the source is 

(8-31) 

1 0  

o.s ! --

0. 1  

Fig. 8-14. The ratio PI) P L,max and the efficiency 'l: as functions of the ratio RL/ Ro 
for the circuit of Fig. 8-14, with XI = -Xcr The power PL dissipated in the load is 
maximum when the load resistance RL is equal to the output resistance Ro of the 
source. But then only half the power goes to the load; the other half is lost in the 
source . 
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So the condition for maximum power transfer from a source to a load 
requires that one-half of the total power be dissipated in the source. In 
other words, the efficiency at maximum power transfer is 50% . 

Figure 8-14 shows that the condition for maximum power transfer is 
not critical .  

8.9 DELTA-STAR TRANSFORMATIONS 

Figure 8-15(a) shows three nodes A ,  B, C forming part of some 
unspecified circuit . The nodes are delta-connected in (a) and star
connected in (b) . As we shall see , we can substitute the star for the 
equivalent delta, or inversely, without disturbing the rest of the circuit .  
Indeed , if we had two boxes, one containing the delta and the other the 
equivalent star, with only the terminals A ,  B, C showing, there would be 
no way of telling which box was which. 

It is useful to be able to transform a delta into an equivalent star, or 
inversely, on paper. This often simplifies the calculation of mesh currents 
and node voltages. 

We could find ZA , ZB , Ze in terms of Za, Zb, Zo and, inversely, by 
assuming the same mesh currents lA , lB' Ie in the two circuits, and then 
making VA - VB, VB - Ve, Ve - VA in the delta equal to the correspond
ing voltages in the star . See Prob . 8-1 1 .  Here is another approach that is 
somewhat less convincing, but shorter . 

(b) 

Fig. 8·15. The three nodes A, B, C are part of a larger circuit. (a) The three 
nodes are delta-connected. (b) The nodes are star-connected. Under certain 
conditions the delta is completely equivalent to the star, but only at a given 
frequency. If the six Z's are all resistances, then the equivalence is valid at all 
frequencies. 
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Suppose we have a delta and the equivalent star. The impedance 
between A and B is the same in both . Then 

(8-32) 

Similarly, 

(8-33) 

(8-34) 

Observe that Z4 is associated with ZhZ, , Zn with Z,Z" , and Zc with 
Zu Z". Therefore 

(8-35) 

(8-36) 

(8-37) 

To find the inverse relationship, we use the admittance between node 
A and nodes B and C short-circuited together. This gives 

(8-38) 

Similarly ,  

(8-39) 

(8-40) 

Again by inspection , 

(8-41 ) 



, /' 

l oo n  

l a l  

165 

J' 2. 1 97 I' F 

" C 

( b )  

Fig. 8-16. (a) Delta-connected circuit. (b)  Its equivalent star a t  1 kilohertz. Note 
the negative resistance. 

YeYA 
Yh

= �----
Y4. + YB + Ye '  

y = Y4. YS 
C 

YA + Ys + Yc 

(8-42) 

(8-43) 

If a star or a delta comprises only resistances, then the equivalent 
circuit is also purely resistive. However, if the original circuit comprises 
capacitors (or inductors, or both) ,  then the values of the resistances and 
capacitances (and inductances) in the equivalent circuit are themselves 
frequency-dependent .  

For example , refer to Fig. 8- 1 6(a) and call the components R and C. 
Then the resistance in the lower branch of the equivalent star on the right 
turns out to be -R/(4 + R2w2C2) . This means to say that , for given 
components, the equivalence is valid at only one frequency . Moreover, 
the resistances of equivalent circuits can be negative , as in this instance. 
So a real circuit can be equivalent , on paper, to an impossible one. 

Example The delta and the star circuits of Fig. 8-16 are equivalent, as you 
can check by setting 

1 
Z = Z = �---;;----;-a b 

2.n X 103 X 1O-6j 
ohms, Zc = 100 ohms, (8-44) 

1 
Z = Z = 45. 5 1  + ohms, A B 

2JT X 103 X 1 1 . 13 X 1O-6j 

1 
Z =  -22.75 + ohms. ( 

2JT X 103 X 2. 197 X 1O-6j 

(8-45) 

(8-46) 
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8 . 10 SUMMARY 

The superposition theorem states that the current flowing in a given 
branch of a circuit is equal to the sum of the currents ascribable to the 
various sources. 

One can replace a passive element in a circuit by an ideal voltage 
source of the same polarity without disturbing the currents. This is the 
substitution theorem. 

According to the Thevenin 's theorem, any active , linear . two-terminal 
circuit is equivalent to an ideal voltage source in series with an 
impedance, called the output impedance of the circuit . This impedance is 
usually a resistance. 

Norton's theorem is the dual of Thevenin's: any active , l inear , 
two-terminal circuit is equivalent to an ideal current source in parallel 
with an admittance , which is usually a conductance . 

Millman 's theorem gives the voltage V at a node in terms of the 
voltages on the neighboring nodes and of the incoming currents. 

Tellegen 's theorem states that , for any circuit comprising sources and 
linear passive components . 

(8- 10) 

where the summation is taken over all the branches. It follows that , for 
any pair of resistive circuits C and C sharing the same geometry , 

� V�h = O. (8- 13) ,  (8- 14) 

The most common reciprocity theorem states that, given any passive 
and l inear two-port circuit, with a voltage source connected to one port 
and an ammeter connected to the other, the ratio 1/ V is unaltered when 
the positions of the source and of the ammeter are interchanged. Figure 
8-1 1  i l lustrates the four reciprocity theorems. 

Finall y, the power-transfer theorem states that maximum power trans
fer from a source to a load occurs when the load impedance is the 
complex conjugate of the source output impedance. 

The delta-star transformations. Given three nodes A, B, C, either 
delta-connected as in Fig . 8- 16(a) or star-connected as in Fig. 8- 15(b) . the 
two circuits are entirely equivalent if 

(8-35) 
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or if 
YBYc 

Y,, = , 
YA + YB + Yc 

YCYA 
Yb = , 

YA + YB + YC 

YA YB y = ----C 
YA + YB + Yc 

(8-36) 

(8-37) 

(8-41)  

(8-42) 

(8-43) 

PROBLEMS 

S- l .  (S. 3) The output resistance of an automobile battery. 
The voltage at the terminals of a certain defective automobile battery 

drops from 12 .5 to 1 1 . 5  volts when the headlights are turned on. What is 
the approximate value of the output resistance? 

8-2. (8. 3) The output resistance of a bridge circuit. 
Show that the output resistance of the bridge circuit of Fig. 8-17 ,  as seen 

at the voltmeter V, is R. Assume that the source has a zero output 
resistance . 

8-3 .  (S. 3) Calculating a branch current by Thevenin's theorem 
(a) Calculate the current that flows to the right through the resistance Ro 

in Fig. 8-18 .  Use mesh currents and the KVL. The output resistance of the 
battery is negligible . 

(b) Calculate the same current by Thevenin's theorem, considering the 
complete circuit minus Ro as the source. 

8-4. (8. 4) Norton's theorem 
(a) Show that V;, = U �,.  
(b) Show that Eq.  8-4 i s  equivalent to  Eq.  8-2. 

Fig. 8-17. 
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+ n R" 
v 

2R  C� R 

Fig. 8-18. 

8-5 . (8. 4 )  Norton' s  theorem. 
Calculate the voltage across the resistance R" of Fig. 8- 1 8  by Norton's 

theorem. The output conductance of the source is infinite . 
8-6. (8. 5) Millman's theorem 

In the circuit of Fig. 8-19 the switch S closes at t = O. Find the voltage Vc 
across C as a function of the time by means of Millman's theorem . Set 
R 1 = 1 ohm, Rz = 2 ohms, R3 = 3 ohms, C = 1 microfarad, V = 100 volts. 

8-7. (8. 6) Tellegen's theorem 
(a) Show that Tellegen's theorem is a consequence of the KCL. 
(b) Show that Tellegen's theorem is also a consequence of the KYL. 

8-8. (8. 7) The reciprocity theorems 
Check the last three reciprocity theorems of Fig. 8-1 1  by applying them 

to the simple circuit of Fig. 8- 12(a) . 

s 

R ,  

v 

Fig. 8-19. 
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R 2R R I, 2R 

s 

i Q 
v c c v 

(a) (b) Fig. 8-20. 

8-9. (8. 7) The reciprocity theorem applies to transients 
Show that the ratio I/V for the circuit of Fig. 8-20(a) is the same as for 

the circuit of Fig. 8-20(b) .  Find Q(t) first. 
8- 10. (8.8) Audio amplifier 

An audio power amplifier has an output resistance of 8 ohms and feeds a 
resistive load of 6 .4 ohms. Calculate the efficiency. 

8- 1 1 . (8. 9) Delta-star transformation .  
Find the equations for either the delta-star or the star-delta transforma

tion by assuming mesh currents as in Fig. 8-15 and making the voltages 
VA - VB, VB - Vc, Vc - VA in part (a) the same as those in part (b). 

Find an  equation of the form ( . . .  )IA + ( . . .  )IB + ( . . .  )/c = O. Since this 
equation must be valid whatever the values of the mesh currents, the 
parentheses must all be identically equal to zero. This will give you one of 
the equations of one set;  the other two equations follow by symmetry. 

8- 12. (8. 9)  Delta-star transformation 
Find the resistance of the circuit shown in Fig. 8-2 1 .  

8- 1 3 .  Van der Pauw's theorem 
It is difficult to measure the conductivity of small samples of semiconduc

tor. First, they are brittle and thus difficult to machine. Second, contacts to 
the material are resistive. With Van der Pauw's theorem, however ,  it is 
possible to measure the conductivity of a sample in the form of a thin plate 
of arbitrary shape with four contacts around the periphery without 

4 Hl 

I k O  2 kO 3 kO 

S kn 

Fig. 8-21. 
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Fig. 8-22. 

interference from the contact resistances. We deduce this theorem for the 
case of a semi-infinite plate. 

(a) Imagine an infinite thin plate of thickness s and conductivity a. A 
current 21 flows into point A i n  Fig. 8-22(a) . 

Show that , in the plate, E = l/nars, where r is the radial distance to A .  
(b) Now consider three points B ,  C, D as i n  Fig. 8-22(a) , o n  a line going 

through A. Show that 

1 a + b + c 
VL - VD = - In ----

nas a + b 

If we cut the plate along the line and remove the lower half, the above 
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equation applies to the upper half, if I is now the current at A flowing into 
the upper half. So we now have a semi-infinite plate as in Fig. 8-22(b). 

(c) Now suppose that a current I comes out of B as in Fig. 8-22(c) . 
Calculate Vc - VD again ;  then superpose cases (b) and (c) to obtain Fig. 
8-22( d). Show that, for case (d), 

V� - V� = _l_ ln (a + b + c)b 
(a + b)(b + c) ' I nas 

This ratio has the dimensions of a resistance; call it RAB,CD ' The contact 
resistances at A and B are unimportant because only the current I between 
A and B is significant. The contact resistances at C and D are also 
unimportant if their sum is much smaller than the resistance of the 
voltmeter that measures Vc - YD' 

(d) Show that , with currents as in Fig. 8-22(e) ,  
1 (a + b)(b + c) 

RnC,DA = - In . 
nas ac 

(e) You can now derive Van der Pauw's theorem: 

exp (nasRAn,CD) + exp (nasR BC,DA) = 1 .  

The only unknown i s  a. This result, in  fact, applies to  a lamella of  any 
shape, with contacts A, B, C, D around the periphery, 
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Dielectrics differ from conductors in that they possess no carriers of free 
charge that can drift about under the control of an externally applied 
electric field. In a true dielectric the charges are all bound to their atoms 
or molecules, and they can be forced to move by only minute distances, 
positive charges going one way and negative charges the other way . A 
dielectric in which this displacement has taken place is said to be 
polarized. 



, 2 THE ELECTRIC POLARIZATION P 173 

Some molecules possess a permanent dipole moment and are said to be 
flOrar. Other molecules are nonpolar. 

A given substance can be a dielectric under normal circumstances and 
Jecome a conductor under appropriate conditions . For example, 
)hotoconductors are normally nonconducting, but become conducting 
.vhen exposed to light . 

In this first chapter on dielectric media we are concerned with the basic 
::oncepts of polarization , susceptibility , and relative permittivity, mostly 
In static fields. 

1) . 1  THE THREE BASIC POLARIZATION 
PROCESSES 

. 1 )  Under the action of an applied electric field, the center of charget 
\If the electron cloud in a molecule moves slightly with respect to the 
�enter of charge of the nuclei . This is electronic polarization. The 
displacement is minute , even on the atomic scale, typically 1O-x times the 
, liameter of an atom.  

:2) Polar molecules align themselves and become further polarized in 
III applied electric field. This is orientational polarization. However, 
collisions arising from thermal agitation partly disrupt the alignment. 

(3) The third basic process is atomic polarization, in which ions of 
different signs in a solid such as NaCI move in different directions when 
subjected to an electric field. The ferroelectric dielectrics of Sec. 10. 1 .4 
exhibit atomic polarization . 

A polarized dielectric possesses its own field, which adds to that of the 
other charges . The two fields can be comparable in magnitude . 

9 .2  THE ELECTRIC POLARIZATION P 

If. in the neighborhood of a given point , the average vector dipole 
moment per molecule in a given direction is p, and if there are N 
molecules per cubic meter, then 

P = Np (9-1) 
i s  the electric polarization at that point . So P is the dipole moment per 
unit volume at a given point. Recall from Sec. 5 .4  that the dipole moment 

t The center of charge is analogous to the center of mass in mechanics. 
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of a charge distribution is independent of the choice of origin when the 
net charge of the distribution is zero , as it is for a normaL neutral 
molecule. 

9 .3  FREE AND B OUND CHARGES 

Polarization causes charges to accumulate, either within the dielectric or 
at its surface . We refer to such charges as bound. Other charges are said 
to be free. Examples of free charges are the conduction electrons in good 
conductors, the charge carriers in semiconductors, and electrons injected 
into a dielectric by means of a high-energy electron beam . t 

9. 3 . 1  The Bound Surface Charge Density Gh 
Imagine an element of area dsi inside a dielectric as in Fig . 9- 1 .  Say the 
dielectric is nonpolar. When the dielectric is polarized, the center of 
positive charge + Q  of a molecule lies at a distance s from the center of 
negative charge - Q. This s is the same for all the molecules over an 
infinitesimal region . 

Upon application of an electric field,  n + positive charges cross the 
element of area by moving in the direction of s, and 11 _ negative charges 
cross it by moving in the opposite direction. The net charge that crosses 
ds1 in the direction of s is therefore 

(9-2) 

Now n + + n _ is simply the number of molecules within the imaginary 
parallelepiped of Fig. 9- 1 ,  whose volume is s . dd. Then 

dQ = NQs . dd = Np . dd = p . dd, (9-3) 

where Qs is the dipole moment p of a single molecule. 
If dd lies on the surface of a dielectric , then dQ accumulates there and 

the bound surface charge density is 

t The concepts of free and bound charges. and even the concept of polarization, are not, 
however, as clear-cut as one might wish . The distinction between free and bound charges 
rests on the assumption that the dielectric consists of electrically neutral molecules. If there 
are no well-defined molecules as in a crystal of NaC!, for example, the values of the free 
and bound surface charge densitie� are arbitrary. We confine most of our discussion here to 
dielectrics composed of molecules. 

See Edward Purcel l ,  Electricity and Magnetism, Berkeley Physics Course, vol. 2 .  
McGraw-Hill , New York, 1965, p .  344. 
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Fig. 9-1 .  Element of area dsi situated inside a dielectric. The vector dsIJ is 
normal to the element. Here E is the externally applied field plus the field of the 
dipoles within the dielectric. Under the action of this E, the molecules either 
stretch, or rotate and stretch, and a net charge NQs . dsIJ crosses the element of 
area.  

dQ , 
0/, = dsd = P . n ,  (9-4) 

where ii is the unit vector normal to the surface and pointing outward. 
Thus 01> is equal in magnitude to the normal component of P, pointing 
outward . 

9 . 3 . 2  The Bound Volume Charge Density Ph 
We now demonstrate that inside a dielectric the bound volume charge 
density Ph is equal to - V . P. The net bound charge that flows out of a 
volume 11 across an element dsd of its surface is p .  dd, as we found 
above . The net bound charge that flows out of the closed surface of area 
sf delimiting a volume v entirely situated within the dielectric (so as to 
exclude surface charges) is thus 

Qout = f p .  dd, 
,.1 

(9-5) 

and the net charge that remains within v must be -Qollt . If Ph is the 
volume density of the charge remaining within v, then 

! Ph dv = -Qout = -f P . dd = -! V · Pdv. (9-6) 
l '  .�'i v 
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We have used the divergence theorem to transform the second integral 
into the third. Since this equation applies to any volume chosen as above, 
the integrands are equal at every point in the dielectric and the bound 
volume charge density is 

PI) = - V · P. 
9 .3 .3  The Polarization Current Density J" 

(9-7) 

The motion of bound charges under the action of a time-dependent 
electric field generates a polarization current. Consider a small surface 
dsd. situated inside a dielectric as in Fig. 9- 1 ,  but normal to P. As the 
polarization increases from zero to p, a net charge dQ" = P d:Ji crosses 
dd in the direction of P. More generally, if P increases by dP in a time 
interval dt and if dsd. is normal to dP. then a current 

I 
= dQ" 

= 
IdPI dd 

dt dt 

flows through dsd. in the direction of P. 

(9-8) 

Thus if, at a given point in space , P is a function of time , the motion of 
bound charge results in a polarization current density 

9 .4  THE ELECTRIC FIELD OF A 
POLARIZED DIELECTRIC 

(9-9) 

We have seen that polarization causes charges to accumulate , either at 
the surface of a dielectric or inside , with charge densities 0b and Pb) 
respectively. Now Coulomb's law applies to any net charge density, 
regardless of any matter that may be present . The potential V ascribable 
to a polarized dielectric that occupies a volume v ' bounded by a surface 
of area d'  is therefore the same as if the bound charges were located in a 
vacuum: 

V - _1_ f Pb dv ' + _1_ f 0" dd' 
4.7rEo v' r 4.7rEo d ' r (9-10) 

where r is the distance between the element of bound charge at 
P'(x ' ,  y ' ,  Z l ) and the point P(x, y, z )  where one calculates V. 

If there are also free charges present , then one adds similar integrals 
for the free charges. Therefore 
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1 i pr I 1 f or I E = -- 2 dv + -- 2 dS'l , 
4.7rEo v ' r 4.7rEo .sil' r (9-11  ) 

where r points from P ' ta P and where p and a are total charge densities, 
free plus bound , 

It does not follow that one can calculate E from p and a because both 
charge distributions depend on E. 

Example THE FIELD OF AN INFINITE-SHEET ELECTRET 

An electret is the electrical equivalent of a permanent magnet. In 
most dielectrics the polarization vanishes immediately upon 
removal of the electric field , but some dielectrics retain their 
polarization for long periods. For example, certain polymers have 
extrapolated lifetimes of several thousand years at room 
temperature. 

As a rule , electrets have the form of sheets, with the 
polarization normal to the surface. One way of poling an electret 
is to place the material in an electric field of about 108 volts/meter 
at about lOO°e. A bound surface charge builds up as the molecules 
orient themselves, and the sample is then cooled down to room 
temperature without removing the electric field. 

One commonly used material is polyvinylidene fluoride (PVF2). 
This is a polymer composed of a chain of CH2-CF2 units. Its 
remanent polarization is typically 50 to 70 millicoulombs/meter2• 
This material is used in various types of transducers, microphones 
for example , because it also has the property of going into a 
metastable polarized state when stretched. 

For a sheet electret, neglecting edge effects, the polarization P 
is uniform and equal to Ob as in Fig. 9-2. Then Pb is zero, from Eq. 
9-7. Inside the sheet, 

(9-12) 

Fig. 9·2. Section through a sheet 
electret. Vectors E and P point 
in opposite directions. 
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9 .5  GAUSS'S LAW 

Say a given volume v contains various dielectrics, some of which may be 
partly inside and partly outside. The total free and bound charge within v 
is Qt + Qb = Q. There are no surface charges on the surface of v. Then 
Gauss's law relates the outward flux of E through the surface of area .sIi 
to the net enclosed charge Q :  

ltE O dd � o�- - J f E ·  dd = Q . 
sl Eo 

- ------ - - - ----This is Gauss's law in its more general form. 

(9-13) 

If the volume v lies entirely inside a dielectric, 
charges and 

there are no surface 

f E ·  dd = � f (Pr + Pb) dv = � f P dv, 
.<4 Eo II Eo " 

(9-14) 

where P = Pt + Pb is the total charge density. Applying the divergence 
theorem to the surface integral of E gives the volume integral of V ·  E. 
Equating the integrands then yields 

(9-15) 

which is again Gauss's law, expressed in differential form . 
This is one of Maxwell's four fundamental equations of 

electromagnetism. 

9 .6  POISSON'S AND LAPLACE'S EQUATIONS FOR 
V IN DIELECTRICS 

Since E = - VV, from Sec . 3 .4 ,  it follows that 

This is Poisson 's equation for V in dielectrics . 
Laplace's equation applies to regions where the total electric charge 

density is zero: 

as in Sec. 4. 1 .  
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l) .7  THE ELECTRIC FLUX DENSITY D 
AND ITS DIVERGENCE 

According to Eq. 9-15 ,  

But we found in Sec. 9 .3 .2 that Pb = - V 0 P. Therefore 

V 0 (EoE + P) = Pt. 
We conclude that the vector 

D = EoE + P  
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(9-18) 

(9- 19) 

(9-20) 

is such that its divergence is equal to the free volume charge density. This 
quantity is called the electric flux density. Thus 

V o D = Pt- (9-21 )  

I t  follows that , for any volume v that lies entirely inside a dielectric and 
that encloses a free charge Qt with no surface charges, 

f V 0 D dv = f D . dsd. = f Pt dv = Qt· 
(. � u 

This concurs with the relation D = toE + P: 

(9-22) 

LD o dsd. = EoLE o dsd. +  Lp o dsd. = Q + i V o pdv (9-23) 

= Q - i Pb dv = Q - Qb = Qt (9-24) 

The fact that the divergence of D depends solely on the free charge 
density does not mean that D itself depends only on Pt. To find D, we 
must integrate Eq. 9-21 subject to whatever boundary conditions apply. 

In using the divergences of E, P, and D, we assume implicitly the 
existence of the space derivatives. If we have to deal with the interface 
between two media, where these derivatives do not exist , then we must 
use the integral form of Gauss's law, which is therefore more general . 
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THE INFINITE-SHEET ELECTRET 

Inside the electret of the example in Sec. 9.4 ,  E = (ohIEo)ii and 
points downward. Also, P points upward and its magnitude is 0h ' 
Therefore E and PI Eo are equal in magnitude , but point in 
opposite directions, as in Fig. 9-2. 

THE BAR ELECTRET 

Assume that . inside the bar electret of Fig. 9-3 , the polarization P 
is uniform. (This is an interesting but unrealistic example because 
P is in fact nonuniform. )  Then V · P is zero and, from Eq . 9-7 .  Pb 

/ / 
/ /

/\J:"' . ' 

'-, ........... 
:--... " . 

(a )  ( 11) 

Fig. 9-3. (a) Idealized bar electret polarized uniformly parallel to its axis. (h) The 
E field of the bar electret is the same as that of a pair of circular plates carrying 
uniform surface charge densities P of opposite polarities. 

Fig. 9-4. Lines of E (solid) for the idealized bar electret of Fig. 9-3 . Lines of D 
are shown dashed inside the electret; outside they follow the lines of E. The 
polarization is uniform and points to the left. 
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is  zero. There are bound charges solely on the end faces. Then the 
E-field, both inside and outside the bar electret, is that of a pair of 
circular sheets of charge of uniform charge densities + P and - P, 
respectively, as in the figure. (The surface charge density on a 
conducting plate is larger near the edges than near the center.) 

Outside ,  the l ines of D are identical to the lines of E because 
D = EoE. 

Inside , D = EoE + P, with E and P pointing in roughly opposite 
directions. The divergence of D is everywhere zero. See Fig. 9-4. 

9 .8  THE ELECTRIC SUSCEPTIBILITY Xe 

In most dielectrics P is proportional to E and points in the same 
direction. (This is not true of electrets, as we just saw !) Such dielectrics 
are linear and isotropic. So , in linear and isotropic dielectrics, 

(9-25) 

where Xc is the electric susceptibility of the medium . 
The dielectric is homogeneous if its electric susceptibility is independ

ent of the coordinates .  

9.9 THE RELATIVE PERMITTIVITY Er 

In linear and isotropic dielectrics, Eq. 9-25 applies and 

where 

E 
E = l + X = -r e Eo 

(9-26) 

(9-27) 

is the relative permittivity. This quantity is dimensionless and larger than 
unity . The quantity E is the permittivity. Its dimensions are the same as 
those of Eo,  namely, farads per meter. Thus, for linear and isotropic 
dielectrics, 

(9-28) 

Table 9-1 shows the value of Er for some common dielectrics at three 
widely spaced frequencies. 

The relative permittivities of gases at normal temperature and pressure 
are only slightly larger than unity. For example, Er = 1 .000536 for air at 
normal temperature and pressure. 
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Table 9-1 Relative permittivities of various materials near 
25°C 

FREQUENCY 

TYPE 1 00 10" lOW 

Barium titanate 1250 1 140 100 
Benzene 2 .28 2 .28 2 .28 
Birch (yellow) 2 .7 1 .95 
Butyl rubber 2 .43 2.40 2.38 
Carbon tetrachloride 2. 17  2 . 1 7  2. 1 7  
Fused silica 3 .78 3 .78 3 .78 
Glass (soda borosilicate) 5 .0  4 .84 4 .82 
Ice 4. 15 3 .20 
Lucite 3 .20 2 .63 2.57 
Neoprene 6 .70 6.26 4.0 
Polyethylene 2 .26 2 .26 2 .26 
Polystyrene 2 .56 2.56 2 .54 
Sodium chloride 5 .90 5 .90 
Soil (dry loam) 2 .59 2 .55 
Steatite 6.55 6 .53 6.5 1 
Styrofoam 1 .03 1 .03 1 .03 
Teflon 2 . 1  2. 1 2 .08 
Water 8 1  78 .2 34 
Wheat (red , winter) 4.3 2.6 

The relative permlttIvltIeS of good conductors are unknown because 
their conduction currents are so much larger than their polarization 
currents. One may assume that their permittivities are of the order of 
three to five, as for ordinary dielectrics. 

Example THE FREE AND BOUND 
VOLUME CHARGE DENSITIES 
The presence of a free volume charge density Pr polarizes a 
dielectric and gives rise to a Pb ' If the dielectric is homogeneous, 
isotropic ,  and linear, then 

P =D - EoE = (l - �)D, 
V · P =  (l - �) V '  D, 

Pb = -(l - �)pr. 

(9-29) 

(9-30) 

(9-31) 

If Pr is zero, then Pb is zero and V ·  P is also zero. If Pr is not zero, 
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Example 

which is a rare occurrence, the total charge density p has the same 
sign as p" but it is smaller: 

THE FREE AND BOUND SURFACE CHARGE 
DENSITIES AT THE INTERFACE BETWEEN 
A DIELECTRIC AND A CONDUCTOR 

(9-32) 

At the interface between a conductor and a linear and isotropic 
dielectric, the conductor carries a a, and the dielectric a abo If the 
field is static, E = 0 and D = 0 inside the conductor . Since the 
tangential component of E is continuous across the interface , as 
we shall see in Sec. 10.2 .3 ,  both D and E are normal to the 
interface in the di.electric, close to the conductor. 

Now imagine a thin Gaussian volume G straddling an area .stJ. 
of the interface as in Fig. 9-5 . Gauss's law, as stated in Sec. 9.5 ,  

tells us that the outward flux of D in Fig. 9-5 is equal to the 
enclosed free charge ar.stl.. Take the upward direction as positive. 
Then,  since P = ab in this example , from Sec. 9.3 . 1 ,  

and 

Conductor 

(9-33) 

t P J 
E = (af + a,,)fi/� 

--p-+��- ---- - I 

Fig. 9-5. At the i nterface between a dielectric and a conductor 
there exists both a free surface charge density a, on the conductor 
and a bound surface charge density ab on the dielectric. If a, is 
positive, as it is here, then ab is negative and the vectors D, P, E 
point in the directions shown. 
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(9-34) 

Observe that Gauss's law for E, as stated in Eq . 9-13 , leads to the 
same value of E. 

Since D = ErEoE, 

Compare with Eqs. 9-31 and 9-32. 

DIELECTRIC-INSULA TED 
PARALLEL-PLATE CAPACITOR 

(9-35) 

(9-36) 

Figure 9-6 shows a cross-section of a parallel-plate capacitor. We 
have shown air spaces on either side of the dielectric sheet so as to 
render our discussion more instructive, but as a rule the plates are 
in contact with the dielectric. 

We assume static charges and fields. Also, almost invariably, 
Pr = 0 in the dielectric and thus Ph = 0 and V ·  P = 0, from the first 
example in Sec. 9 .9  and from Sec. 9.3 .2 .  Neglecting edge effects, 
the surface charge densities ar and ah are uniform. Similarly , the 
vectors P, E, and D are uniform within the dielectric and uniform 
within the air spaces. 

The Gaussian volume G straddles the air-conductor interface . 
Within the conductor, E = 0 and D = O. Therefore , in the air 
space, 

Similarly, for the Gaussian volume G ' ,  

But 

It follows that 

E 
_ ar + ab 

d - , 
Eo 

Of course, l ah l = P, from Sec. 9 .3 . 1 .  

(9-37) 

(9-38) 

(9-39) 

(9-40) 
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+ 1------1 + t-------i 

Fig. 9-6. Pictorial representation of the manner in which E 

varies inside a parallel-plate capacitor containing a sheet of 
dielectric with c, = 2. Of course, individual lines of E do not exist. 
Here 1 0h l  = I Of l /2. 

The voltage V across the capacitor is thus 

(9-41 ) 

where of = Q / S'i, Q being the magnitude of the charge and S'i the 
area of one plate. 

The capacitance is 

(9-42) 

Without air spaces on either side of the dielectric, g + h = 0 and 

(9-43) 
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(9-44) 

This is €, times larger than the capacitance that we found in Sec. 
6.4.1 for an air-insulated parallel-plate capacitor. 

The measurement of a capacitance, with and without a 
dielectric, provides a convenient way of measuring a relative 
permittivity. 

THE FIELD OF FREE CHARGES EMBEDDED IN 
A DIELECTRIC  

Imagine a small conducting sphere carrying a free charge Qr and 
embedded in an infinite, homogeneous, isotropic, linear, and 
stationary (HILS) dielectric. The surface of the dielectric in 
contact with the charged sphere carries a bound charge of the 
opposite sign . At each point on the surface of the sphere Eg . 9-36 
applies, and the net charge is Qr/€,' Thus, at any point inside the 
dielectric at a distance r from the charged conducting sphere , 

E = Qr /€" = QI , . 4.7T€"r 4.7T€,€"r- (9-45) 

Similarly ,  if a given distribution of free charges PI is located 
inside a dielectric as above , the net charge density is Pr /€, and the 
E at any point is Eol €n where E" is the field that would obtain if 
the free charge distribution were situated in a vacuum . 

If the dielectric is not infinite , then we must take into account 
the field of the bound charges at the surface. 

9 . 10 THE DISPLACEMENT CURRENT DENSITY 
an /at 

Figure 9-7 shows a parallel-plate capacitor connected to a source of 
alternating voltage . The plates have an area st1. and are spaced by a 
distance s. We assume that edge effects are negligible. Then 

V Es . ErEOsi J = - = -- = jwEs --Z l /jwC s 
. . dD dQ = .st1jWErEoE = .st1jwD = .st1 - = - . dt dt 

(9-46) 

(9-47) 

The current density in the capacitor is therefore jwD or, more 
generally, aD/at. This quantity is called the displacement current density 
because D was formerly called the electric displacement. 
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Arca :,1 

v � c Fig. 9·7. Parallel-plate capacitor 
connected to a source of alternating 
voltage. The displacement current 
density in the dielectric is aD / at. 

The displacement current density consists of two parts: 

oD 0 oE OP - = - (EoE + P) = Eo - + -' ot ot ot ot (9-48) 

The second term on the right is the polarization current density of Sec. 
9 . 3 . 3 ,  which results from the motion of bound charges. The first term, 
Eo oE / ot, is nameless. It can exist even in a vacuum. 

We shall have many occasions to refer to the displacement current 
density. 

9 . 1 1  SUMMARY 

In a polar dielectric, each molecule possesses a permanent dipole 
moment . Upon application of an electric field, the molecules orient 
themselves more or less, and their dipole moments increase. The 
molecules of a nonpolar dielectric acquire a dipole moment when 
subjected to an electric field . . 

The dipole moment per cubic meter at a given point is called the 
electric polarization P. 

Polarization causes bound charges to accumulate, with surface and 
volume charge densities 

Pb = - V · p, (9-4) , (9-7) 

where Ii is a unit vector that is normal to the surface and points outward. 
In a fluctuating electric field the fluctuating polarization gives a 

polarization current density 

(9-9) 

One can calculate E both inside and outside dielectrics by treating both 
free and bound charges as if they were situated in a vacuum. 
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In dielectrics , Gauss 's law states that, for a closed surface of area .91, 

(9-13) 

where Q is the total enclosed charge , free plus bound. The differential 
form of Gauss's law is 

As a consequence , Poisson's equation for V is 

By definition, the electric flux density is 

and 

D = EOE + P 

V · D  = Pt. 

This is still another form of Gauss's law. 
In linear and isotropic dielectrics, 

(9- 15) 

(9- 16) 

(9-20) 

(9-21 ) 

(9-25) 

where Xe is a constant, independent of E. called the electric susceptibility. 
Then 

(9-26) 

where Er is the relative permittivity and E is the permittivity of the 
material. Also, 

(9-28) 

In a homogeneous, isotropic, and linear dielectric, 

(9-31 )  
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At the interface between a dielectric and a conductor, under static 
conditions, 

with the sign conventions of Fig. 9-5 . 
The displacement current density is aD / at. 

PROBLEMS 

9- 1 . ( 9.2 )  The dipole moment of a carbon atom 
A sample of diamond has a density of 3 .5  x 103 kilograms/meter' and a 

polarization of 10 7 coulomb/meter2• 
(a) Calculate the average dipole moment per atom. 
(b) What is the average separation between the centers of positive and 

negative charge? The carbon nucleus has a charge +6e and is surrounded 
by six electrons. The diameter of an atom is of the order of 10- 10 meter. 

9-2 . {9- 3) Nonhomogeneous dielectric 
Show that, in a nonhomogeneous dielectric, if Pf = 0, then Pb = 

-(E,,/E,)E · VE,. 

9-3 .  ( 9. 4 )  The field of a polarized dielectric sphere 
The polarization P of a given dielectric sphere is uniform. Here is an 

elegant way of calculating its field , both inside and outside. 
Take the sum of the fields of two spherical charges of densities P and -p, 

displaced by a distance �z, one with respect to the other, �z being the 
distance between the centers of charge of the individual dipoles. Then 
P = P �z £ if the vector P points in the positive direction of the z-axis. 

(a) Show that, inside , E = -P/3E" and is therefore uniform . 
(b) Show that , outside ,  V and E are those of a dipole of moment P'Y 

situated at the center of the sphere of volume 'Y. 
9-4. (9. 6)  Poisson 's equation in nonhomogeneous media 

Show that, in a nonhomogeneous medium, V2V + ( VV · VE)!E = -Pf/E. 

9-5 . ( 9. 7) The surface charge densities on a dielectric 
The surface of a certain sample of dielectric carries a free charge of 

density of af. 
Show that, close to the surface , Ea;, = af/[(E, + l) Eol and Ed;el = 

-af / (E, + 1 )E". We have chosen the outward direction as positive .  Note that 
Da;, - Dd;el = af, as expected. Also , in the dielectric, D = E"E + P. 

9-6. ( 9. 7) Electrically charged Lucite block 
If high-energy electrons bombard a block of insulating material such as 

Lucite , the electrons penetrate the material and remain trapped inside.  If 
one then gives the block a sharp knock with a conducting object, say with a 
center punch, the electrons escape , leaving a beautiful tree-like design 
where the plastic has broken down . 



190 ELECTRIC FIELDS VII 

In one particular instance, a 0. 1 -microampere beam bombarded an area 
of 25 centimeter2 of Lucite (E, = 3. 2) for 1 second, and essentially all the 
electrons were trapped about 6 millimeters below the surface in a region 
about 2 millimeters thick. The block was 12 millimeters thick. 

In the following calculations, neglect edge effects and assume a uniform 
density for the trapped electrons. Assume also that both faces of the Lucite 
are in contact with grounded conducting plates. 

(a) What is the bound charge density in the charged region? 
(b) What is the bound charge density at the surface of the Lucite? 
(c) Sketch graphs of D, E. V as functions of position inside the 

dielectric. 
(d) Show that the potential at the center of the sheet of charge is about 4 

kilovolts. 
(e) What is the energy stored in the block? Could the block explode? 

9-7. (9. 9) Capacitance with and without a dielectric 
A conducting body A, of arbitrary shape, is grounded . Another 

conducting body B. of arbitrary shape and position. is maintained at a 
potential V. In air, the capacitance is CII •  Show that the capacitance is f,Co 
when the bodies are submerged in a large body of dielectric f,. 

9-8. ( 9. 9) The coaxial line 
Figure 33-4 shows a section of coaxial line. A dielectric f, fills the space 

between the two conductors. From Probs. 6-5 and 9-7. the capacitance per 
unit length C' is 2.7rf,fo/ ln (R2/ R , ). The outer conductor is grounded . and 
the inner conductor is at the potential V. 

(a) Calculate the charge per unit length A on the inner conductor. 
(b) Show that the bound charge per unit length on the inner surface of 

the dielectric is - )..( \  - l /E, ) .  
Thus the net charge per unit length at the radius R,  is  A/ f, .  The bound 

charge per unit length on the outer surface of the dielectric is similarly 
+A(I - 1 /f,) .  and the net charge per unit length at R2 is -A/f, .  

(c) Show that the volume density of bound charge is zero. 
(d) Draw graphs of D. E. and V as functions of the radius r from r = Rl 

to r = R2, for V = 100 volts, R ,  = 1 . 00 millimeter , R2 = 10 .0 millimeters, 
f, = 3 .00. 

9-9. (9. 9) A parallel-plate capacitor with a nonuniform dielectric 
The dielectric of a parallel-plate capacitor has a permittivity that varies as 

1: ,0 + ax, where x is the distance from one plate. The area of a plate is d, 
and their spacing is s. 

(a) Find the capacitance. 
(b) Show that, if f, varies from f,o to 2f,o . then C is 1 .44 times larger 

than if a were zero. 
(c) Find P from the values of D and E for that case. 
(d) Deduce the value of Pb '  
(e) Now calculate Pb  from the relation given in Prob. 9-2. 
(f) Draw curves of E, Ph , and P as functions of x for f,o = 3 .00, 

a = E,o/S, S = 1 . 00 millimeter when the applied voltage is 1 .00 volt. 
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9-10. (9. 9) The resistance and the capacitance between two electrodes 
When the space between the plates of a parallel-plate capacitor is filled 

with a dielectric E ,  it has a capacitance of C farads. If the dielectric is 
replaced by a material whose resistivity p = 1/ a is much smaller than that 
of the electrodes, the resistance between the electrodes is R ohms. 

(a) Show that RC = pE, neglecting edge effects. 
(b) Show that this result also applies to cylindrical and spherical 

capacitors. 
(c) Show that this result applies to any pair of electrodes submerged in a 

medium whose resistivity p is much larger than that of the electrodes. 
You should be able to show that the field is unaffected by the 

conductivity, with the above restriction . 
One important application of this fact is the electrolytic plotting tank,  

which is used for plotting electric fields in two, and in some cases three, 
dimensions. 

If the medium occupies only the region between the electrodes, then RC 
is again equal to pE, except that C does not include the fringing field and is 
therefore smaller than the true capacitance. 

(d) The capacitance per unit length between two parallel wires of 
diameter d and separated by a distance D is C' = JrE /cosh- 1 (Did). Find 
the conductance between parallel wires 10 millimeters in diameter sepa
rated by 100 millimeters and submerged in sea water (a = 5). 

y- J J .  ( 9. 9) The current between two electrodes in a conducting medium. 
See Prob.  9-10. The electrodes of part (c) are initially charged, and 

discharge through the medium. Show that Jf + aD I at = O. 



CHAPTER 10 
ELECTRIC FIELDS VIII 
Dielectric Materials B :  Real Dielectrics, 
Continuity Conditions at an Interface, 
and Stored Energy 

· 10. 1 REAL DIELECfRICS 1 93 

· 10. 1 . 1  LOSSY DIELECfRICS 193 

· 10. 1 .2 THE FREQUENCY AND TEMPERATURE DEPENDENCE OF E, 195 

· 10. 1 .3 ANISOTROPY 195 

· 10. 1 .4 FERROELECfRICITY 1 96 

· 10. 1 .5 HYSTERESIS 197 

10.2 THE CONTINUITY CONDITIONS AT AN INTERFACE 197 

10.2 . 1  THE POTENTIAL V 197 

10 .2 .2 THE NORMAL COMPONENT OF D 197 

10.2.3 THE TANGENTIAL COMPONENT OF E 198 

10.2.4 BENDING OF LINES OF E AT AN INTERFACE 1 99 

10.3 THE POTENTIAL ENERGY OF A CHARGE DISTRIBUTION IN THE 

PRESENCE OF DIELECfRICS 200 

10 .3 . 1  THE POTENTIAL ENERG Y EXPRESSED IN TERMS OF PI AND V 200 

Example : THE DIELECfRIC-INSU LATED PARALLEL-PLATE 

CAPACITOR 201 

10.3 .2 THE ENERGY DENSITY EXPRESSED IN TERMS OF E AND D 202 

Example : THE DIELECfRIC-INSULATED PARALLEL-PLATE 

CAP ACITOR 203 

10.3.3 THE ENERGY DENSITY ASSOCIATED WITH POLARIZATION 203 

10.4 ELECTRIC FORCES IN THE PRESENCE OF DIELECfRICS 204 

10.5 SUMMARY 204 

PROBLEMS 205 

In this second and last chapter on dielectric materials, we first describe 
briefly some characteristics of real dielectrics: finite conductivity, fre
quency and temperature dependence of En anisotropy, ferroelectricity, 
and hysteresis. Then we study the continuity conditions at the interface 
between two media_ We shall require these conditions on many occa-



*10. 1  REAL DIELECTRICS I lJ3 

sions. Finally, we return to the energy stored in an electric field, this time 
in the presence of dielectrics. 

* 10 . 1 REAL D IELECTRI CS 

Some dielectrics, such as polyethylene, are close to ideal: they are 
homogeneous , linear , and isotropic; their conductivity is close to zero; 
and their relative permittivity is practically independent of frequency. 
However , most dielectrics exhibit a more complex behavior. 

* 10. 1 . 1  Lossy Dielectrics 

Dielectrics that are somewhat conducting are said to be lossy. For 
example, most natural substances, such as wood or wheat , show a slight 
conductivity that is associated with the presence of water. 

With alternating electric fields , it is convenient to express the conduc
tivity in terms of a complex permittivity as follows . Consider a parallel
plate capacitor containing such a material , as in Fig. 10- 1 .  The current is 
the same as if one had an ideal nonconducting dielectric in the capacitor , 
with a resistance 

s R = 
ad 

(10-1) 

connected in parallel , a being the conductivity of the dielectric (Sec. 
4 .3 . 1 ) .  

Then , from Sec. 9 .9 .3 ,  

V ErEOd ad 1 =  VjwC + - = Vjw -- + V-. R s s 

T .\ 
l 

l a )  

(10-2) 

c R 

(b) 
Fig. 10-1.  A parallel-plate capacitor containing a lossy dielectric as in (a) is 
equivalent to an ideal lossless capacitor, in parallel with a resistance R, as in (b). 
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I\' 

\ '  

Fig. 10-2. The phasor I for the circuit o f  Fig,  10- 1 (b) . 

It is convenient to define Er differently and to rewrite this as follows : 

VjW (  E; - jE�)E()s1 VjWErE().W 
I = = -'-------'----"--

s s 
( 1 0-3) 

We have now extended the definition of the relative permittivity to 
include conduction: 

a 
E" == --r 

EoW ' ( \ 0-4) 

This new Er is the complex relative permittivity whose real part is the Er of 
Eq . 10-2. Note the negative sign before the imaginary part . The 
imaginary part E� pertains to the dissipation of energy as heat , and the 
real part E; to the storage of energy in the electric field. 

It is the custom to set 

(10-5) 

where I is the loss angle, and to call the ratio 

E" 
---7 = tan I 
Er 

(10-6) 

the loss tangent of the dielectric . 
Unless specified otherwise, the term relative permittivity, as in Table 

9- 1 ,  refers to the real part of E r' 
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Figure 10-2 shows the phasors V and I, the loss angle I, and the 
complementary angle e, known as the power-factor angle. 

* 10 . 1 . 2 The Frequency and Temperature Dependence of Er 
Generally speaking, E; decreases with frequency, as in Table 9-1 , 
whereas E� increases with frequency. This is only a rough rule of thumb 
because atoms and molecules exhibit resonances, especially above 1 
gigahertz. The frequencies that are used for dielectric heating range from 
a few megahertz to a few gigahertz. Domestic microwave ovens usually 
operate at 2.45 gigahertz . They act on the water molecules in food. 

A given dielectric can polarize through more than one of the processes 
described in Sec. 9 . 1, and the relative importance of a given process can 
vary with frequency. For example, water has a relative permittivity of 81  
in  an electrostatic field and 1 .8 a t  optical frequencies. The large static 
value results from the orientation of the permanent dipole moments , but 
the rotational inertia of the molecules prevents any significant response at 
optical frequencies .  Similarly, the relative permittivity of sodium chloride 
is 5 .9  in an electrostatic field and 2.3 at optical frequencies . The larger 
static value comes from ionic motion , which again is impossible at high 
frequencies . 

As a rule , the permittivity of a substance increases by a large factor 
upon melting. For example , the Er of nitrobenzene increases from 3 to 35 
at the melting point near 279 kelvins. In the solid, the permanent dipoles 
are frozen in the lattice and cannot rotate under the influence of an 
applied field. 

Observe that since Er is a function of frequency , it is strictly definable 
only for a pure sine wave. 

* 10 . 1 . 3  Anisotropy 

Crystalline solids commonly possess different dielectric properties in 
different crystal directions , because the ions can move more easily in 
some directions than in others. As a result, their susceptibility depends 
on direction , and P is not necessarily in the same direction as E. 

Then the x-component of P is of the form 

(10-7) 

and similarly for the other two components. All three components of P 
depend on all three components of E. The susceptibility thus has nine 
components and is a tensor. Actually, there are only six independent 
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components, and if one chooses the coordinate axes properly with respect 
to the crystal, these six components reduce to three. 

If the various components of the susceptibility are not functions of E, 
then P is a linear function of the components of E and the dielectric is 
linear. 

In anisotropic dielectrics, it is still true that 

D = lOoE + P, v . D = V . ( lOoE + P) = Pt, (10-8) 

but the three vectors are usually not parallel. 

*10 . 1 . 4  Ferroelectricity 

Ferroelectric dielectrics have the peculiar property of exhibiting spon
taneous polarization over microscopic crystalline regions called domains. 
The word ferroelectric originates from the fact that their behavior is in 
several respects similar to that of ferromagnetic substances (Sec. 21 . 1) .  
When placed in an electric field, domains that happen to be correctly 
polarized grow at the expense of neighboring domains and eventually 
coalesce . 

If the temperature of a ferroelectric substance increases slowly, the 
spontaneous polarization varies , usually in some complex fashion, and 

e 

O.OX P, 

- 0.06 

- 0.08 

Fig. 10-3. Hysteresis curve for a typical ferroelectric material .  Starting with an 
unpolarized sample and E = 0 at point a, an increase in E increases D to point b. 
Then decreasing E to zero leaves a residual D at c, etc. The value of D thus 
depends not only on the value of E, but also on the previous history of the 
specimen. 
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eventually disappears above the Curie temperature. This temperature is a 
characteristic of the material. 

The main advantage of the ferroelectric dielectrics in common use in 
ceramic capacitors is that they have large relative permittivities, ranging 
up to 10 ,000. As a rule, these dielectrics are compounds of titanium. 

Some ferroelectric dielectrics possess definite temperature coefficients 
that are useful in certain applications. 

* 10 . 1 .5 Hysteresis 

Ferroelectric materials also exhibit a property called hysteresis, illustrated 
in Fig. 10-3 . Then the ratio DIE depends on the previous history of the 
material. Such materials are thus said to be nonlinear because D is not 
proportional to E. 

The relative permittivity Er = D I EoE of a given ferroelectric sample 
thus has no definite value and can even be negative. When one quotes 
relative permittivities for ferroelectric materials, as we have done above 
and in Table 9-1 ,  one refers to the order of magnitude of D I EoE, some 
distance from the origin E = 0, D = 0, in the first and third quadrants. 

10 .2  THE CONTINUITY CONDITIONS AT AN 
INTERFACE 

10.2 . 1 The Potential V 
The potential V is continuous across the boundary between two media. 
Otherwise, a discontinuity would imply an infinitely large E, which is 
physically impossible. 

10 .2 .2  The Normal Component of D 
Consider a short imaginary cylinder spanning the interface, and of cross 
section .sti. as in Fig. 10-4. The top and bottom faces of the cylinder 
are parallel to the boundary and close to it. The interface carries a free 
surface charge density of. 

According to Gauss's law (Sec. 9.5) , the net flux of D coming out of 
the cylinder is equal to the enclosed free charge. Now the only flux of D 
is that through the top and bottom faces because the height of the 
cylinder is small . If now the area .sti. is not too large, D is approximately 
uniform over it, and then 

(10-9) 

where n is the unit vector normal to the interface and pointing from 
medium 2 to medium 1 .  
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Fig. 10-4. Imaginary cylinder straddling the interface between media I and 2 and 
delimiting an area s1. The difference D2n - Din between the normal components 
of D is equal to the free surface charge density oJ " 

As a rule , the boundary between two dielectrics does not carry free 
charges , and then the normal component of D is continuous across the 
interface . Thus the normal component of E is discontinuous. 

On the other hand, if one medium is a conductor and the other a 
dielectric, and if D is not a function of the time, then D = 0 in the 
conductor and D" = of in the dielectric. I f  D is a function of the time, Eg. 
10.9 still applies , but D is not zero in the conductor. 

10 .2 .3  The Tangential Component of E 

Consider now the path shown in Fig . 10-5 , with two sides of length L 
parallel to the boundary and close to it . The other two sides are 
infinitesimal . I f  L is short, E does not vary significantly over that 
distance , and integrating over the path yields 

(10-10) 

Now, from Sec. 3.4 this line integral is zero, and thus 

or ( 10- 1 1 )  

t The line integral o f  E ·  dl i s  zero i n  electrostatic fields. More generally, i t  i s  equal to 
minus the time derivative of the magnetic flux linking the path of integration , as we shall 
see in Sec. 23.4. However, since the enclosed area is zero, the flux is zero, and this equation 
is general. 
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Fig. 10-5. Closed path of in
tegration spanning the interface 
between media 1 and 2. The 
tangential components of E are 
equal : El( = E21• 

with n defined as above. The tangential component of E is continuous 
across any interface. 

10 .2 .4 Bending of Lines of E at an Interface 

The E and D vectors change direction at the interface between two 
different linear and isotropic dielectrics. In Fig. 10-6 , if there is zero free 
surface charge density, the continuity of the normal component of D 
requires that 

(10-12) 

or that 

(1O-l3) 
Also, from the continuity of the tangential component of E, 

Fig. 10-6. Lines of E crossing 
the interface between media 1 
and 2. The permittivity of 
medium 2 is larger than that of 
medium 1 .  
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( 10-14) 
Dividing the third equation by the second gives 

tan 81 tan 82 (10-15) 

The larger angle from the normal is in the medium with the larger 
permittivity. The lines of D "prefer" the medium with the higher 
permittivity. This rule does not apply to electrets. See Prob . 10-10. 

Since the normal component of E is discontinuous , there exists a 
bound surface charge density. From Gauss's law, 

( 10-16) 

For example, if medium 1 is air and medium 2 is a dielectric, then the 
bound surface charge density is negative if E points into the surface of 
the dielectric. 

10 .3  THE POTENTIAL ENERGY OF A CHARGE 
DISTRIBUTION IN THE PRESENCE OF 
D IELECTRI CS 

In Chap. 6 we calculated the energy stored in an electric field when the 
charges reside either on conductors or in free space. 

The addition of dielectrics to the field constitutes a major complication ,  
but the problem becomes tractable with the following assumptions. 

Our first two assumptions are realistic. ( 1 )  We assume that both the 
free and bound charge distributions are of finite extent. This makes the 
potential V equal to zero at infinity. (2) We assume that the dielectrics 
are linear (D is proportional to E), but not necessarily homogeneous or 
isotropic. 

We also assume that the dielectrics are fixed in position and rigid. In 
other words, the dielectrics do not distort under the electric forces. This 
assumption is not realistic, but we can do no better in the present 
context . 

10 .3 . 1  The Potential Energy Expressed in Terms of Pt and V 
At any point, 

V = -l- f Pt + Pb dv + _l_ J at + ab dsll, 4.1U'o v r 4.1fEo d r ( 10-17) 
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as in Sec. 9.4 .  Since all the dielectrics in the field are linear, by 
hypothesis, Pb is proportional to Pt and ab to at (Sec. 9.9 ,  examples) . 

We start with a zero charge density everywhere and gradually pull in 
charges from infinity. We disregard surface charges for the moment . Let 
the final potential and the final volume free charge density at a point be, 
respectively , V and Pt. At a given moment, the free volume charge 
density is aPt, where a increases gradually from zero to unity. 

Since 

(10-18) 

V is proportional to Pt. Thus the potential is aV when the charge density 
is aPt. 

Suppose that a increases to a + da. Then, at a given point, 

dPt = Pt da, dV = V da. ( 10-19) 

The energy required to pull in the extra charge is 

(10-20) 

where the volume v includes all the charges and where V (a + da /2) is 
the average potential during the operation. Disregarding the (da)2 term , 
we find that 

d'it; = f (PtV dv)a da, 
v 

'it; = (1 a daf PtV dv = !f PtV dv. � v v 

(10-21) 

(10-22) 

The potential energy stored in the field is thus equal to one-half of the 
volume integral of PtV, exactly as in Sec. 6. 1 .2 .  However, V now 
depends on the nature, shape , size, and position of the dielectrics 
situated in the field .  

Example THE DIELECTRIC-INSULATED 
PARALLEL-PLATE CAPACITOR 
A sheet of dielectric separates the plates of a parallel-plate 
capacitor . one of which is grounded . Then the energy required to 
charge the other plate to the potential V is QV /2, where Q = Cv. 



202 

Thus 
;g = QV = CV2 

2 2 '  

as in the first example in Sec. 6.4 
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( 10-23) 

For a given charge Q, the presence of the dielectric decreases V 
by a factor of En and hence decreases ;g by the same factor. 
However ,  C is proportional to Er and, for a given potential V, the 
stored energy is proportional to Er• 

10 .3 .2  The Energy Density Expressed in Terms of E and D 
Our thought experiment here will be similar to that of the starred Sec . 
6.2 . 1 .  

Assume that there i s  one and only one region where V i s  minimum, 
with vrnin ::; O. Similarly , there is one and only one region where 
V = Vrnax 2: O. The dielectrics are linear. 

Now imagine a conducting surface of area s'l along the equipotential 
V = Vrnin ' There is zero field inside. The conductor expands slowly , from 
one equipotential to the next, sweeping through the dielectrics and 
picking up the free charges that stand in its way. 

The conductor carries a free surface charge density a. At the surface , 
E is normal and its magnitude is equal to a/Eo, as in Fig. 10-7 . If the 
medium is not isotropic, D is not parallel to E. However ,  

a ds'l = D . d.sIJ, (10-24) 

from Gauss's law, D being zero inside the conductor .  
Say the element of area d.sIJ moves out by a distance dl as in the figure, 

dl being normal to the surface . Then the work done by the field on the 
charge a ds'l is 

Fig. 10-7. Thought experiment for calculating the energy stored in an electric 
field in the presence of dielectrics. The shaded volume of area .r4 is a conductor 
that expands slowly, from one equipotential surface to the next. The surface 
charge density is a. The element of area dd moves out by a distance dl. 
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d� = (add)(�) dl, 

the field acting on add being E/2, from Sec . 6 .5 .  So 

E D · E D · E  d� = D . d.sIJ - dl = -- ds'i dl = -- dv. 
2 2 2 
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( 10-25) 

(10-26) 

The conducting surface continues to expand until it reaches the 
equipotential V = Vrnax• In the end, it has swept through all space , the 
free charges have been either removed to infinity or canceled by the ad
dition of opposite charges on the conducting surface , and E is zero 
everywhere. 

Thus the total work done by the field is 

� =  i �E · D dv .  (10-27) 

and the energy density is 

(10-28) 

If the dielectrics are linear and isotropic, D = ErEoE and 

(10-29) 

The energy density is then ErEoE2/2. This integral extends over all the 
volume occupied by the field. 

Example THE DIELECTRIC-INSULATED 
PARALLEL-PLA TE CAPACITOR 

Returning to the capacitor of the example in Sec. 10 .3 . 1 ,  we find 
that, for a given E, its stored energy is proportional to En as 
previously. As usual, we have neglected edge effects. 

1 0 . 3 . 3  The Energy Density Associated with Polarization 

Since 

'fn' = �E . D = �E . (EoE + P) = �EoE2 + 1E . P, (10-30) 
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the energy density associated with the polarization alone is E . P/2. 
In isotropic dielectrics, 

(10-31 )  

I n  most common dielectrics, the electric susceptibility Xe ranges about 
from 1 to 4 , and most of � is polarization energy . 

10 .4 ELECTRIC FORCES IN THE PRESENCE OF 
DIELECTRICS 

Electric forces between conductors in the presence of dielectrics are best 
calculated by the method of virtual work, as in Section 6.6. 

When the conductors are immersed in a dielectric, the forces are 
smaller than those in air by a factor of E, if the charges are the same. 
They are larger by the same factor if the electric fields, and hence the 
voltages, are the same. 

The case of solid dielectrics is best illustrated by Probs. 10- 1 3  to 10-15. 

10 .5  SUMMARY 

Although some dielectrics are close to ideal , most exhibit a more 
complex behavior. If the conductivity a of a dielectric is not negligible, 
then its complex relative permittivity is 

a 
E" = -r • EoW (10-4) 

Generally speaking, E; decreases with frequency and E� increases. 
Temperature effects can be large. 

Some dielectrics are nonisotropic. Then each component of P depends 
on the three components of E, and the susceptibility is a tensor. 

Ferroelectric dielectrics exhibit large permittivities and hysteresis : the 
value of D depends on the previous values of E. 

At the interface between any two media, both V and the tangential 
component of E are continuous. The normal component of D can be 
discontinuous , however, the discontinuity being equal to the free surface 
charge density on the interface . 

Lines of E bend at an interface, the larger angle from the normal being 
in the dielectric with the larger permittivity. 
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The potential energy stored in a charge distribution, when dielectrics 
are present, is given either by 

(10-22) 

where v is any volume containing all the free charges of the system, or by 

� =  i �E · D dv, (10-27) 

where v now includes all the regions where the E of the charge 
distribution exists. For linear and isotropic dielectrics, 

(10-29) 

One may therefore ascribe to an electric field an energy density E . D /2 
or, for linear and isotropic dielectrics, ErEoE2/2. The energy density 
associated with the polarization itself in a dielectric is E • P/2 or XcEoE2/2 
if the dielectric is isotropic and linear. 

PROBLEMS 

10-1 .  (10. 1. 1) Parallel-plate capacitor with a conducting dielectric 
Note : In this problem we call a surface charge density Och and a 

conductivity 0co . 
The dielectric of a parallel-plate capacitor has a relative permittivity Er 

and a conductivity Oco . The conductivity of the dielectric is much less than 
that of the plates, which makes E uniform between the plates. 

(a) Assume surface charge densities Och on the plates, and use Gauss's 
law to relate E to 0ch. Then show that the impedance of the capacitor is the 
same as that of a resistor and a capacitor in parallel. 

(b) Show that when the capacitor is disconnected, the charge on the 
capacitor decreases by a factor of e in E / Oco seconds. This is the relaxation 
time of the capacitor. 

10-2. (10. 1. 1) Parallel-plate capacitor with two conducting dielectrics 
The dielectric of a parallel-plate capacitor is made up of two parts, as in 

Fig. 10-8. 
(a) Find the impedance Z. 
(b) Call a conductivity Oco and a surface charge density 0ch. Calculate the 

surface charge density on the interface. 

10-3. (10. 1. 1) Parallel-plate capacitor with a nonuniform dielectric 
A parallel-plate capacitor has plates of area s1 separated by a distance s. 
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'V +  
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Area .s1 eTchl 

- Urhl 

Fig. 10-8. 

Its dielectric has a conductivity a = a + bx, where x is the distance to one 
plate , and a uniform relative permittivity Cr' 

(a) Calculate the resistance R of the capacitor. 
(b) Show that with a steady voltage V applied to the electrodes, there is 

a uniform volume density of free charge. 
(c) Sketch lines of E for b > O. The field is not uniform. 
(d) With an alternating voltage across the electrodes, 

Show that V ·  Jt = au ax = O. Then Jt is independent of x. 
(e) Show that E = U(a + bx + jwcrco). 
(f) Now find the impedance Z = V /1. The real part of Z is not the R that 

we found above. However, if W = 0, we revert to R, as expected . See Prob. 
1O- l .  

(g) Find Pl' 
10-4. ( 10. 1 . 4) Ceramic capacitor 

One particular ceramic capacitor is cylindrical ,  with three electrodes as in 
Fig. 10-9. The ceramic disks each have a diameter of 21 millimeters and a 
thickness of 0.5 millimeter. The nominal capacitance is 0.05 microfarad 
within a range of -20% to +80% . What is the approximate value of cr? 

Fig. 10-9. 
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10 .5 .  ( 10. 1. 4 )  The hysteresis curve of a ferroelectric material 
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Fig. 10-10. 

Figure 10-10 shows a schematic diagram of an instrument that has been 
used to plot the hysteresis curves of ferroelectric materials. An oscillator 
applies an alternating voltage V to two capacitors in series, the parallel
plate capacitor Cx containing the material and a normal capacitor C »  C. 
The voltage across C goes to the Y input of an XY recorder, while the 
voltage across R2 « R I goes to the X input. The ferroelectric sample is a 
few millimeters thick, and V = 10 kilovolts, f = 10- 2 hertz. 

Explain why the voltage across C is proportional to the D in the sample 
contained in C" while that across Rz is proportional to E. The recorder 
draws essentially zero current at its X and Y terminals. 

10-6. ( 10. 1 . 5) The stored energy density in a nonlinear dielectric 
A parallel-plate capacitor whose dielectric is nonlinear is connected to a 

power supply. The voltage V increases slightly by dV, and an extra charge 
dQ flows into the capacitor. Show that the density of stored energy 
increases by E dD. 

10-7. (10. 1. 5) Hysteresis in ferroelectric materials 
Show that the area of the hysteresis loop for a ferroelectric material is 

equal to the energy dissipated per cubic meter and per cycle. 

10-8. ( 10. 2) The boundary conditions at the interface between two conductors 
Show that, at the interface between two conductors, 

(EI - E2) X Ii = 0, ) 
• dOch (JI - J2 X n  = -- , 

dt 

where Ii is a unit vector that is normal to the interface and points away from 
conductor 1 ,  and where Och is the surface charge density on the interface. 

10-9. (10. 3. 1) Capacitive energy storage for a small vehicle 
Investigate the possibility of propelling a small vehicle with an electric 

motor fed by a charged capacitor. Consider only the problem of energy 
storage. 

(a) Show that the maximum energy density in the dielectric of a 
parallel-plate capacitor is fa2/2, where a is the dielectric strength of the 
insulator, or the maximum E before breakdown. A good dielectric to use 



208 

Fig. 10-11. 

would be Mylar , which has a dielectric strength of 1 . 6  x 108 volts/meter 
when in the form of thin sheets and a relative permittivity of 3 .2 .  The 
energy density would be about 10 times less with electrolytic capacitors. 

(b) Calculate the energy density and the approximate size and mass of 
the capacitor that you would need to operate a I-kilowatt motor for 1 hour. 

10-10. ( 1 0. 2.4 )  The bar electret 
Figure 9-4 shows the E and D fields of a bar electret. 
(a) Show that the lines of E do not bend at the cylindrical surface, but 

that the lines of D do bend. 
(b) Show that the inverse is true at the end faces. 

10- 1 1 .  ( 1 0. 3.2 )  The potential energy of a dipole situated in an electric field 
(a) A dipole of fixed dipole moment p orients itself in a uniform electric 

field E. Show that its potential energy is -pE, assuming that the potential 
energy is zero when the dipole axis is perpendicular to the field. 

(b) A nonpolar molecule acquires a dipole moment in a uniform electric 
field that gradually increases from zero to E. Show that its potential energy 
is +pE/2. 

10-12.  ( 1 0. 3.2)  An accelerator for neutral molecules 
There exist accelerators for neutral molecules that operate as follows. 

Figure 10- 1 1  shows a pair of spheres that carry charges + Q  and - Q, and a 
molecule of dipole moment p. The molecule accelerates toward the spheres 
until it reaches their midpoint .  At that instant the spheres are discharged, 
and the molecule continues on its way at a constant velocity. Such 
accelerators serve to study the processes that occur during molecular 
collisions. 

(a) Find the kinetic energy acquired by the molecule if the distance x in 
the figure is initially much larger than the distance D between the pair of 
electrodes. Consider the spheres as point charges, and apply the principle 
of conservation of energy. Assume that p is constant, and refer to Prob. 
10- 1 1 .  The dipole moment in fact increases as the molecule approaches, so 
that we have underestimated the energy. 

(b) In one particular accelerator the electrode voltages are ±40 kilovolts, 
their radius is 0.25 millimeter, and D = 1 .00 millimeter. Calculate the 
approximate value of the kinetic energy of a molecule in electronvolts for 
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Fig. lO-U. 
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v 

(3) 

p = 2 X 10-29 coulomb-meter and for 700 stages. That accelerator has a 
length of 10 meters. 

10-13 .  ( l0. 4 )  Electrostatic clamps 
Electrostatic clamps are used for holding workpieces while they are being 

machined, for holding silicon wafers during electron beam microfabrica
tion, etc. They comprise an insulated conducting plate maintained at a 
potential of several thousand volts and covered with a thin insulating sheet. 
The workpiece or the wafer rests on the sheet and is grounded. It is 
advisable to apply a film of oil to the sheet to prevent sparking. 

One particular type operates at 3000 volts and has holding power of 2 
atmospheres (2 x 105 pascals). If the insulator is Mylar (E, = 3.2) ,  what is 
its thickness? 

10-14. ( 10. 4 )  Self-clamping capacitor 
A certain capacitor consists of two polished circular aluminum plates, 237 

millimeters in diameter, separated by a sheet of plastic 0.762 millimeter 
thick, with a relative permittivity of 3 .0 .  Thin films of air subsist between 
the electrodes and the plastic. This reduces the capacitance below the rated 
value, and there is no way of clamping the plates mechanically with 
sufficient force . 

(a) Someone suggests that the electric force alone might be sufficient to 
clamp the plates, at the operating voltage of 60 kilovolts. What is your 
opinion? 

(b) Show that , if the complete capacitor is submerged in an oil with 
E, = 3, the force is 3 times less. See the next problem. 

10-15.  ( 10. 4 )  The clamping force, with and without an air film 
In Prob. 10-14 we found that the electric clamping force on a capacitor is 

larger by a factor of E, when there are air films between the electrodes and 
the dielectric, for a given applied voltage, or a given E. This is paradoxical. 
For a given E, the energy density is E, times larger in a dielectric than in 
air. Then the force should be E, times larger when there are no air films. 

You can explain this paradox by considering the three capacitors of Fig. 
10-12.  In (2) the air film is much thinner than the dielectric. The electrode 
spacing is s in all three capacitors. For each case find the surface charge 
densities a on the electrodes as well as D, E, and ';g in the air and in the 
dielectric. 
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10-16. (l0. 4) Electric forces. with and without a dielectric 
Electric forces on conductors immersed in liquid dielectrics are larger 

than in air by the factor Er if the voltages are the same . They are smaller 
than in air by the same factor Er if the charges are the same. Can you justify 
these general statements? 

This is not in contradiction with Probs. 10- 14 and 10-15 ,  where we had a 
solid dielectric with thin films of air or oil next to the electrodes. 



CHAPTER 1 1  
ELECTRIC FIELDS IX 
Images. Laplace 's Equation m 

Rectangular Coordinates 

1 1 . 1  THE UNIQUENESS THEOREM FOR ELECTROSTATIC FIELPS 2 1 1  

* 1 1 . 2  IMAGES 2 1 2  

Example: POINT CHARGE NEAR A GROUNDED CONDUCTING 

PLATE 212  

Example: POINT CHARGE NEAR A DIELECTRIC 213  

* 1 1 .3 SOLVING LAPLACE'S EQUATION I N  RECTANGULAR 

COORDINATES 215 

Example: THE FIELD BETWEEN TWO GROUNDED SEMI-INFINITE 

PARALLEL ELECTRODES TERMINATED BY A PLANE ELECTRODE 

MAINTAINED AT A FIXED POTENTIAL; FOURIER SERIES 218  

1 1 .4 SUMMARY 221 

PROBLEMS 223 

Up to this point we have limited our discussion of electric fields to 
general considerations and to simple charge distributions. We now 
address the calculation of more complex fields, both in this chapter and in 
the next one. That will complete our study of purely electric fields. 

1 1 . 1  THE UNIQUENESS THEOREM FOR 
ELECTROSTATIC FIELDS 

According to the uniqueness theorem for electrostatic fields, there cannot 
exist more than one potential vex, y, z) that satisfies both Poisson's 
equation and a given set of boundary conditions. This theorem is 
important because it leaves us free to use any method , even intuition, to 
find V. If we can, somehow, discover a function Vex, y, z) that meets 
these two requirements, then it is the only possible potential function . 

Several proofs of this theorem are known, each one based on its own 
particular set of assumptions. We simply assume that the uniqueness 
theorem always applies. 
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* 1 1 .2 IMAGES 

If an electric charge distribution lies in a uniform dielectric that is in 
contact with a conducting body, then the method of images often 
provides the simplest route for calculating the electric field. The method 
is best explained by examples such as the two given below, but the 
principle is the following. 

Call the charge distribution Q, the dielectric D, and the conductor C. 
One replaces C, on paper , by more dielectric D I and by a second charge 
distribution Q I such that the original boundary conditions are not 
disturbed.  Then the field in D is left undisturbed , according to the 
uniqueness theorem. The charge distribution Q I is said to be the image of 
Q. Of course, the dielectric D can be simply air or a vacuum. 

If the charge distribution Q lies in a uniform dielectric DI that is in 
contact with a second dielectric D2, then we can calculate the fields in 
both D1 and D2 in a similar fashion, as we shall see in the second example 
below. 

Example 

Q 
D 

POINT CHARGE NEAR A GROUNDED 
CONDUCTING PLATE 

Figure 1 1- l (a) shows a point charge Q situated at a distance D 
from a large grounded conducting plate . t 

( a )  

1 "-
I (J 

Qj L� ===c,� D I D  
I 
I 
I 

( h i  

Fig. 11-1. (a)  Point charge Q near a large, grounded, conducting sheet. (b) We 
have replaced the conducting sheet by the image charge - Q. The field to the le ft 
of the dashed line is unaffected. 

t The earth carries a negative charge, and near the surface the electric field strength is 
about 100 volts/meter. However, the field of Q is independent of the field of the earth. 
according to the principle of superposition. 
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Fig. 11-2. Lines of E (arrows) and equipotentials for the field of Fig. 1 1-1 (a). 
Equipotentials near the charge get too close together to be shown. Rotating the 
figure about the horizontal axis of symmetry generates equipotential surfaces. 

Example 

Clearly, if we remove the plate and add an image charge -Q at 
a further distance D as in Fig. 1 1-1(b) , then every point in the 
plane formerly occupied by the plate will be equidistant from 
the two charges and will thus be at zero potential. So the field in 
the region to the left of the position formerly occupied by the 
plate is the same in both figures. 

This is remarkable .  The image provides a trivial solution to a 
problem that would, otherwise, be rather difficult. 

Figure 1 1-2 shows the lines of E and the equipotentials. 

POINT CHARGE NEAR A DIELECTRIC 

Our point charge Q now lies in air close to a large block of 
dielectric as in Fig. 1 1-3. We wish to know E on both sides of the 
interface. 

We could calculate E without using images in the following way. 
The field of Q polarizes the dielectric , and a bound surface charge 
density ab appears on the interface. Then the E at any point on 
either side of the interface is the same as if one had the point 
charge Q and the sheet of bound charges of density ab situated in 
a vacuum. As we shall see, it is simple enough to find abo But then 
calculating E would be rather awkward . The problem is much 
easier to solve with images. 

We first calculate the value of the normal component of E next 
to the interface and on both sides of it. It is this normal 
component, En, that we shall use as a boundary condition. In the 
process, we shall find abo 

The part of En that is ascribable to Q is [Q/(4.7r1'or2)](D /r). This 
field is the same on the two sides of the interface, as in Fig. 1 1-3. 
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Fig. 11-3. Point charge Q near a large block of dielectric. The 
arrows for the fields are oriented on the assumption that both Q 
and Ob are positive . If Q is positive, 0b is ,  in fact , negative . 

From Gauss's law, Ob provides equal normal field strengths 
Ob/2Eo on either side of the interface , oriented as in the figure. We 
shall find that the sign of 0b is opposite that of Q. 

Therefore , just inside the dielectric, the normal component of E 
pointing to the right is 

(1 1-1) 

Now, from Eqs. 9-4 and 9-28, 

0b = p .  ii = P" = - Eo(E, - l)E"" ( 1 1-2) 

where the unit vector ii is normal to the interface and points left. 
Therefore 

(E, - l )QD 
2n(E, + 1)r3 ' 

As expected, Q and Ob have opposite signs. 

( 1 1-3) 

If we take the right-hand direction as posItIve, the normal 
components of E outside and inside the dielectric, respectively , 
are as follows: 

( 1 1-4) 

( 1 1-5) 
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(1 1-6) 

(1 1-7) 

Since ErEn; = Eno, the normal component of D is continuous 
across the interface . This was to be expected because the free 
surface charge density is zero. 

Thanks to the uniqueness theorem and to images, our problem 
is nearly solved. 

The Field on the Left of the Interface 

(a) The boundary condition is stated in Eqs. 1 1-4 and 1 1-5. 
From Eq. 1 1-4, we can remove the dielectric and replace it by an 
image charge Q' ,  as in Fig. 1 1-4(a) , without disturbing Eno. Then, 
from the uniqueness theorem, the field everywhere on the left of 
the interface is simply the field of Q plus that of Q' .  

(b) Now, according to Eq .  1 1-5, Eno i s  also unaffected i f  one 
removes the dielectric and replaces Q by a charge 

Q" = � Q. 
Er + 1 

( 1 1-8) 

But then we have modified the charge distribution , and hence the 
field , in the region we are interested in. So the correct equivalent 
field is that of Fig. 1 1-4(a) . 

The Field on the Right of the Interface 

(a) From Eq. 1 1-6, En; is the same as if one had, instead of Q 
and the dielectric, the charge Q and a charge - Q '  at a distance D 
to the right of the interface. This is of no interest because this 
changes the field on the right. 

(b) From Eq.  1 1-7, the field on the right of the interface is the 
same as if there were no dielectric and a charge Q" were substituted 
for Q, as in Fig. 1 1-4(b). 

(c) Figure 1 1-4( c) shows another possibility: the dielectric 
extends on both sides of the interface , and QIII replaces Q. 

Figure 1 1-5 shows lines of D and equipotentials for this field. 

* 1 1 .3 SOLVING LAPLACE'S EQUATION IN 
RECTANGULAR COORDINATES 

Solutions of Laplace's equation V2V = 0 are known as harmonic func
tions. These functions possess a number of general properties , of which 
we shall use the following one. If one can find solutions V1 , V2 , V" . . .  of 
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Fig. 11-4. (a) The field on the left of the interface of Fig. 1 1-3 is the same as that 
of this pair of charges. (b) ,  (c) The field on the right of the interface is the same 
as that of either of these two arrangements. 

Laplace's equation, then any linear combination A j  Vj + A2 V2 + 
A3 V3 + . . .  , where the A 's are constants , is also a solution. This becomes 
obvious upon substituting the sum into the original equation. 

As a rule , one can solve Laplace's equation by separating the variables. 
For example , in Cartesian coordinates , one can seek solutions of the 
form 

v = X(x)Y(y)Z(z) ,  ( 1 1 -9) 

where X is a function of x only , Y a  function of y only, and Z a function 
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Fig. 11-5. Lines of D (arrows) and equipotentials for a point charge situated near 
a dielectric. Rotating the figure about the horizontal axis of symmetry generates 
equipotential surfaces. The figure does not show equipotentials near the point 
charge . 

of z only. Substituting into Laplace's equation yields 

( 1 1- 10) 

Dividing by XYZ gives 

( 1 1- 1 1 )  

where the first term depends solely on x ,  and similarly for the other two 
terms . 

Since these three terms add to zero at any point in the field, each one is 
equal to a constant and 

( 1 1 - 12) 

with 
( 11-13) 

We have now separated the variables. Solving the three equations 
separately yields X. Y. Z. and thus V. 
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Observe how astute this is: we have transformed a partial differential 
equation in all three variables x, y, z into three simple ordinary 
differential equations in x, and y, and z.  

Sometimes , as in the example below, one has to sum an infinite 
number of such solutions, each multiplied by a suitable coefficient, to fit a 
given boundary condition. 

* Example THE FIELD BETWEEN TWO GROUNDED 
SEMI-INFINITE PARALLEL ELECTRODES 
TERMINATED BY A PLANE ELECTRODE 
MAINTAINED AT A FIXED POTENTIAL;  
FO URIER SERIES 
Figure 1 1 -6 shows the electrodes. We wish to find Vex, y)  between 
the plates. By hypothesis, the field is independent of z and C3 = o. 
Then 

d2
X - = eX 

dx2 , ( 1 1 -14) 

We have substituted e for C1 and -e for C2 to avoid square 
roots in the solution . As we shall see immediately, C2 must be 
negative. 

We solve the Y equation by setting 

Y = A sin ky + B cos ky, ( 1 1-15) 

where A and B are constants. This solution is easily verified by 
substitution. 

Now V must satisfy the following boundary conditions: ( 1 )  
V = 0 at  x = 0, y = b ;  (2) V = Va at  x = 0; (3) V � 0 as  x � Xl .  

Since V = 0 at  y = 0, then B = o. 
Also, the condition V = 0 at y = b requires that 

So 

kb = nn, 
nn 

k = 
b 

nny 
Y = A sin b 

(n = I , 2, 3, . . .  ) . 

(n = 1 ,  2, 3, . . .  ) . 

(1 1- 16) 

( 1 1 - 17) 

We ignore the value n = 0 because it corresponds to zero field . 
The differential equation for X is now 

and 

d2X 
= 
(nn) 2 

dx2 b 
X, 

nnx ( nnx) 
X = G exP b + H exp - b  ' 

(1 1-18) 

( 1 1- 19) 
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y 

v: 

Fig. 11-6. Grounded , plane ,  parallel, and semi-infinite electrodes 
terminated by a plane electrode at the potential Vo. 

where G and H are constants of integration. We can again verify 
this solution by substitution .  Since V tends to zero as x tends to 
infinity, G = O. Thus 

( 11-20) 

where C is another constant. 
But this is not right !  Although this V satisfies conditions (1) and 

(3) , it clearly does not satisfy condition (2) . We can also satisfy 
condition (2) by adding an infinite number of such solutions: 

� . nny ( nnx) 
V = .6 Cn Sill -- exp - -- . 

n� l  b b 
( 1 1-21 ) 

Then we use condition (2) to evaluate the coefficients C by setting x = O. So 

for all y between 0 and b. 
An infinite series of the form 

� ( . nny nny) 
.6 Cn Sill -- + Dn cos -- , 

n � O  b b 

( 1 1-22) 

where Cn and D" are constants, is a Fourier series and forms a 
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complete set: given a reasonably well-behaved' function V(y) 
defined in the interval y = 0 to y = b ,  there exists a Fourier series 
that is equal to V (y) in this interval . l  

We can find the values o f  the Cn coefficients b y  an ingenious 
technique devised by Fourier. First, we multiply both sides of Eq. 
1 1-22 by sin (pOLy/b), where p is an integer, and then we integrate 
from y = 0 to y = b :  

. pny . nny . pny lb � fb Va SIO -
b 

dy = 2: C SIO -
b 

SIO -b'  dy. 
(J n = t  (J 

On the left-hand side,  

b { 2b V;1 
. pny --f V;) slO -- dy = pn 

() b 
0 

if P is odd 

if P is even. 

( 1 1-23) 

( 1 1-24) 

The terms of a Fourier series are thus said to be orthogonal. On 
the right, 

b { 0 
. nny . pny 1 C" SIO -' slO b dy = Cnb 

() b 
2 

It follows that 

if n is odd 

if n is even.  

Finally, 

if p =l= n  

ifp = n. 
( 1 1 -25) 

( 1 1-26) 

( 1 1 -27) 

The successive terms in the series become progressively less 
important , because of the factor l /n, but mostly because of the 
exponential function. Figure 1 1 -7 shows the degree of approxima
tion achieved with L 3, 10 ,  and 1 00 terms of the series. 

Note how fast the exponential function decreases with x. For 
11 = 1 and x = b it is down to exp ( - n) , or 4% . Roughly speaking, 
the field of the charged plate does not penetrate in the x direction 
beyond a distance equal to the spacing b between the plates. 

Notice also how fast the exponential decreases with n. For n = 1 
and x = b it is 0 .04, but for n = 2 and x = b it is 0.002 . This means 

t By a "reasonably well-behaved" function . we mean one that is continuous. or at least 
piecewise continuous, and that does not become infinite at any point. Most boundary 
conditions encountered in practice possess these characteristics. 

+ Except possibly at the endpoints y = 0 and y = b, but this discrepancy between V and 
the Fourier series is usually unimportant in practice. 
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Fig. 11-7. The condition V = �J at x = 0, as satisfied by a Fourier series by taking 
(a) only the first term, (b) the first 3 terms, (c) the first 10 terms, and (d) the first 
100 terms. The fit improves as the number of terms increases, but the spikes at 
y = ° and y = b, where V is discontinuous , remain . This is the Gibbs 
phenomenon. 

that V (y / b) rapidly becomes a sine curve, with increasing x. 
Figure 1 1-8 shows the equipotentials. 

1 1 . 4 SUMMARY 

The uniqueness theorem states that , for a given set of boundary 
conditions, there is only one possible field .  This theorem is of enormous 
practical importance. If, somehow, one can find a Vex, y, z )  that satisfies 
both Laplace's (or Poisson's) equation and the given boundary condi
tions, then it is the correct potential function. 

The method of images can often simplify the calculation of electric 
fields that involve interfaces between different media. It consists in 
setting up, on paper, a different field on the other side of the interface , 
with fictitious, or image , charges. 

Solutions of Laplace's equation 17'2 V = 0 are termed harmonic func
tions. It is often possible to reduce Laplace's equation to a set of three 
independent, ordinary differential equations , one for each coordinate . 
Then V is of the form 

Vex, y, z )  = X(x)Y(y)Z(z) ,  ( 1 1 -9) 



222 

Fig. 11-8. Three-dimensional plot of the potential V for the field of Fig. 1 1-5. The 
U-shaped curves are equipotentials; the others show the intersections of the 
potential surface with planes parallel to the xV -plane. 

where X is a function of x alone , etc. This operation is called separating 
the variables. 

For certain fields one can fit the boundary conditions only by summing 
an infinite number of harmonic functions. We used a Fourier series 

� ( . nJrY nJrY) r�l C sm b + Dn cos b ' 

where e" and D" are constants. 

PROBLEMS 

1 1-1 .  ( 1 1. 1 )  The uniqueness theorem 
According to this theorem, the Poisson equation V2 V = -p,/Eo can have 

only one solution if the potential V is defined at the boundaries of the field. 
Show that two solutions can differ at most by a constant if the normal 

component of VV is defined at the boundaries. 

1 1-2. ( 1 1 . 2) Point charge above a conducting plate 
A point charge Q lies at a distance D above a grounded conducting plate . 
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(a) Calculate the surface charge density induccJ on the plate as a 
function of the radius r from the foot of the perpendicular drawn from the 
charge. 

(b) Show that the total induced charge is - Q. 

1 1 -·3 .  ( 1 1 .2) Line charge near a conducting plate 
A line charge of ). coulombs/meter is parallel to a flat conducting plate, 

at a distance a, as in Fig. 1 1-9. Find E at a point (x, y). The surface charge 
density on the plate is given by EoE at (x, 0). 

1 1-4. ( 1 1 .2) The field of a charge inside a hollow conducting sphere 
A hollow conducting sphere of radius a contains a point charge Q at the 

radius b as in Fig. 1 1-10. 
(a) Show that the field inside the sphere is the same as if there was no 

sphere and, instead, a charge Q' = -(a/b)Q at D = (a/b)a. You can prove 
this by showing that the V of Q plus Q '  is uniform over the surface of the 
sphere. 

(b) Calculate the force of attraction. 
( c) Calculate the surface charge density on the inside surface of the 

conducting sphere. 

1 1 -5 .  ( 11 .2 )  The field of a point charge near a block of dielectric 
Show that the potential at the surface of the dielectric, opposite Q in Fig. 

1 1 -3, is the same, whether one calculates the field in air, as in Fig. 1 1-3(a), 
or in the dielectric, as in Fig. 1 1-3(c) . Set E, = 3. 

1 1-6. ( 11 .3)  Solutions of Laplace's equation can be of the form X(x) + Y(y) + 
Z(z) 

Show that there exist solutions of Laplace's equation that are of the form 
X(x)  + Y(y) + Z(z). 

1 1 -7. ( 11 .3)  The function 1/ r and its derivatives are solutions of Laplace's 
equation 

(a) Show that V2 ( l/r) = 0. 
(b) Use this fact to show that 

a 1 
ax r' 

a2 1 
ax2 r' 

are also solutions of Laplace's equation . 

+ 

(/ 

a2 1 
ax ay r 

Fig. 11-9. 
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I ,  

o Q'  

Fig. 11-10. 

1 1-8. ( 11 .3)  The field of Fig. 1 1-6 
Plot exp ( -mrx/b) as a function of x /b from x /b = 0 to 1 and for n = 1, 

2, and 3. 

1 1-9. ( 1 1. 3) The field of Fig. 1 1-6 
Plot V / Vo as a function of y / b for the field of Fig. 1 1-8 for x = 0, 

x = O. Sb, and x = b, up to n = 100. You can truncate the series when 
exp ( -nnx/b) is less than 0.01 . 
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In this last chapter on electric fields we shall see how to solve Laplace's 
equation in spherical coordinates. This will require the Legendre 
polynomials that we discussed in the starred Sec. 5 .4 . 1 .  Then we shall 
deduce and discuss briefly Poisson's equation for E, which leads to an 
integral for E that is strangely different from the one that follows from 
Coulomb's law. 

12 . 1 SOLVING LAPLACE'S EQUATION IN 
SPHERICAL COORDINATES . 
LEGENDRE'S EQUATION 

Some electric fields are best treated in spherical polar coordinates. 
Solutions of Laplace's equation expressed in these coordinates are known 
as spherical harmonic functions. 

We limit ourselves to fields possessing axial symmetry and therefore to 
fields that are independent of the azimuthal angle qy. Then Laplace's 
equation takes the following form : 
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� (r2 aV) + _._
1 _ � (Sin e av) = O. (12- 1 )  ar ar Sin e ae ae 

To separate the variables as  in  Chap. 1 1 ,  we set 

v = R(r)8( e) , ( 12-2) 

where R is a function of r only and 8 a function of e only . Then, by 
substitution, 

a ( 2 aR) R a ( . a8) 8 ar r a; + sin e ae Sin e ae = o. 

Dividing by R8, we get 

1 d ( 2 dR) 1 d ( . d8) -- r - + - Sin e - = 0 R dr dr 8 sin e de de . 

( 12-3) 

(12-4) 

We have now written total instead of partial derivatives because R and 8 
are each functions of a single variable . 

The second term is independent of r. Then the first term is also 
independent of r and is equal to a constant: 

Then 

� � (r2 dR) = k. 
R dr dr 

__ 
1_ � (sin e _d

8
_
� ) = - k 

8 sin e de de ' 

since the sum of the two constants must equal zero . 

( 12-5) 

( 12-6) 

Let us examine the R equation first . Multiplying both sides by R and 
differentiating the term enclosed in parentheses , we have that 

( 12-7) 

The solution of this equation is of the form 

( 12-8) 
with 

n(n + 1) = k, ( 12-9) 

as you can check by substitution. 
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Rewriting the 8 equation yields 

Now set 

d ( d8) - sin e - + n(n + 1 )8 sin e = o. de de 

f..l = cos e, 

remembering that, for any function f(f..l ) ,  

df df df..l . df 2 1/2 df -=--= -Sin e-= -( 1 - f..l ) - .  de df..l de df..l df..l 

Then the 8 equation becomes Legendre's equation : 

d [ d8 ] - (1 - f..l2) - + n(n + 1)8 = O. df..l df..l 
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(12-10) 

( 12- 1 1) 

(12-12) 

( 12- 13) 

When n is an integer, its solutions are the Legendre polynomials of Sec. 
5 .4 . 1 :  

( 12-14) 

We shall use the following property of the Legendre equation. Since 

n(n + 1 )  = n '(n ' + 1 ), if n ' = - (n + 1) ,  ( 12-15) 
then 

P -("+ l)(cos e) = P,, (cos e). ( 12- 16) 

It follows that, for every solution of Laplace's equation of the form 

(12-17) 

there exists another one of the form 

( 12- 18) 

Observe that this result is in agreement with Eq . 12-8. 
So the general solution of Laplace's equation for fields possessing axial 

symmetry is 

v = 2: (A/' + B"r-(n + l »Pn(cos e). (12-19) 
n = O  
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Table 12-1 Solutions of Laplace's equation in spherical polar coordinates for fields 
possessing axial symmetry 

n 

o 
1 

2 

3 

4 

5 

,npn (cos fJ)  

' cos () 

2 (3 coso fJ - 1 )  
, 

2 

3 (5 cos3 fJ - 3 cos fJ) 
r 2 

4 (35 cos4 () - 30 cos2 fJ + 3) , 1\ 
5 (63 cos' () - 70 cos} fJ + 1 5  cos 8) 

, 
8 

,- 1 

,-2 COS fJ 

-3 (3 coso fJ - 1 )  , 2 
_ 4 (5 cos3 () - 3 cos fJ)  , 2 
_, (35 C054 () - 30 coso () + 3) 

, 
8 

fi (63 cos' fJ - 70 cos3 () + 15 cos fJ)  
,-

8 

Table 12- 1  shows the first six terms. 
This series is analogous to a Fourier series (example , Sec. 1 1 . 3) in the 

following ways. First, the expressions under the summation sign form a 
complete set :  the series can satisfy any reasonably well-behaved bound
ary condition exhibiting axial symmetry. Second, 

if m * n  +1  { 0 L Pm(COS 8)Pn (cos 8) d(cos 8) = _2_ 
1 2n + 1 if m = n .  

(12-20) 

Legendre polynomials are thus orthogonal. Third, we can use this 
orthogonality to calculate the values of the An and Bn coefficients . 

Example UNCHARGED CONDUCTING SPHERE IN A 
PREVIOUSLY UNIFORM ELECTRIC FIELD 

An insulated and uncharged conducting sphere is situated in a 
previously uniform electric field Eo. This applied field originates in 
remotely situated charge distributions that are unaffected by the 
presence of the sphere. 

At any point in space, either inside or outside the sphere , 
E = Eo + Ei, where E, is the field of the charges induced on the 
sphere . The induced charges arrange themselves so as to render 
the net field inside equal to zero. 

We calculate the field outside the sphere by solving Laplace's 
equation in two different ways. 

(a) We first use spherical polar coordinates, with the origin at 
the center of the sphere and the polar axis along Eo. The 
boundary conditions are then as follows: 
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(2) Vr�� = - Eoz = - Eor cos e. (12-2 1)  

From boundary condition 1 and from Eq , 1 2-19,  

� � 
0 =  2, Ana

npn (cos e) + 2, Bna - (n + l )Pn (cos e).  (12-22) 
n =O n =O 

We now evaluate the A and B coefficients in a manner 
analogous to that of the example in Sec, 1 1 . 3 .  We multiply both 
sides of the equation by Pm (cos e) and integrate from cos e = - 1 
to cos e = + 1 :  

o = �o ( I
Ana

n
Pn(COS O)pm (COS e )  d(cos e )  

+ 
,
t

o 
( I

Bna -(n + l)Pn (cOS e)Pm (cos e) d(cos e) ,  (12-23) 

According to Eq, 1 2-20, the only nonvanishing terms are those for 
which m = n. Then each summation reduces to a single term: 

J+ I J+ I 
0 =  Anan _ [ P�(cos e) d(cos e) + Bna - (n + l ) 

- I 
P�(cos e) d(cos e)  

( 12-24) 

Ana
n + Bna- (n+ l) 

n + � 
( 12-25) 

So 
( 12-26) 

Substituting into Eq. 1 2-19  yields 

v = 2, An(,n - a2n + I,-(n + 1 ) Pn(COS e). ( 12-27) 
n=O 

Now boundary condition (2) concerns the value of V at infinity 
where all inverse powers of r tend to zero. Thus, at r --'" 00, 

v = - Eo' cos e = - Eo'P1(cos e) = 2, An,n
pn (cos e) (12-28) 

n =O 

for all e. By inspection, the only nonzero term on the right is that 
for which n = 1 .  See Table 1 2- 1 .  Then 

(12-29) 

and all the other A's are zero. Also, from Eq. 12-26, all the B's 
are zero except B1 : 

(12-30) 

Finally, at any point outside the sphere, 
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Eoa3 COS 8 ( a3) 
V = -Eor cos 8 +  2 = - 1 - , Eor cos 8, 

r r "  

oV ( 2a3) 
E, = - - = 1 + -, Eo cos 8, 

or r 

1 0V ( a3) 
E = - - - = - 1 - - E sin 8. H r 08 r' 0 

The surface charge density on the conducting sphere is 

( 12-31) 

(12-32) 

(12-33) 

( 12-34) 

In the above expression for V, observe that the first term comes 
from Eo, while the second is the V of a point dipole (Sec. 5 . 1) 
situated at the origin and oriented along the z-axis,  of mOr.1ent 
4Jl'Eoa3Eo. 

(b) We can also find V by a much less formal method, as 
follows. 

We require the term -Eor cos () so as to fit the condition at 
infinity. No other function with a positive power of r is 
permissible. This one term, however, is inadequate to fit the 

7.v�� 
I.l 

� 1 \  1:1-
-I 

Fig. U-l. Lines of E (arrows) and equipotentials for an 
uncharged conducting sphere situated in a previously uniform 
electric field. The lines of E are normal to the surface , and there is 
zero field inside . Observe that the field is hardly disturbed at 
distances larger than one radius from the surface of the sphere. 
The origin of the spherical polar coordinates used for the 
calculation is at the center of the sphere. 



1 2 . 1  SOLVING LAPLACE'S EQUATION 231 

Example 

condition at , = a, where V must be independent of e, We must 
therefore add another function that also includes the cos e factor 
so that the coefficient of cos e will be zero at , = a. Then , from 
Eq. 12-19 , 

B cos e 
V = -Eo' cos e + --2- ' 

, 
( 12-35) 

We finally set B = Eoa3 to make V = 0 at , = a. Our solution 
satisfies both Laplace's equation and the boundary conditions; it is 
therefore the correct solution , according to the uniqueness 
theorem of Sec. 1 1 . 1 .  See Fig. 1 2-1 . 

DIELECTRIC SPHERE IN A PREVIOUSLY 
UNIFORM ELECTRIC FIELD 

We now have a previously uniform field Eo, as in the preceding 
section, and the following boundary conditions,  where a is the 
radius of the sphere: 

( 1 ) V i s  continuous at , = a .  

(2) The normal component of D is continuous at , = a. 

(3) Vr _� = - Eo' cos e. 

Instead of going through a formal solution, as we did in part (a) 
of the previous example, we proceed as in (b) and devise a 
combination of spherical harmonics that satisfies all three 
conditions, 

There now exists a field inside the sphere . So we require two 
solutions,  one that is valid inside and one that is valid outside. The 
field outside must satisfy boundary condition (3) . So we require a 
term - Eo' cos e and no other positive power of ,. All negative 
powers of , qualify. Inside the sphere, there must be no negative 
powers of " because V cannot become infInite at , = O. 

Let v" and V, be the potentials outside and inside the sphere , 
respectively. Then 

v" = -Eo' cos e + � Bn,-(n+ I)Pn(cos e) ,  
n =O 

v, = L C/Pn(cos e),  
n = O  

Boundary conditions ( 1 )  and (2) require that, at , = a, 

avo av, - 8, = -Er a, .  
Then we have the following two equations: 

Bo BI cos e B2g(COS e) 
-Eua cos e + - + --- + + . . .  

a a1 a3  

( 12-36) 

( 12-37) 

( 12-38) 
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and 

These two equations apply for all values of e. It follows that the 
coefficient of a given function of e on the left must be equal to the 
coefficient of the same function on the right. From the first 
equation, 

Bo _ (' - 0 ,  a 

From the second , 

Combining these equations gives 

J.-
r 
l 

--

( 1 2-41 )  

( 1 2-42) 

r-...\ . 
1\ lJ 

-r 

Fig. 12-2. Lines of D (arrows) and equipotentials for a dielectric 
sphere (Er = 3) situated in a previously uniform electric field . The 
lines of D crowd into the sphere, and D is larger inside than 
outside . The equipotentials spread out inside, so E is smaller 
inside than outside. There exists a bound surface charge density, 
and E is discontinuous at the surface . As for the conducting 
sphere (Fig. 12- 1 ) ,  the field is hardly disturbed at distances larger 
than one radius from the surface. The field inside is uniform. 
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Finally, 

Bo = Co = O, 

3 
C, = - E, + 2 Eo, 

( E - 1 a.1) 
Y" = - 1 - -'- ,  Eo' cos 8, E, + 2 r 

Of course, , cos fi = z. 
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( 1 2-43 ) 

(n > 1 ) .  ( 12-44) 

( 12-45) 

( 1 2-46) 

Notice that , if E, » 1 ,  then Va is approximately the same as the 
V of the conducting sphere of the previous section. 

Also , the E inside the sphere is uniform: 

See Fig. 12-2. 

12 .2  POISSON'S EQUATION FOR E IN 
ELECTROSTATIC FIELDS 

( 1 2-47) 

We discussed Poisson's equation for V in Sec. 4 . 1 .  There also exists a 
Poisson equation for E. From Sec. 1 . 1 1 .6 , 

v X ( V  X E) = - V2E + V( V · E) . ( 12-48) 

Now, in electrostatic fields . the curl of E is zero, so that 

V2E = V( V . E) =  Vp , (12-49) 
Eo 

from Sec . 9 .5 , where p is the total charge density , free plus bound. 
We can solve this equation by first separating it into its three 

components, the x-component being 

( 12-50) 

This scalar equation is similar to the Poisson equation for V (Eq . 4-1 ) ,  
whose solution i s  the V of Eq . 3 - 18 .  Thus 
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Ex = --l-f op/ox '  dv ' ,  
4.7TEo [I ' r 

( 12-5 1) 

and similarly for the other two components , As usual , the primes refer to 
the charge distribution, and r is the distance between the field point 
P(x, y, z) and the source point P ' (x ' ,  y ' , z ') .  The solution of Laplace's 
equation for E is thus 

1 f V 'p E =  - -- -- dv ' .  
4.7TEo [I ' r 

(12-52) 

This equation relates E to the gradient of the total charge density. Note 
the negative sign and the first power of r in the denominator. This 
equation is valid whatever the nature of the media that are present in the 
field , as long as the gradient is definable. 

The more usual expression for the E of a volume distribution of charge 
is a consequence of Coulomb's law and it is the one that we found in 
Sec. 3 . 3 :  

1 f pi , E = -- Z" dv . 
4.7TEo " r  

(12-53) 

Although the two integrals for E are equal , the integrands are 
obviously unequal . One integral applies only where V p is not zero , while 
the other extends over the complete charge distribution . 

Example THE FIELD OF A SPHERE OF CHARGE WHOSE 
DENSITY IS A FUNCTION OF THE RADIUS 
Imagine a sphere of charge of uniform density, except near the 
periphery, where the density gradually falls to zero. With Eq. 
12-52, it is only the region near the surface that contributes to the 
integral , since the gradient of the charge density is zero 
everywhere else . Nonetheless, this equation leads to the same 
result as Eq. 12-53. See Prob. 12-6. 

12 .3  SUMMARY 

In spherical coordinates , if V is independent of the cp coordinate , we set 

VCr, 8) = R (r)8(8) .  (12-2) 

Then Laplace's equation becomes a pair of ordinary differential 
equations 
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d2R dR r2 -2 + 2r - - n(n + l)R = 0  dr dr 

and Legendre's equation 
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(12-7) ,  (12-9) 

(12-13) 

where J1 = cos 8. The first equation defines a function of the type 

B R = Ar" + -+ l ' r" (12-8) 

while the Legendre polynomials of Sec. 5 .4 . 1  are solutions of Legendre's 
equation . 

The general solution of Laplace's equation in spherical coordinates, for 
axial symmetry is thus 

x 
V = 2: (Anr" + Bnr- (n +l»)p,, (cos 8). (12- 19) 

,, = 0  

Poisson's equation for E is 

(12-49) 

and its solution is 

E = - -- -- dv' .  1 I V 'p 
4.nEo v' r (12-52) 

For electrostatic fields , we can calculate E either as above or through 
Coulomb's law: 

PROBLEMS 

1 I pi E = -- l dv ' .  4.nE 0 v , r 

12- 1 .  ( 12. 1 )  Grounded cylindrical conductor in a uniform E 

(12-53) 

. A grounded, infinite, circular cylindrical conductor of radius a lies in a 
previously uniform electric field, with its axis perpendicular to Eo, as in Fig. 
1 2-3 .  Show that V = - £,,(1 - a2 / p2)p cos ¢. 
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y 
p 

p 

Fig. 12-3. 

12-2. ( 12.2 )  The volume integral of V '  X (Elr) is zero 
Show that Iv, V '  X (E I r) dv ' = 0 for any finite charge distribution. Use 

identity 19 from the front endpaper. 

12-3. ( 12. 2) Equality of the two integrals for E 
Show that the two integrals for E, 

E = -
4

1 J � rdv '  and E =  _ _  I_ J V , f!. dv ' 
nEo ,,. r 4nEo ,,. r 

are equal , at least if v ' is finite . Use identities 15 and 18 from the front 
endpaper. 

12-4. ( 12. 2) The volume integral of V ' (p lr) is zero 
We have shown that, for static fields, 

E = _I_ J !!' r dv ' = _ _  I_ J VP dv ' . 4nEo v , r2 4nEo v' r 
Show that, as a consequence, 

12-5. ( 12. 2) The Dirac positron 
Dirac proposed at one time that a positron could be considered as a hole 

in an infinite sea of negative electrons. Assume that positrons and electrons 
have finite dimensions. 

Deduce the field of a positron from Coulomb's law on these assumptions. 
You can find this field without having to integrate! 

12-6. ( 12. 2) The electric field of an atomic nucleus 
Figure 12-4 shows the density as a function of the radius for a given 

sphere of charge. This corresponds roughly to the charge distribution inside 
an atomic nucleus. 

(a) Use Gauss's law to find E at a distance r > f3 from the center of the 
sphere. 
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Fig. U-4. 

(b) Show that the expression for E given in Eq, 12-52 leads to the same 
result .  Both calculations remain valid when f3 - (l' tends to zero , 
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We have now studied electric fields at quite some length. At this point 
either you can skip to Chap. 18 and go on to magnetic fields , or you can 
study Chaps. 13 to 1 7 ,  which deal with relativity . 

There are two reasons for this digression. First , relativity reveals the 
fundamental aspects of electromagnetism. Second, there are many 
phenomena, mostly related to high velocities, that are baffling without 
relativity. The daggered problems, from Chap. 18 on, are examples of 
these . 

The longer path is more interesting , as always , but it may not be the 
better one. The five chapters on relativity do not replace the more 
conventional approach that comes afterward. Selecting one path or the 
other is a matter of time and personal taste . 

You can therefore go directly to Chap. 1 8  without losing continuity. 
Chapters 13, 14, and 15 set forth the fundamentals of relativity , with 

little reference to electromagnetism. Then, in Chaps . 1 6 and 1 7 ,  we first 
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relate electric fields to magnetic fields and then establish relations that we 
shall later rediscover, starting with Chap. 18 ,  without referring to 
relativity . t 

13 . 1 REFERENCE FRAMES AND OBSERVERS 

Consider the two rigid reference frames 5 and 5' of Fig. 13-1 , where 5' 
moves at some constant velocity "II" with respect to 5. 

Both frames are inertial , by assumption. We define an inertial frame as 
one that does not accelerate and that does not rotate. In other words, an 
inertial frame is one with respect to which there are no inertial forces . :t  

Each reference frame carries an  observer, which i s  either a human 
being equipped with instruments , or some device that can take readings 
or photographs ,  either automatically or under remote contro l .  Observer 
o is situated in 5, and 0 '  in 5' .  

The special theory of relativity concerns measurements made by these 
two observers . As a rule, we refer to the two specific frames of Fig. 1 3-2. 

We are not concerned with the general theory of relativity, which deals 
with accelerated frames and gravitation . 

, S ( , 

Fig. 13-1. Reference frames S and S ' ,  with S '  moving at some arbitrary constant 
velocity 'Y with respect to S, without rotation . Observers 0 and 0 ' perform 
various experiments ,  each one in his or her own frame . 

+ For a more detailed introduction to relativity. see Edwin F. Taylor and John A. 
Wheeler. Spacetime Physics, W. H. Freeman, New York. 1966. 

j The forces that one feels while stationary inside an accelerating vehicle are inertial 
forces. The inertial force on a person of mass m is - rna, where a is the acceleration of the 
vehicle. 
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vi 

Fig. 13-2. The reference frame S '  moves at a velocity 'V'i with respect to S. 

1 3 . 2  THE GALILEAN TRANSFORMATION 

According to classical physics , observers in reference frames S and S' of 
Fig . 1 3-2 may select the same time scale. If they set t = 0 at the instant 
when their frames overlap, then the coordinates of a given point in space , 
with respect to the two frames, satisfy the equations 

x = x '  + 'Yt, y = y ' , z = z ' , t = t ' .  ( 13- 1 )  

This i s  the Galilean transformation. 
In particular, suppose observer 0 ' finds that the velocity of a certain 

light pulse relative to S' is c, in the positive direction of the common 
x-axis. Then, according to the Galilean transformation and according to 
elementary mechanics, observer 0 in reference frame S should find that 
the velocity of that particular light pulse is c + 'Y. 

The Galilean transformation proves to be in error for high velocities. 
Experiments show that the velocity of the light pulse is the same for the 
two observers . This fact goes against common sense , of course. The 
Galilean transformation also proves to be incompatible with electromag
netism because , under that transformation, Maxwell's equations are not 
invariant . 

1 3 . 3  THE PRINCIPLE OF RELATIVITY 

The principle of relativity states that it is physically impossible to detect 
whether an inertial frame is at rest or in motion from observations made 
entirely within that frame. 
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This principle was formulated by Galileo in 1638. It is quite clear in 
itself, but it is so fundamental that we state i t  in another way, to 
emphasize its meaning. The principle means that any experiment leads to 
precisely the same result, whether it is performed in S or in S ' .  The result 
is the same , whether the experiment takes place in a stationary or in a 
moving vehicle, as long as the vehicle moves in a straight line at a 
constant velocity. 

For example , observer 0 ' in reference frame S' can measure the period 
of a pendulum suspended at some point in S ' , or the collision of billiard 
balls on a table at rest in S ' ,  etc. In all instances the phenomenon 
observed by 0 ' is precisely the same as if she performed her experiment 
in reference frame S. 

This principle is firmly established. In particular, it is an experimental 
fact that the speed of light is the same for all observers traveling at a 
constant velocity. t 

To illustrate, consider the law 

d 
F = - (mv ),  dt ( 13-2) 

as observed in reference frame S. According to the principle of relativity , 
there exists an identical law 

d 
F '  = - (m'v ' ) dt' 

that applies in S ' .  Physical laws are thus said to be invariant. 

( 13-3) 

It follows that there exist mathematical relations that transform 
unprimed quantities to primed quantities, and inversely. We shall 
discover several such transformations in these five chapters on relativity. 

With the Galilean transformation, F = F' , m = m ' , t = t ' , v = v ' + 'Y, 
and the principle of relativity applies. However ,  nature is not that simple ; 
these four equations are , in fact approximations. Relativistic transforma
tions show that F * F' , m * m ' ,  t * t ' ,  and v * v ' + 'Y! 

13 .4  THE LORENTZ TRANSFORMATION 

The Lorentz transformation relates the space and time coordinates of 
reference frame S to those of S ' , and inversely. For the frames of Fig .  
13-2, 

t See Wolfgang K. H .  Panofsky and Melba Phillips, Classical Electricity and Magnetism, 
Addison-Wesley. Reading. Mass . .  1962. chap. 1 5 .  
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X ' + 'Yt ' X = ( 1 - 'Y2/C2) 1/2 ' 

y = y ' , 
z = z ' , 

t ' + ('Y/c2)x ' t =  ( 1 - 'V2/C2) 112 ' 

X - 'Yt x ' = (1 - 'Y2/C2) 1/2 ' 

y '  = y , 
z '  = z , 

t ' = t - ('Y/c2)x 
( 1 - 'V2/C2) 1 /2 ' 

where c is the speed of light in a vacuum . 

RELATIVITY 1 

(13-4) 

( 13-5) 

( 13-6) 

( 13-7) 

This set of eight equations forms the basis of special relativity . �  We 
spend the rest of this chapter, and the next four, discussing some of its 
strange consequences. For the moment, we note six fairly obvious 
features. 

( 1 )  The right-hand column i s  identical to  the left-hand column, except 
that the primed and unprimed quantities are interchanged, and that - 'Y 
replaces 'V. The reason is simply that it is immaterial whether 5' moves at 
the velocity 'Yi with respect to 5, or whether 5 moves at the velocity 
- 'Yi with respect to 5' .  

(2) There are only four independent equations because the right-hand 
column follows from the left-hand one , and inversely. You can easily 
check this. 

(3) The origins 0 and 0' coincide at t = t ' = ° because , if X = Y = z = 
t = 0, then x '  = y '  = z ' = t ' = 0, and inversely. 

(4) The Lorentz transformation reduces to the Galilean transformation 
(Eq. 13-1) if we set the speed of light c equal to infinity. 

(5) The relative velocity 'Y of the two frames cannot exceed c, for 
otherwise either x and t or x ' and t '  become imaginary. 

(6) The fact that t *" t' means that , if observer 0 measures a time 
interval T between two events, then 0 ' will , in general , measure a 
different time interval T'  between the same pair of events. In particular, 
if two events are simultaneous for 0, then they are not necessarily 
simultaneous for 0 ' . 

Points 1 and 2 illustrate two general rules. 

t The Lorentz transformation follows from the principle of relativity applied to the 
velocity of light. We omit the proof, for lack of space. See, for example, E. Taylor and J. 
Wheeler, Spacetime Physics. W. H .  Freeman, New York, 1966. p .  43. 
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( 1 )  The relation between quantities in one inertial reference frame and 
the corresponding quantities in another inertial frame can always be 
expressed by either one of two equations ,  or sets of equations, that are 
equivalent. 
(2) One obtains the inverse relation by adding primes to umprimed 
quantities, deleting primes on primed quantities, and changing the sign 
of 'Y. 

It is the custom to set 

CJ;" 
/3 = - and 1 (13-8) c 

Note that /3 :S 1 and y 2':: 1. Then 

x = y(x ' + CVt ' ) , 
y = y ' , 
z = z ' , ( 'Yx ' ) t =  Y t '  + 7  ' 

x '  = y(x - Vt) ,  
y '  = y , 
z '  = z, 

, ( 'YX) t = Y t -
c2 . 

(13-9) 
( 13-10) 
( 13- 1 1  ) 

( 13-12) 

It is often more convenient to express the transformation in vector 
form , as in Table 13-1 , where the subscripts II and 1- refer, respectively , 
to the components that are either parallel or perpendicular to the motion 
of S ' with respect to S. 

Example 

Table 13-1 Lorentz transformation 

r = y(r�1 + 'Yt' )  + r� r' = y('11 - 'V) + r1 
( 'Vr ) t '  = y t - 7 

THE INV ARIANCE OF x2 + y2 + Z2 - c2t2 UNDER 
A LORENTZ TRANSFORMATION 

A quantity is said to be invariant if its numerical value is the same 
in all inertial frames . For example, under a Galilean 
transformation, the distance ran between two points a and b is the 
same whether one performs the measurement in S or in S' .  
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Example 

RELATIVITY I 

Note that the word invariant is not synonymous with the word 
constant. Indeed, if point a is fixed in S, and b is fixed in S' , then 
rab is a function of the time but is still invariant under a Galilean 
transformation. 

With the Lorentz transformation , rah is not invariant . but 
r2 - c2t2 is. You can easily check that 

We shall use the invariance of r2 - c2t2 below. We shall also find 
several other analogous invariant quantities. 

THE PHOTON 

Imagine a flash of light emitted at 0 or 0' at the instant when the 
two origins coincide. According to the principle of relativity, the 
light propagates in all directions at the same velocity c in both 
reference frames. Therefore the position of a photon satisfies the 
equation 

X '2 + y ,2 + Z ,2 � 
= c. ( 13- 14)  

in agreement with the previous equations. 

1 3 . 5  SPACE-TIME DIAGRAMS AND WORLD LINES 

A space-time diagram is a graph of ct as a function of x for a given event , 
as in Fig. 1 3-3. Such diagrams help us visualize some of the implications 
of the Lorentz transformation for the reference frames of Fig. 13-2. 

The world line of an object or event is its curve of ct as a function of x .  

Say an electron is stationary at x = X(J , ct = O. Its world line is the straight 
line a of Fig. 13-3 . If the electron moves in some way along the x-axis , 
then its world line is a curve such as b. However, b is not any arbitrary 
curve because the speed of any object is always less than c. This makes 
the :nagnitude of the slope everywhere larger than unity, and the electron 
has no access to the shaded region. 

If the electron moves in a plane normal to the x-axis. then y = y ' ,  
z = Z / ,  from the Lorentz transformation . 

Now say a flash of light occurs at x = 0, ct = O. Photons travel along the 
lines ct = ±x. If we draw a y -axis perpendicular to the x- and ct-axes, the 
photons travel along a cone whose axis is the ct-axis . In four-dimensional 
space-time, they follow a light cone. 
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Fig. 13-3. (a) World line of a stationary electron at (xo. O. 0). (b) World line of 
an electron whose velocity dx/dt is first negative and then positive along the 
x-axis. The shaded area is inaccessible to this electron because Idx/dt l  cannot 
exceed c. 

1 3 . 5 . 1 The Minkowski Diagram 

We can picture the Lorentz transformation by superposing the (x, ct) and 
the (x ' .  ct ' ) planes in a manner devised by Minkowski as in Fig. 13-4. 
First ,  

x '  = y(x - "/It) .  ( 13-15) 

Setting x' = 0 defines a line 

x = 'Vt = (�)ct (13- 16) 

in the (x , ct) plane . This line. along which x '  = 0, is the ct ' -axis, as in the 
figure . Also , 

( Orx) t ' = y t ---;;z . (13-17) 

Setting t ' = 0 defines a line 

ct = (�)x (13- 18) 

in the (x, ct) plane . This line , along which ct ' = 0, is the x ' -axis. Lines 
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<I 

! I  

Fig. 13-4. The (x, ct) plane of reference frame S and , superimposed, x ' - and 
ct ' -axes for a reference frame S' that travels at a velocity 0 .364ci with respect to 
S. Thus fJ = 20.0° and y = 1 .074. The origins x = 0, t = 0 and x '  = 0, t' = 0 
coincide at Q. Event E occurs at x = 2, ct = 3, or at x '  = 0. 975, ct ' = 2. 44. The 
curves are parabolas x2 - c2t2 = ±a

2
• This is a Minkowski diagram. 

x '  = constant are parallel to the ct ' -axis , while lines ct' = constant are 
parallel to the x ' -axis. 

Notice the following points. 

(1) The scales are not the same. For example , a length corresponding to 
3 meters is longer on the x ' -axis than on the x-axis. 

(2) The angle between the ct- and ct' -axes is the same as that between 
the x- and x ' -axes. This reveals a certain symmetry between space and 
time. However, there are three space dimensions and only one time 
dimension, so the symmetry is only partial . 

(3) The lines x = ±ct coincide with the lines x '  = ±ct ' because a velocity 
c along the x-axis is invariant. 

(4) Points on the x '  -axis correspond to events that are simultaneous for 
observer 0 ' in reference frame 5' since t '  = 0 all along this line .  However ,  
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those events clearly occur at different values of t and are therefore not 
simultaneous in S. Innumerable paradoxes result from this fact . 

If two events F and G occur at the same t and at the same x (but not 
necessarily the same y and the same z) in S, then they are also 
simultaneous in S ' ,  and inversely. 

13 . 5 .2 Causality and Maximum Signal Velocity 

The order in which two events F and G occur can be different in different 
frames because 

(13- 19) 

and the signs of t� - t� and tG - tF can be different . This is disturbing 
because , according to the principle of causality, a cause necessarily 
precedes its effect . 

For example, imagine that observer a throws a ball in the direction of 
the x-axis . After a flight of a few seconds, the ball breaks a windowpane. 
The Lorentz transformation surely cannot mean that these events could 
occur backward , for certain observers. 

Say event F occurs at origins 0 and 0' at the instant when they 
coincide. Event F is the cause of event G, which occurs at XG at a later 
time tG in S and at t� in S ' .  Event G cannot occur before event F in S ' .  
Then t �  must not be  negative. Now 

(13-20) 

( 13-21) 

where v is the speed at which a "signal" propagates from F to G. For the 
above example, v is the horizontal velocity of the ball .  Therefore 
'Vv $ c2• Since 'V $ c from Sec . 13 .4 ,  v $ c. A "signal" cannot therefore 
propagate at a speed that is larger than c. 

13 .6  SUMMARY 

An inertial reference frame does not accelerate and does not rotate. 
The special theory of relativity concerns observations and measure

ments on a given phenomenon made by observers situated in two inertial 



248 RELATIVITY I 

frames,  one of which moves at a constant velocity with respect to the 
other. As a rule , the two frames referred to are those of Fig. 1 3-2 . 

The principle of relativity states that it is physically impossible to detect 
whether an inertial reference frame is at rest or in uniform motion from 
observations made entirely within that frame .  

Thus physical laws are invariant : the law describing a given phenome
non is mathematically the same, in whatever inertial frame the phenome
non occurs . 

The Lorentz transformation relates x, y, z, t in 5 to x ' , y ' , z ' ,  t ' in 5' 
(Fig. 13-2) : 

x = y(x ' + 'Yt') ,  x ' = y(x - 'Yt), ( 13-9) 
y = y ' , y '  = y, ( 13-10) 
z = z ' ,  z ' = z ,  (13- 1 1 )  ( 'Yx ' ) t = Y t' + 7 ' , ( 'YX) t = y t - ? , ( 13-12) 

where y = (1 - 'Y2/C2)- 1!2. 
Table 13-1 shows these equations in vector form. The subscripts II and 

.1 refer, respectively, to components that are parallel or perpendicular to 
the velocity of 5' with respect to 5. 

A quantity is said to be invariant if its numerical value is the same in all 
inertial reference frames. 

A space-time diagram shows ct as a function of x for a given object or 
event. The world line of an object or event is its curve of ct as a function 
of x. One can visualize the Lorentz transformation by superposing the 
space-time diagrams for 5 and for 5' .  

A signal cannot propagate at a speed larger than c. 

PROBLEMst 

13-1 . (13. 4) The Lorentz transformation 
For what value of f3 is the value of y equal to 1 .0t? 

13-2. (13. 4) The Lorentz transformation 
Calculate y, f3, and v for a conduction electron whose energy is 10 

electronvolts. The rest energy of an electron is 5 . 1 1  X 105 electronvolts. 

T Several of the problems on relativity are adapted, with permission, from Edwin F. 
Taylor and John A.  Wheeler, Spacetime Physics, W. H. Freeman, New York, 1 966. 
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13-3. ( 13. 4) Signaling problems with a fast train 
Three persons A, 0 ' ,  and B, ride on a train moving at a velocity 'V, with 

A in front, 0' in the middle, and B in the rear. A fourth person, 0, stands 
beside the rails. At the moment 0' passes 0, light signals from A and B 
reach both 0 and 0'.  Persons 0 and 0' are asked who emitted her light 
signal first. What do they answer? 

13-4. (13. 4) Transformation of an angle 
A straight line passing through the origin 0' of S' forms an angle (1" with 

the x-axis. (a) Find a relation between (1' and (1" .  
(b) What is the value of (1' when 'V tends to c? 

13-5. ( 13. 4) Things that move faster than a photon 
The Lorentz transformation implies that the relative velocity 'V of two 

frames of reference cannot exceed the speed of light c. We have also shown 
that a signal cannot exceed the speed of light. Discuss the following cases. 

(a) A long. straight rod forms a small angle e with another rod, which is 
horizontal and stationary. The first rod moves downward at a velocity v. 

What is the speed of the point of intersection of the lower edge of the 
moving rod with the fixed rod? Can this speed be greater than c?  Can the 
point of intersection be used to transmit a signal? 

(b) The upper rod is initially at rest with the point of intersection at the 
origin .  The rod is struck a downward blow at the origin with a hammer. 

Can the motion of the point of intersection be used to transmit a signal at 
a speed greater than the speed of light? 

(c) A powerful laser rotates rapidly about an axis perpendicular to its 
length. 

Can the azimuthal speed of the beam exceed the speed of light? Can the 
beam transmit a signal between two points at a speed greater than c? 

(d) The manufacturers of some oscilloscopes claim writing speeds in 
excess of the speed of light. Is this possible? 

13-6. ( 13. 5) Space-time diagrams 
Show that ( 1 (3) 112 

x '  + ct' = -- (x + ct). 1 + f3 
Substituting -c for c gives ( 1 + (3) 112 

x '  - ct '  = -- (x - ct) .  
1 - f3 

13-7 . (13. 5) c is the ultimate speed 
Imagine a series of reference frames S, S ' ,  SU, sm, etc. , with S '  moving at 

a velocity 'Vi with respect to S, S" moving at the same velocity with respect 
to S ' ,  etc. According to the Galilean transformation, a particle at rest in sn 

moves at a velocity n'Vi with respect to S, where n'V is arbitrarily large. 
Show that . according to relativity, the velocity of that particle with 

respect to S is always less than c. 

13-8. (13. 5) Three-dimensional space-time x, y, ct 
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Fig. 13-5. 

Figure 1 3-5 shows the xy -plane , the ct-axis, and the planes x = ct and 
x = - ct. 

(a) Show that a Lorentz transformation contracts this space by the factor 
[( 1 + f3)/(1 - f3)t2 in the direction of the plane x = ct, and dilates it by the 
same factor in the direction of x = -ct. 

(b) Show that a point xo, Yo , cto transforms to another point on the same 
light cone. 

1 3-9. ( 13. 5. 1 ) The Minkowski diagram 
(a) Draw a Minkowski diagram similar to that of Fig. 13-4 with 

'V = -0. 346c and an event E that occurs at x = 2, ct = 2. 
(b) What are the values of coordinates x '  and ct ' ?  
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This second chapter on relativity concerns a few immediate consequences 
of the Lorentz transformation . The Lorentz contraction makes an object 
appear shortened in the direction of its motion , while time dilation makes 
a time interval on a moving object appear longer for a stationary 
observer. However, a moving clock can also appear to run fast , as we 
shall see. We end this chapter with the transformation of a velocity. 

14 . 1  TRANSFORMATION OF A LENGTH. 
THE LORENTZ CONTRACTION 

Imagine that observer 0 ' on reference frame S ' fixes a ruler of length lo 
on the x ' -axis of S '  so that its extremities are at x ' = 0 and x ' = lo. The 
quantity lo is the length of the ruler , as measured in its own reference 
frame, and is called its proper length. According to 0, the ruler sweeps 
the shaded area in Fig. 14- 1 .  

What i s  the length o f  the same ruler for observer 0 on S? That observer 
performs his measurement by noting the positions of the two extremities 
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Fig. 14-1. A ruler of proper length lo ,  fixed in reference frame S ' ,  sweeps the 
shaded region as time goes by . In reference frame S its apparent length is lIlly. 
Note that the scale on the x ' -axis is different from that on the x -axis . The curves 
are parabolas x2 - c2t2 = Q. 

of the ruler at the same time, say t = O. These are events Q and (101 y, 0) 
in Fig. 14- 1 .  Clearly ,  the length 101 y is shorter than 10• How much 
shorter? At the right-hand end x = I and t = O. From the Lorentz 
transformation (Sec. 1 3 .4) ,  

10 = x '  = y (x - ''Vt) = y/, I = � 
y ( 14- 1 ) 

Thus a ruler moving III the direction of its length at a velocity 'Y 
relative to an observer appears to be shortened by the factor 1 1  y. 
Remember that y � 1 ,  from Sec. 1 3 .4 . This Lorentz contraction is 
independent of the sign of 'Y. 

Of course , the Lorentz contraction applies if the ruler is anywhere else 
along the x ' -axis. 

If the ruler lies on the x-axis in S, then 0 ' finds it shortened by the 
same factor 1 /y, as in Fig . 14-2. 



Fig. 14-2. The ruler of proper length io is now fixed in reference frame S. It 
sweeps the shaded region and , for an observer on frame S ' ,  i ts length is io/Y. 
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Thus 0 says that the meters of 0 ' are too short , and 0 ' maintains that 
those of 0 are too short . This is not absurd because the comparisons are 
quite complex ; they involve eight separate measurements. 

If the ruler moves relative to 0 in a direction perpendicular to its 
length, then you can show that there is no Lorentz contraction: its length, 
measured by 0 ,  is equal to its proper length 10 • A length I therefore 
transforms as follows : 

( 14-2) 

where 10 1 1  is the component of 10 that is parallel to the motion and I(u is 
the orthogonal component . 

14. 1 . 1  Transformation of an Element of Area dd 
Say th.e element of area is a rigid parallelogram of sides d/lO and dl20 of 
arbitrary magnitudes and orientations in its own reference frame. Then 
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d.sllo = dllO X dlzo . (14-3) 

This vector is normal to the element of area. 
Now if S is an inertial reference frame with respect to which the 

element of area moves at a velocity /1", it turns out (Prob. 14-3) that, in S, 
the element of area suffers a Lorentz contraction in the direction of /1": 

Example THE APPARENT SHAPE OF A RAPIDLY 
MOVING OBJECT 

(14-4) 

Suppose one looked through a telescope at a far-away cube 
moving at a velocity 'V = c perpendicular to the line of sight. Then 
the face normal to the line of sight would appear to be 
foreshortened in the direction of motion by the factor l /y. Also, 
one would see the trailing face for the following reason. At a given 
instant, the eye senses the photons that arrive at that instant. 
Photons originating from distant parts of the object have left 
earlier than the others, and the object has moved in the 
meantime . The net effect is that the cube would appear to be 
rotated through an angle arctan ('VIc). If the cube were not far 
away, then it would appear distorted in peculiar ways, depending 
on its distance and velocity. 

This effect, which has never been observed , was discovered by 
James Terrell in 1959, 54 years after the publication of Einstein's 
first paper on relativity. t 

14.2 TRANSFORMATION OF A TIME INTERVAL. 
TIME DILATION 

Observer 0 ' measures the duration of a certain phenomenon that occurs 
at x ' = ° in S ' .  The phenomenon starts at t' = 0, namely at Q in Fig. 14-3, 
and it ends at [ '  = �), or at Q ' .  The time To measured in the reference 
frame of the phenomenon is the proper time. Observer 0 ' has a single 
clock located at x ' = 0. 

Observer 0 measures the same time interval with two identical and 
synchronized clocks, one at x = 0, where the phenomenon starts, and the 
other at the position of 0' at the end of the time interval . 

t See V. F. Weisskopf, Physics Today, September 1960, p. 24. 
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Fig. 14-3. The proper time interval between events Q and Q '  that occur at x '  = 0 
in reference frame S '  is To, with C7;l = 2. For an observer on S, this time interval 
is y times longer. The scale on the ct ' -axis is not the same as on the ct-axis. 

From Fig . 14-3, the interval T, as measured in S, is longer than the 
proper time interval Ta . Indeed, according to the Lorentz transformation , 
the event Q '  for which x ' = 0 and t '  = To occurs at t = yTa for 0 in S. So 

T = iTo, (14-5) 

For 0, the time interval is longer than Ta. This is the phenomenon called 
time dilation. In other words, a moving clock appears to run slow by the 
factor y if one measures its rate as above. t 

Example THE TIME READ ON A RAPIDLY 
MOVING CLOCK 

We have seen that , if 0 uses two identical clocks at two different 
x's  on S to measure a given time interval that 0 ' measures at a 

t See -the film entitled "Time Dilation: An Experiment on Mu-Mesons" by F. Friedman, 
D .  Frisch , and 1. Smith, produced by the Educational Development Center, Newton, Mass. 
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Fig. 14-4. Observer 0 uses a double mirror M to photograph 
simultaneously both her or his own clock and the moving clock. 
The relation t = yt ' holds, but the light from the moving clock 
does not reach the camera until a later time t" :> t. 

x 

fixed point on S '  with a single clock, then 0 finds a time interval 
that is longer than that of 0' by the factor y. 

What if 0 uses a single clock and looks at the moving clock of 0 ' 

as in Fig. 14-4? Let the primed clock be at 0' ,  and let both 'V and 
t be positive. Then 0' is to the right of 0 and moves away. 

Imagine that 0 has a set of identical and synchronized clocks all 
along his x-axis. As the primed clock goes by each one , the 
relation t = yt ' holds. But 0 stands at the origin 0 of S, and the 
light from the primed clock at 0' takes some time to reach O. 
Suppose observer 0 reads a time t '  on the moving clock. What 
time is it on his own clock? Call this time t". Then t" is the above t, 
plus the time required for light to travel the distance Vt : 

t" = t + :t = (1 + -'jt = ( 1  + f:l)t = ( 1 + f:l)yt ' ,  (14-6) 

with 13 = Vic. as usual. Thus, when 0 reads t' on a clock that is 
moving away, her own time is 

" 1 + f:l , ( 1 + 13) '12 ,  t = ( 1  _ 132) 112 t = 1 _ 13 t . 

With V and f:l both positive, t" :> t ' . 

(14-7) 

Therefore, if one looks at a clock that is moving away, the 
moving clock appears to run even slower than with the 
measurements of Sec. 14.2 . 

What if the moving clock is approaching? Then the origin 0' is 
to the left of O. With V positive , both t and t ' are negative and 

l'rtl 'rt t" = t + - = t - - = ( 1  - f3)t = ( 1  - f3)yt ' c c 
( 14-8) 
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is also negative, since f3 :s 1 .  Thus, when 0 reads a time t '  on an 
approaching clock, his own time is 

( 1 f3 112 
t" = 1 : f3) t ' .  ( 14-9) 

Does the approaching clock appear to run fast, or slow, with 
respect to the stationary clock? Say observer 0 reads a time 
t '  = -1 second on the approaching clock, and the above square 
root equals 0.9. Then t" = -0.9. When the moving clock reaches 
0, both t' and t" will be zero. So, in the interval, the moving clock 
will have advanced by 1 second, and the fixed clock by 0.9 second. 
The approaching clock appears to run fast. 

THE RELATIVISTIC DOPPLER EFFECT FOR 
ELECTROMAGNETIC WAVES 

The Doppler effect is the frequency shift observed when a source 
of waves moves with respect to a detector. This phenomenon is 
well known in the field of acoustics. 

Imagine a source of electromagnetic waves of proper frequency 
fo situated at 0' and a detector at O. What is the apparent 
frequency at O? 

This problem is identical to the clock problem that we just 
solved, because the source beats periods l/fo, instead of seconds. 
Therefore , with a receding source , the period measured by a fixed 
observer at 0 is 

and 

_ (1 + f3) 112 
T - 1 _ 

f3 
To, 

1 ( 1 - f3) 112 1 ( 1 - f3) 112 
f = 1' = 1 + f3 "To =  1 + f3 fo </o· 

( 14-10) 

(14- 1 1) 

For an approaching source , 

( 1 + f3) l!2 
f = 1 _ f3 fo > fo. ( 14-12) 

Note that it is only the relative velocity that counts. See Fig. 14-5 . 
If, at a given instant, the relative velocity forms a right angle 

with the line joining the source to the detector, there is still a 
Doppler effect because of time dilation . This is a purely relativistic 
effect. The frequency measured at the receiver is either larger or 
smaller than /0, depending on the reference frame in which the 
angle is 90° (Prob. 14-7) : 

f = yfo (source) ,  or f = lr! (detector). ( 14-13) y 
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(a )  ( 0) 

Fig. 14-5. The Doppler effect. (a) Source S moves to the right with respect to 
stationary receivers A , B, C. (b) The source is stationary, and the receivers all 
move to the left. The frequency shifts are the same in the two figures. The 
measured frequency is lower than the proper frequency at A ,  and higher at B. At 
C, the measured frequency is either lower or higher than the proper frequency, as 
in Prob. 14-7. 

14.3 THE INCREMENT OF PROPER TIME 
FOR AN ACCELERATED PARTICLE 

Consider a particle moving at some arbitrary time-dependent velocity. 
Say the particle moves in a straight line along the x-axis. Then its world 
line is some curve as in Fig. 14-6. An observer notes the position of the 
particle at times t and t + dt. This defines two points A and B, as in the 
figure . 

The proper time interval dto between A and B is defined as the time 
interval between these two events, as measured in the unaccelerated 
frame S '  occupied momentarily by the particle : 

dt ( V2) 1/2 dto = - = dt 1 - - , 
y c2 (14-14) 

as in Eq. 14-5 , where v is the average velocity of the particle during that 
time interval. 

We have simply applied the rule for time dilation that we found in Sec. 
14.2 for inertial frames. This seems illogical because a reference frame 
attached to the particle does accelerate . This peculiar procedure follows 
from the experimental fact that the half-life of a fast particle of a given 
velocity is the same whether the trajectory is a straight line or a circle. 
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Fig. 14-6. The world line of a particle moving along the x-axis. In the fixed 
reference frame S, the time interval between events A and B is dt. In the frame 
S ' of constant velocity 'V occupied momentarily by the particle , the proper time 
interval is dtn• which is equal to dt/y. 

We use the increment of proper time repeatedly in the following 
chapters on relativity. 

14.4 TRANSFORMATION OF A VELOCITY 

Observer 0 '  on reference frame S' notes that an object moves at some 
velocity v ' . The velocity need not be constant. What is the velocity of this 
same object for observer 0 on reference frame S? 

From the vector form of the Lorentz transformation (Table 13-1) ,  

dr y(dr�1 + 'Vdt ' )  + dr� 
v = - = 

dt y(dt' + 'V . dr' /e2) 
Dividing numerator and denominator by y dt ' gives 

V �I + 'V + V �/y 
v 

= 1 + V �I r / c2 

( 14-15) 

(14-16) 

The Galilean relation v = v '  + r is therefore valid only if y = 1 and if 
v ' r « c2. It follows from Sec . 13 .4 that 

(14-17) 
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RELATIVITY I I  

TRANSFORMING THE SPEED OF LIGHT 

A photon travels at the speed c in some arbitrary direction in 
reference frame S ' .  Then 

( 14-18) 
and 

( 14-19) 

Expanding and using Eq. 14-18 twice , we find that the speed of 
the photon in S is also c, whatever the value of 'V!  

This i s  in agreement with the first example in  Sec. 13 .4 ,  where 
we discussed the invariance of x2 + y2 + Z2 - c2t2. 

14 .5  SUMMARY 

An object has a proper length 1o , oriented in some arbitrary direction. 
Then, in another reference frame moving at some constant velocity 'V 
with respect to the object , 

I =� + I 
y o � . (14-2) 

Lengths parallel to the motion are shorter by the factor y. This is the 
Lorentz contraction. Lengths orthogonal to the motion are unaffected . 

A process lasts a proper time 7;) in its own reference frame. In another 
frame as above , the time interval is y times larger: 

(14-5) 

This is time dilation. 
If a source of electromagnetic waves of proper frequency fo moves 

away at a velocity 'V = f3c from an observer, the apparent frequency is ( 1 - (3) 112 
f = 1 + f3 fo <fa .  ( 14-1 1) 

For an approaching source , the sign before f3 changes , ( 1 + (3) 1 /2 
f = 

1 _ f3 fa > fa· ( 14-12) 

This is the Doppler effect. Only the relative velocity between source and 
detector matters. 
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A particle describes some arbitrary motion in space-time. If the time 
interval between two successive positions is dt, then the corresponding 
proper time interval is 

dt dto = - . 
Y 

A velocity transforms as follows : 

PROBLEMS 

V �I + 'V + V �/Y 
v = 1 + V �I 'V / c2 ' 

v lI - 'V + V.L /Y 
v I - ---"-------=� - 1 - V II 'V/C2 

14- 1 .  (14. 1 )  Lorentz contraction for a length 

( 14-14) 

( 14-16) 

( 14- 17) 

A one-meter ruler moves at a speed c /2. In its own reference frame it 
forms an angle of 45° with its velocity. 

What is its length, as measured by a fixed observer? 

14-2. ( 14. 1) Two successive events at a given point. 
Two events occur at the same place in the laboratory at an interval of 3 

seconds. 
What is the spatial distance between these two events in a moving frame 

with respect to which the events occur 5 seconds apart, and what is the 
relative speed of the moving and laboratory frames? 

14-3. (14. 1 . 1 ) Transformation of an element of area 
A small rigid parallelogram of sides d/JO and dI2(" in its own reference 

frame, has an area 

Show that, with respect to another reference frame ,  the element of area is 
given by 

14-4 . ( 14. 2) The red shift 
The radio galaxy 3C295 has a red shift of 46% . Astronomers mean by 

this that the observed wavelength is 1 .46 times the wavelength of the same 
radiation originating in the laboratory . 
. (a) Calculate the radial velocity of the galaxy. 

(b) Some quasars have red shifts of 200% . What is their radial velocity? 
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1 -l-5.  ( 14. 2) The case of the speeding physicist 
A physicist is arrested for going through a red traffic light .  In court she 

pleads that she approached at such a speed that the red light appeared 
green.  The judge , a graduate of a physics class, changes the charge to 
speeding and fines the defendant $1 for every kilometer per hour she 
exceeded the speed limit of 50 kilometers/hour. 

What is the fine (Ag<een = 5.3 X 10-7 meter, AmI = 6.5 X 10-7 meter)? 

14-6. ( 14. 2 ) The twin paradox 
On his twenty-first birthday, Peter leaves his twin Paul behind on the 

earth and goes off in a straight line for 7 years of his time at a speed of 
0.96c. Peter then reverses direction and returns at the same speed . 

(a) What are the ages of Peter and Paul at the moment of reunion? 
(b) Peter and Paul , expecting a strange result ,  perform the following 

experiment during Peter's trip. They both observe a distant variable star 
whose light alternates from dim to bright at a frequency f when observed 
from the earth. The variable star is in a direction perpendicular to Peter's 
trajectory. They, of course , both count the same number of pulsations 
during the trip. 

Use the expression for the Doppler shift to verify the difference in age 
between Peter and Paul at the end of the trip. See the next problem. 

14-7. ( 14. 2) Doppler effect for a source moving at y = constant 
Figure 14-7 shows a source of electromagnetic radiation of proper 

frequency j;, situated at the origin 0' of reference frame S' moving at the 
velocity Vi with respect to S. As usual, 0' is at x = 0 at t = 0, t ' = O. We 
wish to calculate the frequency as measured by observer 0 situated at the 
origin 0 of S . 

.I' S " S' 

I II<E(o------ TrT.)� 
x 

Fig. 14-7. 
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The figure shows S' at two successive beats of the source. separated by a 
time 

, , 1 tb - ta =lo = To, 

if 'VyTo «  r. 
(a) Show that the period measured at 0 is T = y(1 - f3 cos 8)" 1;.> and that 

1 =  f,,/ [y(1 - f3 cos 8)] = f ' l [y(1 - f3 cos 8)]. 

Thus, if 8 = n12, then 1 = loly, 1 =  f ' I y. 
(b) Compare this result with the Doppler effect calculated in Sec. 14.2 . 1  

and in Prob. 14-6. 
(c) Show that 

1 ' = 
I 

y( 1 + f3 cos 8 ' )  

Thus, i f  8 '  = n12, then I'  = fly and I = yf' .  
(d) From (a) and (c) , y2( 1 - f3 cos 8)( 1 + f3 cos 8 ' )  = 1 .  
Check the validity of  this equation at  8 = 8 '  = 0 and n ,  at 8 = n12, and 

at 8' = n12. Refer to Prob. 14-10  on the headlight effect. 

14-8. ( 14. 2)  Transforming visible light to high-energy radiation 
Visible light can be transformed into high-energy radiation by reflecting a 

laser beam backward on a high-energy electron beam. Say the initial 
photon energy is 2 electronvolts , and the electron energy is 6 
gigaelectronvolts. 

(a) Calculate the photon energy hv'  in the reference frame S' of the 
electrons. 

(b) Now calculate the energy hv" of the reflected photons in the 
laboratory frame. 

As a first approximation, you can neglect the recoil of the electrons, but 
this gives too large a value for hv". 

14-9. ( 14. 4 ) The speed of light in a moving medium 
Light moves more slowly through a material medium than through a 

vacuum, its phase velocity v being c In, where n is the index of refraction of 
the medium. 

If now the medium itself moves at a velocity 'V «  c with respect to the 
laboratory, show that the phase velocity of the light with respect to the 
laboratory is approximately cln + 'V( 1 - l/n2) .  

14-10. (14. 4) The headlight effect 
A source of light moves at a velocity 'Vi. Consider a ray that forms an 

angle 8 '  with respect to the x-axis. 
(a) Show that in the reference frame S, tan 8 = sin 8 '/ [y(cos 8 ' + f3)] .  

Then tan 8' = sin 81[y(cos 8 - (3)] ,  from Sec. 13.4. 
(b) Plot 8 as a function of 8 '  for f3 = 0, 0.5 ,  0. 9, 0. 9999. 
Observe that, for large values of /3, 8 is much smaller than 8 ' ,  except for 

values of 8 '  near n. If the source radiates isotropically in its own reference 
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frame, then , for a stationary observer, the source radiates mostly in the 
forward direction. This is the headlight effect. 

(c) An isotropic source of light moves at a speed c/3 with respect to an 
observer. Calculate the solid angle defined by a cone that points forward 
and that contains 25% of the total light flux. 

1 4-1 1 .  ( 14. 4)  The collimator paradox 
Figure 14-8 shows a source of light and a collimator C fixed in a reference 

frame S' that moves at a velocity 'Vi with respect to a fixed frame S, The 
detector D measures the light that goes through the collimator. 

According to Prob. 14-10, the angle 8 formed by the beam of light is less 
than 8' because of the headlight effect. However, the Lorentz contraction 
on the collimator makes its angle 8 larger than 8 ' .  But this is absurd ! If 
light reaches D in S ' ,  then it does so in S. 

You can solve this paradox by using the Lorentz transformation. 

14-12. ( 1 4. 4) Three reference frames 
We have three reference frames A .  B, C. Frames B and C move , 

respectively, at velocities 'Vi/2 and 'Vi with respect to A .  Use subscripts to 
identify the velocities: VRA = 'V /2. VCA = 'V. 

Show that VCR (velocity of C with respect to B) is larger than '1'/2. Thus, 
with respect to B, C moves away faster than A .  



CHAPTER 15 
* RELATIVITY III 
Mass, Momentum, Force, and Energy 

1 5 . 1  THE FOUR-VECTOR r 265 

1 5 . 2  FOUR-VECTORS 267 

1 5 . 2 . 1  THE SCALAR PRODUCT OF TWO FOUR-VECTORS 268 

1 5 . 2 .2 THE NORM OF THE FOUR-VECTOR r 268 

15 .2 .3  THE NORM OF A FOUR-VECTOR a 269 

1 5 . 3  THE RELATIVISTIC MASS m 270 

1 5 .4 THE RELATIVISTIC MOMENTUM p 270 

1 5 . 5  THE RELATIVISTIC FORCE F 270 

Example 27 1 

1 5 . 6  THE FOUR-MOMENTUM P 271 

15 .7  THE RELATIVISTIC ENERGY 't; = mc2 273 

Examples 274 

Example: THE RELATION '(;2 = m�c4 + p2C2 275 

1 5 . 8  KINETIC ENERGY 276 

1 5 . 9  THE LAW O F  CONSERVATION OF FOUR-MOMENTUM P 276 

1 5 . 1 0  TRANSFORMATION OF A FORCE 276 

Examples 277 

1 5 . 1 1  THE PHOTON 

1 5 . 1 2  SUMMARY 

PROBLEMS 280 

277 

278 

There are five chapters on relativity; the first three provide the basic 
ideas that are prerequisite for the other two. This third chapter concerns 
mechanics. As you will see , relativity makes havoc of mechanics . All its 
basic concepts , such as mass , momentum, force, and energy, crumble, 
and classical mechanics sinks to the rank of an approximate theory. It is a 
curious fact that classical electromagnetism, by contrast, is completely 
compatible with relativity and is thus spared. 

15 . 1 THE FOUR-VECTOR r 

An event E. such as the collision between two particles or the emission of 
a photon, occurs at a given point (x . y . z ) and at a given time t. The event 



/ 
E 

! l  
Fig. 15-1. Event E occurs at (x ,  0, 0, ct) in S, or at (x ' , 0, 0 ,  ct ' )  in S'.  The 
four-vector r defines the coordinates of E with respect to the event Q that occurs 
at (0, 0 , 0, 0) .  

is thus said to occur at the space-time coordinates (x, y, z, ct). These are 
the coordinates of event E with respect to the datum event Q that occurs 
at the origin (0, 0, 0, 0) .  

We can thus imagine a four-vector r pointing from Q to E in 
space-time. In particular, if y = 0 and z = 0, we can draw r as in Fig. 
15 -1 .We denote four-vectors by means of boldface sans-serif type : r .  It is 
the custom to write out the components of r in one of two forms: 

r = (x, y, z , ct) = (r, ct) .  (15-1 ) 

The four-vector r transforms as in Table 15-1 , because of the Lorentz 
transformation (Sec. 13 .4). 

Observe that the four-vector r relates one event to another. It thus 
possesses its own identitity , irrespective of the choice of reference frame: 

Table 15-1 Transformation of the four-vector r = (r, ct) 

r = y(r�1 + 'Vt') + r� ( 'V' , . 
ct = y ct' + 7) r' = y(rl l - 'Vt) + r� 

ct' = y( ct _ 'V;I I ) 
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r = (x, y, z, ct)s = (x ' , y ' , z ' , ct' )s ' = . . .  , ( 15-2) 

where x, y, z, ct and x ' ,  y ' , x ' , ct ' satisfy the Lorentz transformation. 
This four-vector is the position vector in space-time. 

This is not a new situation. For example, say point 0 in ordinary 
three-dimensional space is the origin , and point A is 1 meter above O. 
The vector r has a magnitude of unity and points upward. But the 
components of r depend on the orientation of the coordinate axes. 

In three dimensions, a vector r can serve to relate a point g to a point 
PI , instead of to the origin : 

( 15-3) 

Similarly ,  the four-vector 

( 15-4) 

relates event 2 to event 1 .  

15 . 2  FOUR-VECTORS 

In three dimensions ,  the vector r(i, y, z ) denotes the position of the 
point (x, y, z ) with respect to the origin of coordinates. 

Other vector quantities in three dimensions, such as velocities, 
accelerations , forces ,  etc. , transform in the same way as the position 
vector r. Indeed, any three quantities that transform as the components 
of the position vector are the components of a three-dimensional vector, 
by definition . 

Similarly, in four dimensions, any four quantities a i ' a21 a3 , a4 that 
transform as the components of the position vector in space-time are the 
components of a four-vector 

( 15-5) 

Table 1 5-2 states the rules for transforming the components of a 
four-vector. 

Table 15-2 Transformation of a four-vector a = (a, a4) 

a = y(a �1 + 'Vt')  + a�  a '  = y(all - 'Vt) + a� 

a� = y( a4  
_ '11;1 1) 
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1 5 .2 . 1  The Scalar Product of Two Four-Vectors 

Given the two four-vectors 

( 15-6) 

their scalar product is 

Note the negative sign before the last term on the right. Otherwise, this 
product is similar to the scalar product of two vectors. 

For example , if 

r = (x, y, Z, ct) = (r, ct) ( 15-8) 
and 

R = (X, Y, Z, cT) = (R, cT) ,  ( 15-9) 
then 

r '  R = xX + yY + zZ - c2tT = r '  R - c2tT. ( 1 5-10) 

The scalar product of two four-vectors is an invariant. This is a 
consequence of the Lorentz transformation. 

15 .2 .2  The Norm of the Four-Vector r 

The quantity 

( 15- 1 1  ) 

is the norm of the four-vector r, by analogy with ordinary vectors . 
Observe again the minus sign . This is not Euclidean geometry ! Then 
observe the absolute value bars ; by definition, the norm of a four-vector 
is real and positive. 

The norm of a four-vector is an invariant, like a scalar product . 
Let us pause a bit to reflect on the meaning of the norm of the 

four-vector rE that defines the position of an event E in space-time with 
respect to a given reference frame S. We set YE = 0, ZE = 0, so as to be 
able to show rE on a space-time diagram as in Fig . 15-2(a) and (b) . Then 

( 15-12) 

Clearly, the norm of rE is not its length. 
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Fig. 15-2. (a) Event E occurs at YE = 0, ZE = 0, and XE > ctE• It occurs at t ' = ° in 
a certain frame S '. (b) Event E occurs at YE = 0, ZE = 0, and XE < ctE• It occurs 
at x ' = ° in some other frame S ' .  

Let us set ,  successively, XE > etE> XE < etE, and XE = etE ' First , we 
choose an event E such that XE > etE, as in Fig .  15-2(a). Then we can 
imagine axes x' and et ' of a reference frame S' in which E occurs at 
IE = O. In S ', I'EI = x£. This means that if XE > elE, then the norm of 'E is 
equal to the spatial distance between events Q and E in a reference frame 
with respect to which Q and E are simultaneous. This result applies even 
if YE * 0, ZE * O. 

Now suppose that XE < etE, as in Fig. 1 5-2(b) .  We now select axes x ' 

and et ' so that E occurs at x ' = O. Then , in S ' ,  event E occurs at the time 

tk = !.!E . (15-13) e 

Therefore, if XE < etE ' the norm of rE divided by e is equal to the time 
interval between Q and E in a frame S' where both events occur at the 
same place. This is the proper time interval between Q and E. 
Remember that we have set YE = 0 and ZE = O. 

If now xE = etE, then 1 rE i = 0, despite the fact that rE * O. For 
example , suppose a photon travels along rE in reference frame S. Then Q 
and E represent two points on the world line (Sec. 13 .5) of a photon with 
XE = etE, and there does not exist a reference frame with respect to which 
Q and E take place either at the same time or at the same X. 

15 .2 .3  The Norm of a Four-Vector a 

The norm of an arbitrary four-vector a is defined like that of r :  
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(15- 14) 

Since all four-vectors transform as r, it follows that the norm of a 
four-vector is invariant. 

15 .3  THE RELATIVISTIC MASS m 

In its own reference frame, an object has a rest mass mo. If the object 
moves at a velocity v with respect to an observer, then , for that observer, 

(15-15) 

We take this fairly well-known result for granted. t The quantity m is the 
relativistic mass. All mass measurements are in agreement with the above 
equation . For example, the mass of a high-velocity electron in an 
accelerator is y times that of a slow electron . 

The relativistic mass tends to infinity as v approaches c. Then what 
about the photon? It has a relativistic mass m, but a (presumably) zero 
rest mass mo. See Sec. 15 . 1 1 .  

We shall see how to transform a relativistic mass in Sec. 15 .6 (Table 
15-3) . 

1 5 .4 THE RELATIVISTIC MOMENTUM P 

The relativistic momentum of a mass m moving at a velocity v is defined 
as in classical mechanics, except that m is the relativistic mass : 

p = mv = ( 2/ 2) 1/2 = ymov. 
1 - v c ( 15-16) 

It is this quantity that is conserved in collisions, and not the momentum 
mov of classical physics. 

We shall find how to transform a relativistic momentum in Sec. 1 5 . 6  
(Table 15-3) . 

1 5 . 5  THE RELATIVISTIC FORCE F 

The relativistic force is also defined as in classical mechanics: 

t See . for example, David Bohm, The Special Theory of Relativity, W. A.  Benjamin. New 
York, 1965. p .  84. 
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( 15-17) 

where p is now the relativistic momentum. We shall find the transforma
tion equations for F later, in Sec. 15 . 10 .  

Example A high-energy particle of rest mass mo ,  velocity v, and charge Q 
crosses a region where the electric field strength is E. The electric 
force is 

dp d d [ rna ] 
F = 

dt = dt (mv ) = dt (1 _ u2jc2)1/2 V = QE. (15-18) 

15 _6  THE FOUR-MOMENTUM P 

Consider a particle of rest mass mo and velocity v at 

r = (x, y, z, ct) = (r, ct) ( 15-19) 

with respect to a reference frame S, as in Fig .  15-3. 
CI 

x 

Fig. 15-3. World line of a particle moving In the (x, ct) plane .  The four
momentum p is along dr. and is thus tangent. 
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Over the time interval dt, as measured in S, 

dr = (dr, c dt) . ( 15-20) 

This increment dr of r is tangent to the world line of the particle. Now 

(15-21 )  

( 15-22) 

from Sec. 14 .2 ,  where dto is the increment of proper time in the inertial 
frame occupied momentarily by the particle. The velocity v need not be 
constant. 

For a given dto , say 1 second , the corresponding dt depends on the 
reference frame of the observer, but dto is the same for all observers, and 
hence dto is an invariant. 

The four-momentum of the particle is defined as follows: 

dr p = mo dto ' (1 5-23) 

This is a four-vector because dr is a four-vector , while both mo and dto 
are invariants. The four-momentum is tangent to the world line of the 
particle. 

To find the components of p, we write out the components of r and 
differentiate: 

dr d ( dr dt dt ) p = mo dlo = mo dto (r, C/) = mo dt dto ' moc dto . 

But, from Sec. 14 .2, 

Thus 

dt 1 
dto 

= y = (1 - V2/C2) 1I2 ' 

p = (moYV, moYc) = (mv, mc) = mev, c) = (p, mc) . 

The norm of p has a peculiar value: 

( 1 5-24) 

(15-25) 

(15-26) 

(15-27) 



1 5 . 7  THE RELATIVISTIC ENERGY 't: � me2 

Table 15-3 Transformation of a four-momentum P = (p, me) 

p = r(P �1 + m " V) + p� 

me = r ( m'e + 'V; �I) 
m = rm ' ( 1 + �� �I) 

p ' = r(P11 - mil) + p"

m 'e = r(me - 'V; I I) 
m '  = rm ( 1 - �� I I) 

So the norm of the four-momentum of a given object is independent of 
the velocity ! It is an invariant .  

Of course , a particle that is stationary in space is not stationary in 
space-time: it travels parallel to the et-axis at the speed of light. 

As to the photon , see Sec. 15 . 1 I .  
The four-momentum has another peculiar property. Since p .  p is 

invariant, 

d (p . p) = 2p · dp = O. ( 15-28) 

This means that dp is "orthogonal" to p . But P is "parallel" to dr, from 
Eq. 1 5-23 . Thus 

dr · dp = O, (15-29) 

and dp is "orthogonal" to dr, in agreement with the fact that p is 
invariant. 

To summarize, the four-momentum p of a particle is a four-vector (1) 
that is tangent to the world line, (2) whose space component is p and 
whose time component is me, (3) whose norm is moe, and (4) whose 
differential dp is "orthogonal" to both p and dr. 

Since p is a four-vector, i t transforms like r, as in Table 15-3 . 
If v2, V ,2, V2 are all negligible compared to e2, then we revert to 

classical mechanics : 

p = p '  + m "V, m = m ' .  ( 15-30) 

15 . 7  THE RELATIVISTIC ENERGY 'jg = mc2 

We have just seen that dr · dp = O. Thus 

dr · dp = (dr, e dt) · (dp, e dm) = dr ' dp - e2 dt dm = 0, ( 15-31) 
or 

dp 
dr ' dt = e

2 dm . ( 1 5-32) 
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Now we are concerned with an object of relativistic mass m, velocity v, 
and relativistic momentum p = mv . So dp/dt is the force F applied to m, 
and the term on the left is the energy expended by F on m over the 
distance dr. An increment of mass dm accompanies this increment of 
energy. 

More generally ,  in any physical process , an increase of energy d,{; 
results in an increase of mass dm such that 

( 1 5-33) 
and 

( 1 5-34) 

is the relativistic energy of an object of mass m. 
If a force F acts on a mass m moving at a velocity v, 

d(mc2) d,{; 
F · v = --- = - . dt dt ( 1 5-35) 

A particle at rest possesses a rest energy moc2. 
A relativistic energy transforms like a mass (Table 1 5-3) . 

Examples Say a mixture of hydrogen and oxygen explodes. What happens to 
the mass'? Before the reaction , the molecules may be assumed to 
be at rest. Let their total rest mass be m"h ' After the reaction , the 
relativistic mass is unaltered because no external energy has been 
fed into the gas . Then 

( 15-36) 

where KE is the kinetic energy of the high-temperature steam . 
The new rest mass is smaller than the initial rest mass. 

After a while , the steam cools and becomes water at room 
temperature, KE tends to zero, and m" decreases to m"" .  In the 
process the kinetic energy has spread out to neighboring bodies, 
thereby increasing their masses. The mass of the water is less than 
that of the original mixture, but the relativistic mass of the 
universe is unchanged. 

Fission and fusion reactions are qualitatively similar to exother
mic chemical reactions: there is a loss of rest mass and a release of 
thermal energy. 

What happens when you drop a brick? The rest mass of a brick 
depends on its position,  because of its potential energy: the higher 
it is, the larger is its rest mass. As the brick falls, its rest mass 
decreases and its kinetic energy increases. When the brick hits the 
ground , its kinetic energy becomes thermal energy. It loses rest 
mass, but, again, the relativistic mass of the universe is 
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Fig. 15-4. A positive and a 
negative electron annihilate to 
form two photons. If the kinetic 
energies of the electrons are low, 
each photon has an energy hv 
equal to the rest energy of an 
electron , 5 . 1 1  x 105 
electronvolts. 

unchanged. Strictly, one should, of course, think in terms of the 
potential energy of the brick-earth system and take into account 
the upward motion of the earth as the brick falls. 

When a positron meets an electron, both particles disappear to 
form a pair of photons, as in Fig. 1 5-4. Charge, relativistic mass, 
energy, and momentum are all conserved. 

Inversely, a photon can create a positron-electron pair. There is 
conservation of charge, but the conservation of mass, energy, and 
momentum requires the presence of another particle . 

An object of rest mass rna lies at rest in a reference frame S'.  With 
respect to another reference frame S, its mass is rn and its 
momentum is p. Since the norm of the four-momentum is 
invariant, 

( 15-37) 

Therefore 

( 15-38) 

as in Fig .  15-5. 
The term p2C2 is negligible when y2f32 « 1 ,  or when 2f32 « l. 

Then 't; = rnac2. On the other hand , if y2f32 » 1 or if f32 = 1 and 
v = c, then 

't; = rnc2 =pc. (15-39) 

Fig. 15-5. The relativistic energy 't; 
is related to the rest energy tnoc2 
and to the relativistic momentum p 
as in this right-angled triangle. 
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15 .8  KINETIC ENERGY 

By definition, the kinetic energy of a point mass m moving at a velocity v 
with respect to a given reference frame is equal to the energy expended 
in increasing its velocity from zero to v in that frame . This is 

2 2 2[ 1 ] 2( v2 3v4 ) mc - moc = moc (1 - V2/C2) 1/2 - 1 = moc 2c2 + 8c4 + . . .  

(15-40) 

(15-41) 

The first term on the right is the kinetic energy of classical mechanics. It 
is equal to the relativistic kinetic energy if v2 « c2. 

15 .9  THE LAW OF CONSERVATION OF 
FOUR-MOMENTUM P 

Say two particles interact , yielding two or three other particles. There is 
conservation of the total four-momentum 

(15-42) 

for the simple reason that both I: p and I: m are conserved .  So the 
conservation of four-momentum groups the conservation of momentum , 
of mass , and of energy ! 

The conservation and the invariance of the four-momentum imply that 
if p and m are conserved in one inertial reference frame, then they are 
conserved in any other such frame . 

15 . 10 TRANSFORMATION OF A FORCE 

A force (Sec. 15 . 5) transforms as fol lows. From Tables 15-3 and 13- 1 ,  

( 15-43) 

Dividing above and below by y dt ' yields 

(15-44) 
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Table 15-4 Transformation of a force 

where v '  is the velocity of the point of application of F '  in reference 
frame 5 ' .  

Now d'IE'/dt '  is the rate at which the relativistic energy builds up in 5 '  
under the action of F' .  Then 

diE' _ I , _ " I I 
dt ' - F ' v  - Fllv ll + F� · v � . ( 15-45) 

Substituting into Eq. 15-44 and simplifying leads to the transformation 
equations of Table 1 5-4 . The transformation does not involve the 
coordinates of the point of application of the force . 

Note that F� *- F� . Since a four-vector has the same perpendicular 
component in all inertial frames, the relativistic force is not the spatial 
component of a four-vector .  

Examples If F is parallel to 'V, then F = F ' .  
Two forces that are equal and opposite i n  one frame are not 

necessarily so in another frame. They remain equal and opposite 
only if their points of application have equal velocities. 

15 . 1 1  THE PHOTON 

The photon has presumably a zero rest mass . Its speedt is c, and its 
energy is 

'IE = hv, ( 15-46) 

where h is Planck's constant, 6 .626 X 10-34 joule-second, and v is the 
frequency of the associated wave. From Sec. 15 .7 ,  its mass is 

'IE m =2' c 
( 15-47) 

t PhoteJns always travel at the speed c, even inside matter. See Sec. 37.4. For the 
moment, we can think of photons traveling in a vacuum. 
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and its momentum is 

';g hv h p = mc = - =- = 
c c A '  

RELATIVITY III 

(IS-48) 

where A is the wavelength of the associated wave . The relation between p 
and ';g for a photon has been verified by measuring both the radiation 
pressure and the energy flux of a light beam . 

The four-momentum of a photon is 

p = (p, mc ) = (me, mc) . (IS-49) 

Its spatial component is me, where the vector e points in the direction of 
propagation . Also, 

(1S-S0) 

According to Eq . IS-27, this implies that the photon has a zero rest mass. 
Also , from Sec. IS .6 , 

Idr l Ip l = m d"t = O, (1S-S1 ) 

and I drl = o. The increment of proper time (Sec. 14 .3) over dr is zero : 

Idr l dto = - = O. c 

A photon's clock always reads the same time ! 

(IS-S2) 

The kinetic energy of a photon is (m - mo)c2 = mc2, and not mc2j2, as 
we would expect from classical mechanics . Although a given photon has a 
speed c for all observers, its energy ';g and its momentum are not 
invariant , because of the Doppler effect. For example , if 5 '  moves in the 
same direction as the photon, then v ' < v, and thus 

hv' < hv, ';g' < ';g, p ' < p. (IS-S3) 

15 . 12 SUMMARY 

A Jour-vector has four components, the first three of which are the space 
components of a three-dimensional vector. One specifies the location of 
an event in space-time with respect to the datum event Q (0 , 0 , 0 , 0) by 
means of the four-vector 
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r == (x, y, Z, ct) == (r, ct). (15-1) 

The four-vector 

(15-4) 

relates an event E2 with respect to another event E1 •  A four-vector 
transforms as in Tables 15-1 and 15-2 . Any set of four quantities that 
transform as the components of a four-vector are the components of a 
four-vector. 

The scalar product of two four-vectors a and b is 

(15-7) 

This product is invariant. 
The norm oj a Jour-vector is also invariant: 

(15-14) 

The mass of an object depends on its velocity with respect to the 
observer: 

This quantity is also called the relativistic mass. 
The relativistic momentum of a point mass is 

and the relativistic force is 

p == mv == ymov, 

dp F == -. 
dt 

The Jour-momentum of a particle is the four-vector 

whose norm is moc. 

dr p == ma - == (p, mc) dto 

(15-15) 

( 15-16) 

(15-17) 

( 15-23), ( 15-26) 

Four-momenta and masses transform as in Table 15-3. 
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The relativistic energy is 

(15-34) 

The rest energy is moc2• Kinetic energy is relativistic energy minus rest 
2 2 energy, mc - moc . 

In any interaction there is conservation of the total four-momentum p,  
and hence conservation of  momentum, mass , and energy. 
Forces transform as in Table 15-4. 
For the photon , the rest mass is presumably zero and 

't; hv h 
p = mc = - =- = c c .Ie '  

(1 5-47) 

(1 5-48) 

where h is Planck's constant ,  6 .626 x 10-34 joule-second, v is the 
frequency, and .Ie the wavelength of the associated wave. 

PROBLEMS 

15-1 .  ( 15. 3)  Burning hydrogen 
You ignite a mixture of hydrogen and oxygen inside a closed vessel , and 

then allow the water vapor to cool. 
Sketch graphs of mc2 and of m"c2 as functions of time. 

15-2. ( 15. 3)  Relativistic effects with 40-GeV electrons 
A linear accelerator accelerates electrons up to energies of 40 gigaelec

tronvolts (40 x 109 electronvolts). 
(a) Calculate the mass of an electron that has the full energy. How does 

this mass compare with that of a proton at rest? See the page facing the 
back cover. 

(b) What is the length of the accelerator in the reference frame of an 
electron that has the full energy? The length of the accelerator, as 
measured on the ground, is 3000 meters. 

(c) How much time would such an electron take to go from one end of 
the accelerator to the other (i) in the laboratory frame and (ii) in the 
electron's frame of reference? 

15-3 . ( 15. 6) Transformation of a mass density 
We use the symbol r for a volume in this problem. 
A small element in an object has a proper mass dmo, a proper volume 

dro• and a proper mass density Po = dmoldro. With respect to S and S' the 
mass densities are p = dml dr and p ' = dm ' I dr ' ,  respectively , and the 
velocities of the element are v and v '. 

Show that, if 'V is the speed of S '  with respect to S, then 
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(a) dm = Y (l + v��) dm " 

'( v;'V) 2 
(c) p = y- 1 + 

e2 
p ' , 2( vx'V) 2 

p ' = Y  1 - 7 p. 

15-4. (15. 5) The relativistic force 
In classical mechanics, F = rna if the mass is constant. 
Show that with relativity, 

where a ll and a.L are the components of the acceleration that are ,  
respectively, parallel and perpendicular to  the velocity v of  the point of 
application of the force. 

A force that is perpendicular to v changes the direction of v, but not the 
mass, and hence not the speed, as we could expect because the force does 
no work. Then, if F is perpendicular to v, F = rna applies! 

However, a force parallel to v changes the magnitude of v and hence the 
mass also. The resistance to acceleration is larger because of the l term. 

The quantity m is sometimes called the transverse inertial mass, and y2m 
the longitudinal inertial mass. 

15-5 . ( 15. 7) The gravitational red shift 
A photon of energy hvo leaves the surface of a star of radius R and mass 

M. 
(a) Show that , after the photon has escaped to infinity, t+.v/vo is equal to 

GM / (Re2), where G is the gravitational constant. This change is so small 
that you can set v = Vo in your calculation of the change in potential 
energy. What is the sign of t+. v? This change of frequency is the 
gravitational red shift. 

(b) Calculate t+. v / v for the sun and for the earth. See the page facing the 
back cover. 

(c) Calculate t+.v/v for a photon that travels from the surface of the sun 
to the surface of the earth, taking into account both gravitational fields. 

(d) Sirius and a smaller star revolve around each other. The mass of the 
smaller star is about equal to that of the sun, but its light has a t+. v / v of 
7 x 10-4. What is its average density? 

(e) The period of rotation of the sun is 24.7 days. What is the Doppler 
shift for 500-nanometer light emitted from the edge of the sun's disk, at its 
equator? Compare this Doppler shift with the gravitational red shift. 

(f) The sun ejects ionized hydrogen. How does the mass of a proton vary 
as it flies away from the sun? 

15-6. ( 15. 8) The mass of a high-energy proton 
A proton has a kinetic energy of 500 million electronvolts. Find its mass 

and velocity. 

15-7. (.15. 9) The conservation laws for colliding particles 
In the course of a collision between two particles there is conservation of 

energy and conservation of momentum.  
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(a) Show that, if these conservation laws apply in one inertial reference 
frame ,  then they apply in any other inertial frame .  

(b )  Show that if, in a given reaction , relativistic mass is conserved in all 
inertial frames, then p is also conserved, and inversely. 

15-8. (15. 10) Transformation of a force 
Show that 

_ , ['V X CF. ' X 'V ) V X (F ' X 'V ) ] F - F II + Y cV' - 2 • - c 

15-9. (15. 10) Force and power 
Starting from Eq . 15-17 ,  show that 

d� 
F · v = -. 

dt 

15- 10 .  (15. 1 1 ) The ultimate spaceship 
The thrust of a spaceship engine is equal to the product m ' v, where m ' is 

the mass of propellant ejected per second and v is the exhaust velocity with 
respect to the ship. The ultimate spaceship would transform all its 
propellant into radiation and eject photons backward at the speed of light .  
The mass of the propellant would then be minimum . 

(a) Show that the power-to-thrust ratio PI F for a photon engine is c .  
Since P! F and dM! dr are independent of the frequency , the source of 

radiation need not be monochromatic. 
(b) Then a photon ship burning 1 gram of matter per second would have 

a thrust of 3 x 1 0' newtons. The difficulty is to transform an appreciable 
fraction of the propellant mass into radiation, as the following example will 
show. 

An ordinary flashlight has a capacity of about 2 ampere-hours at about 2 
volts. Show that its terminal velocity is of the order of 10 4 meter Isecond. 

15- 1 l .  (15. 1 1 )  Is interstellar travel possible? 
(a) First, time should be dilated by, say , a factor of 10. Then y = 10. 
Calculate v! c. 
(b) Imagine a spaceship equipped with a photon motor. See Prob. 15-10 .  

You can find the fraction f of the initial mass that remains, after the ship 
has attained the proper {3,  from the conservation of energy and the 
conservation of momentum. Take into account the energy and momentum 
of the radiation . You should find that f = 0.05. 

The spaceship must then brake to a stop. This requires 95% of the 
remaining mass . At the end of the return trip we are left with (0 .U5)" = 
6.25 x 10-0 of the initial mass. If the mass of the ship and its payload is 1 
ton, then the propellant has a mass of about 200,000 tons . 

(c) In principle, the spaceship could collect and annihilate interstellar 
matter. There is about one atom of hydrogen per cubic centimeter .  

Calculate the mass of hydrogen collected during 1 year if the ship sweeps 
out a volume 1000 square meters in cross-section at the speed of light. 
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(d) Now this hydrogen must first be brought up to speed. This slows the 
ship. Show that the net gain is positive up to f3 = 0. 707 and negative 
afterward. 

15-12 .  ( 15. 1 1 )  The Doppler effect again 
Refer to Fig. 14-7. An observer at the origin 0 of the reference frame S 

measures the frequency of a source of electromagnetic radiation situated at 
the origin 0' of S ' .  In Prob. 14-9 we found that f = yf ' ( l  + f3 cos e ' ). 

Check this equation by transforming the four-momentum of a photon . 

1 5 - 1 3 .  ( 15. 1 1 )  The Mossbauer effect 
An excited nucleus of 57Fe formed by the radioactive decay of 57CO emits 

a gamma ray of 1 . 44 x 1 04 electronvolts. In the process, there is conserva
tion of energy and moc2 = mac2 + h v, where mo is the initial mass of the 
nucleus and ma is its mass after the emission of the gamma ray. There is 
also conservation of momentum , hv /c = mo u , where u is the recoil velocity 
of the iron nucleus. Let mall be the rest mass of the nucleus after the 
reaction. Then the energy released by the reaction is 'to = (mo - mOa)c2• 

(a) Rewrite the first equation after subtracting hv on both sides, and 
square . Then square the second equation and substitute. You should find 
that 

So /zv < '6': part of 'to goes to the photon, and the other part supplies kinetic 
energy to the recoiling nucleus. 

(b) Set mo = 57 x 1 . 7 x lO-27, and show that 'to/(2moc2) = 1 . :1  x 10-7. 
Thus the fraction of the available energy 'G that appears as recoil is small. 

(c) Mossbauer discovered in 1958 that, with solid iron , a significant 
fraction of the atoms recoil as if they were locked rigidly to the rest of the 
solid. This is the Mossbauer effect. If the sample has a mass of 1 gram , by 
what fraction is the gamma ray energy shifted in the recoil process? 

(d) A sample of normal 57Fe absorbs gamma rays of 14.4 ki loelectron
volts by the inverse recoilless process much more strongly than it absorbs 
gamma rays of any nearby energy. The excited nuclei thus formed reemit 
14.4-kiloelectronvolt radiation in random directions some time later. This is 
resonant scattering. 

If a sample of activated 57Fe moves in the direction of a sample of normal 
57Fe , what must be the value of the velocity v that will shift the frequency 
of the gamma rays. as seen by the normal nuclei , by :I parts in 1013? This is 
one line width . 

(e) A Doppler shift in the gamma ray results in a much lower absorption 
by a nucleus if the shift is of the order of one line width or more. What 
happens to the counting rate of a gamma-ray detector placed behind the 
sample of normal 57Fe when the source of activated 57Fe moves (i) toward 
the normal 57Fe , ( i i )  away from it? 

(f) If a 14.4-kiloelectronvolt gamma ray travels 22.5 meters vertically 
upward , by what fraction will its energy decrease? 
- (g) A normal 57Fe absorber located at this height must move in what 

direction and at what speed in order for resonant scattering to occur? 
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In this chapter we first examine two fundamental properties of electric 
charge, namely, invariance and conservation. However, our main objec
tive here is to calculate the electric and magnetic fields of a charge 
moving at a constant velocity. We do, of course, avail ourselves of the 
mathematical apparatus that we developed in the last three chapters. 

The simplest field of all is that of the stationary point charge. The next 
one, in order of complexity, is the one to which we address ourselves 
here. 

16. 1 INV ARIANCE OF ELECTRIC CHARGE 

Electric charge is invariant: a body carries the same electric charge for all 
observers . It is an experimental fact that, in an accelerator, the 
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charge-to-mass ratio elm for a particle moving at an increasing velocity v 
varies as follows: 

(16-1 ) 

The elementary charge e therefore remains invariant, while the mass m 
varies with velocity as in Sec. 15 .3 . This relation applies up to the highest 
energies attained to date. 

Another proof of the invariance of electric charge is the fact that a 
metal object does not acquire an electric charge when it is either heated 
or cooled (excluding thermionic emission) ,  despite the fact that the 
average kinetic energy of its conduction electrons is much less affected 
than that of its atoms. t It is because the enormous positive and negative 
charges in a piece of matter (Sec. 3 . 1) cancel perfectly at all temperatures 
that ordinary matter remains neutral when its temperature changes. 

Example Ten kilograms of copper contain about 1026 atoms and 1026 x 
1 .6 X 10-10 = 1 .6 X 107 colombs of conduction electrons. If the 
positive charge increased or decreased by only 1 part in 1015 upon 
heating, the copper would acquire a net charge of 1 . 6  x lO-R 
coulomb. A lO-kilogram copper sphere, with a radius of about 65 
millimeters, would then acquire a potential of about 2 kilovolts. 
Such an effect has never been observed. 

16 .2  THE FOUR-CURRENT DENSITY J 

We now show that J and cp are the components of a four-vector J , called 
the four-current density. 

Imagine a macroscopic charge Q moving at some arbitrary velocity v 
with respect to a reference frame S at time t. In the inertial reference 
frame So occupied momentarily by Q, the volume of the charge is Yo. In 
S, the charge is also Q, but the volume is shorter in the direction of v and 

(16-2) 

In So the volume charge density is 

(16-3) 

t See, for example, Charles Kittel, Introduction to Solid State Physics, 5th ed. , John 
Wiley, New York, 1976, p. 166.  
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while in S 

(16-4) 

Now consider two nearby points A and B on the word line (Sec. 13 .5) 
of Q, separated by the four-vector 

dr = (dr, c dt) (16-5) 

in S, with dr = V dt. As we saw in Sec. 15 .6 , the proper time interval 
between A and B is 

Also, 

Thus 

dto =� . c 

dt 1 
dto 

= Y = (1 - v2jc2) 1I2 ' 

dt 
P = YPo = dto Po · 

The current density in So is zero but, in S, 

dr dr dt dr d J - pv - p - yp - p - p  r - - dt - 0 dt - ° dto dt - ° dto . 

(16-6) 

(16-7) 

(16-8) 

(16-9) 

Comparing now Eqs. 16-9 and 16-8, we see that J and cp stand out as 
the components of the four-vector 

d dr J = (J, cp) = PO d- (r, ct) = PO-d to to ( 16-10) 

called the four-current density . Here both Po and dto are invariants. 
Therefore J and P transform as in Table 16- 1 , and the norm of J is 

invariant : 

(16-11 ) 



Table 16-1 Transformation of a four-current density 
J = (I, cp) 

1 = y(Iil + 'Yp ') + I� I' = y(II! - 'Yp) + 1>--( 'Vl' ) p = y p ' + --i p '  = Y
(
p - :;11) 
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The analogy between the four-current density J and the four
momentum p is striking. You will recall from Sec. 15.6 that 

p = (p, mc), I p l = mac, ( 16-12) 

and that the four-momentum is tangent to the world line of the mass m, 
pointing in the direction of motion . Similarly , the four-current density is 

its norm is 
J = (J, cp) ,  

I dr l IJ I = Po dtn = pac, 

(16-13) 

(16-14) 

it is tangent to the world line of the charge Q, and it points in the 
direction of motion if the charge is positive. 

Example THE CONDUCTION CURRENT IN A WIRE 

A wire that is stationary in reference frame S carries a current 
density 1. The net volume charge density in S is zero: 

p = Pp + Pn = O. ( 16-15) 

There are surface charges, but we can disregard them because 
they just superpose another electric field over the one that we are 
interested in here. This extra electric field depends on the 
resistivity and geometry of the wire , as well as on the current 
flowing through it. 

The wire is parallel to the x-axis, and the current flows in the 
negative direction , as in Fig. 16- 1 .  Then the conduction electrons 
flow in the positive direction of the x-axis. 

For an observer on S' moving to the right at a velocity 'V, the 
Lorentz contraction for Pn is less than for Pp and the wire appears 
to be positively charged. From the transformations of the 
four-vector J (Table 16-1) ,  

'V 'V 
P ' = - y -;;zl = y -;;z Il l ,  J' = yl. ( 16-16) 
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y y '  

'V 

x 

Fig. 16-1. Conducting �ire carrying a current density I. The 
conduction electrons, of volume charge density Pn ,  flow to the 
right at the velocity v. Reference frame S' has some velocity 'V 
parallel to the wire. 

Multiplying both equations by the cross section of the wire, which 
is the same in S and S ' ,  we find that the primed linear charge 
density is 

, 'V A = Y -z I/ l ,  c 
l' = yI. ( 16- 17) 

Another way of explaining the existence of a positive charge is 
the following. Imagine that , for an observer in the reference frame 
of the wire, the current starts to flow everywhere along the wire at 
t = O. Then,  for the observer on S ' ,  the current flow starts at 

'V 
t ' = - y -z x, 

c 
( 16- 18) 

according to the Lorentz transformation (Sec. 13 .4) .  That is ,  the 
electrons start flowing to the right at the right-hand end of the 
wire and the motion propagates to the left . This has the effect of 
depleting the population of conduction electrons in the wire. 

16 .3  THE FOUR-DIMENSIONAL OPERATOR D 

In three-dimensional space , the three operators a/ax, a/ay, a/az are the 
components of the del operator :  

(16-19) 

As we saw in Sec. 1 . 3 ,  this operator transforms as a vector. 
There exists a corresponding four-dimensional operator 

(16-20) 



16.3 THE FOUR-DIMENSIONAL OPERATOR 0 289 

called quad. Note the negative sign before the fourth component. 
Remember that the fourth component of r is +ct (Sec. 15 . 1 ) . 

The space and time derivatives transform as follows : 

In vector form, 

a a 
ay ay " 

a a 
az az " 

(16-21) 

(16-22) 

(16-23) 

(16-24) 

(16-25) 

The operator 0 transforms as a four-vector, as in Table 16-2, and acts 
like a four-vector. 

If F is a scalar function of x, y, z, t, then its four-gradient is 

OF = ( VF, _ aF) = ( aF.i + aF y + aF i, _ aF) . 
act ax ay az act (16-26) 

The four-gradient is a four-vector if F is invariant. We shall not require 
the four-gradient. 

The four-divergence of a four-vector is a scalar: 

( a ) aat 
o . a = V - - . (a ca ) = V ·  a + -' oct 

, t ot 

Table 16.2 Transformation of 0 = (V, -�) 
c ot 

V' = Y(V11 + ":�) + V� c ot 

- - - + 'V V 
o ( 0 ) 

ot ' - Y ot I II I 

(16-27) 
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( 16-28) 

Remember, from Sec. 15 .2 . 1 ,  that the fourth term in the scalar product 
of two four-vectors is minus the product of the fourth components of the 
four-vectors. 

The four-divergence is invariant because it is the scalar product of two 
four-vectors . Then 

oax oay oaz oat oax' oay , oa: ,  oat ' O ' a = - + - + - + - = - + - + - + - ( 16-29) ox oy OZ ot ox ' oy ' OZ ' ot' 

We shall not require the four-dimensional curl , which is a second-order 
tensor. 

The scalar product of 0 with itself is the d'Alembertian : 

( 1 6-30) 

For example , if F is either a scalar or a vector function of X, y, Z, t, then 

( 16-3 1) 

The wave equation for F is 02F = 0 (App. C). 
The d'Alembertian is invariant ,  like the square of the norm of a 

four-vector, 

16.4 THE CONSERVATION OF CHARGE 

As we saw in Sec. 4.2 ,  the law of conservation of charge states that 

op V · J = - -. ot ( 16-32) 

Thus, in any frame of reference , there is never creation or annihilation of 
the net charge of a closed system . 

Do not confuse this law with charge invariance. Charge invariance 
means that the electric charge carried by an object is independent of 
the velocity of the object with respect to the observer. In other words, 
the charge is the same in all inertial frames of reference , Mass is conserved 
in the course of an interaction (Sec, 15 ,9) ,  but it is not invariant. 
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The law of conservation of charge can also be written as D . J = 0: 

( o '  0 D . J = V - -) . ( J  cp)  = V . J + ---.l!. = o. 
' oct ' ot 

( 16-33) 

Now D ·  J is invariant, like the scalar product of two four-vectors. 
Then the conservation of charge in given circumstances applies to any 
inertial reference frame . 

16 .5  THE FIELD OF A POINT CHARGE Q 
MOVING AT A CONSTANT VELOCITY 

We consider two point charges, as in Fig. 16-2. The charge Q is at the 
origin 0' of the inertial reference frame S '  and thus moves at the 
constant velocity Ifi with respect to the fixed frame S. Charge q moves at 
some unspecified velocity v with respect to S. That velocity need not be 
constant . There are no other electric charges or currents in the vicinity. 

s 

o R 

'VI 

z '  \ 
\ 
\ 

X, x' 

Fig. 16-2. The velocity of the charge Q at the origin 0' of S' is 'Vi with respect to 
S. The velocity v of the charge Q with respect to S is arbitrary. Al l  the unprimed 
variables shown are measured with respect to S. 



292 "RELATIVITY IV 

The force FQq exerted by Q on q, as measured in 5, will give us the 
field of Q at the position of q, in 5. We calculate this force , first in 5 /  and 
then in 5. 

16. 5 . 1 The Force FQq 
In 5 / ,  charge Q is stationary . Now it is a well-established experimental 
fact that the force exerted by a stationary charge on a moving charge is 
independent of the latter's velocity (Sec. 3 . 1 ) .  We may therefore 
calculate FQq from Coulomb's law: 

F ' _ Qqr' Qqr/ 
Qq - 4JlEor '2 4JlEor '3 ' (16-34) 

where r/ and ,./ are defined as in Fig . 16-2 . 

16 .5 .2  The Force FQq 

Referring now to Table 15-4, we can deduce FQq from FQq: 

(16-35) 

We still have to transform the primed quantities on the right. From Table 
13-1 and from Fig. 16-2 , 

Now 

Thus 

r:1 = y(R II - 'Vt) = yrll ' r� = R "- = r"- / (16-36) 
r '2 = y2(R Il - 'Vt)2 + R� = y2[(R I I  - 'Vt)2 + R� (1 - f32)] . ( 16-37) 

( 16-38) 

(16-39) 

where (J is measured in reference frame 5. Also, from Sec. 14-4 , 

/ vlI - 'V 
v = II 1 - V 'V/c2 ' 

II 

Substituting and simplifying, we find that 

(16-40) 
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where, from Identity 2 on the page inside the front cover, 

'V (r-t . V-t) - 'VV ll r-t = 'V(V . r-t) - r-t (v . 'V )  
= v X ( 'V  X r-t) = v X ('V  X r). 

Finally , 

16 .5 .3  The Lorentz Force 
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( 16-41 ) 

(16-42) 
(16-43) 

(16-44) 

The force FQq comprises two terms. The first term is independent of v 
and is the electric force. The second term does depend on v and is the 
magnetic force. So we have the Lorentz force 

(16-45) 

where v is the velocity of q and where 

(16-46) 

is the electric field strength in the field of Q at the position of q, (3 = 'V / c, 
and 

(16-47) 

is similarly the magnetic flux density in the field of Q at the position of q. 
The unit of magnetic flux is the tesla . 

In these three equations, al l quantities concern the same reference 
frame S. 

More generally, if a charge q moves at a velocity v in a field E, B, the 
Lorentz force is 

F = q(E + v X B). ( 16-48) 

The velocity v need not be constant . 
Note that, for an observer in S, the charge Q exerts on q both an 

electric force qE and a magnetic force qv X B. However, for an observer 
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in the reference frame 5' of Q, the charge Q is stationary and the force 
exerted by Q on q is purely electric. 

The fact that the magnetic force exerted on an electric charge is 
proportional to the vector product of its velocity v by the local magnetic 
flux density B has four obvious consequences. In a given reference frame , 
the magnetic force on a point charge ( 1 )  exists only if the charge moves 
with respect to that frame, (2) is independent of the component of v that 
is parallel to B, (3) is perpendicular to both v and B, (4) does not affect 
the kinetic energy of q .  

Then , if jg is the relativistic energy mc2 of a particle of mass m and 
charge Q moving at a velocity v in a field E, B, 

d'l: dt = F . v = q(E + v X B) . v = qE . v. ( 16-49) 

Only an electric field can affect the kinetic energy of a charged particle ; 
a magnetic field can deflect such a particle , but cannot change its speed. 

16 .5 .4  The Electric and Magnetic Fields 

It is convenient to set 

1 
--2 = flo· toC 

( 16-50) 

This is the permeability of free space. By definition, flo = 4n x 10-7• 
We now rewrite the fields E and B at a point P as in Fig. 16-3 near a 

charge Q moving at a constant velocity 'V: 

/ / 
r ' I 
/ 

/ I I 

tfr /  
\ 
\ 

\ 

/ "'- - _ /  

I 
I I I I 

Fig. 16-3. The E and B vectors at a point P in the field of a charge Q moving at a 
constant velocity 'Y with respect to a reference frame S. The distance r and the 
angle e are both measured in S. 
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I .L )  

Fig. 16-4. (a) Lines of E and (b) lines of B for a positive charge Q moving at a 
constant velocity 1', as seen by a stationary observer. 

( 16-51 )  

( 16-52) 

See Figs. 16-4 to 16-7 and Prob. 16-3. 
Observe that E is radial, as if the information concerning the position 

of the charge traveled at an infinite velocity! Actually, it is only when the 
velocity of the charge is constant that the electric field is radial. If the 
charge accelerates , the lines are not radial. See Fig . 38-l . 

The lines of B are circles centered on the trajectory of Q. 
At a given distance r, both E and B are maximum at e = Jr /2 and 

minimum at e = 0, e = Jr. 

Example THE FIELD OF A lO-GIGAELECTRONVOLT 
ELECTRON 

What are the maximum values of E and of B 10 millimeters from 
the path of a single lO-gigaelectronvolt electron? One gigaelec
tronvolt is 109 electronvolts. 

Both E and B are maximum at e = 900, or when the line joining 
the particle to the point of observation is perpendicular to the 
trajectory in the reference frame S of the laboratory. Then 
sin e = 1 ,  

( 16-53) 

or y times larger than if the electron were stationary , 
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Fig. 16-5. Lines of E for a charge Q moving along the diameter of an imaginary 
stationary sphere. The dots show where the lines emerge from the sphere at the 
instant when the charge goes through its center. The density of the dots is a 
measure of the magnitude of E. The total number of dots is the same in all six 
figures, to satisfy Gauss's law (Sec. 3.7) .  Note how the field shifts toward fJ = 900 
as the velocity increases. For f3 = 1 the field is all concentrated at fJ = 900. 
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Fig. 16-6. The E of a moving point charge as a function of the polar angle fJ of 
Figs. 16-3 and 16-5, for seven values of f3 = 'V / c. The observer is stationary and 
sees the charge moving at the uniform speed 'V. For f3 = 0 the field is isotropic. It 
is hardly disturbed at f3 = 0. 25. As the speed increases, the field increases near 
fJ = 90° and decreases both ahead of the charge (near fJ = 0) and behind it (near 
fJ = 180°). At extremely high velocities, most of the electric field concentrates 
near fJ = 90°. These curves explain qualitatively the validity of Gauss's law for 
moving charges: as the speed increases, the flux of E shifts from the region where 
fJ = 0 and fJ = 180° to fJ = 90°, and the total flux of E remains constant. (Then 
why are the areas under the curves not equal?) Note that the electric field is 
symmetric about 90°. Thus there is no way of telling from the shape of the field 
whether the charge is moving to the right or to the left. 

in the radial direction and 

B = f.loyQ'V 
max 4nr2 

in the azimuthal direction. 

(16-54) 

(16-55) 

Since the relativistic kinetic energy is 10  gigaelectronvolts, 

(m - mo)c2 = mo(y - 1)c2 = 1010 electronvolts, (16-56) 

with moc2 = 5. 1 1  x 10' electronvolts. Thus 

and 'V = c. Then 

1010 
y = 5. 1 1  X 105 

+ 1 = 2.0 X 104 (16-57) 
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Fig. 16-7. The B of a moving point charge as a function of the polar angle () for 
seven values of {3 = 'Y /e. For {3 = 0 there is no magnetic field. As {3 increases, B 
first increases at all angles. Then B continues to increase near () = 900, while 
decreasing both ahead of the charge and behind it. At extremely high speeds, 
most of the magnetic field concentrates near the plane () = 900• The magnetic 
field, like the electric field , is symmetric about 900• The maximum ordinate on 
any curve is {3. 

Example 

(9 x 10")(2 x 104) ( 1 . 6 x 1 0- 1 " )  
E = max 10-4 

= 0. 29 volt/meter, 

B = ( 1 0 7)(2 x 104)( 1 .6 x 10- 19)(3 x 108) 
m a x  10-4 

= 9.6 x 10-10 tesla. 

THE MAGNETIC FIELD NEAR A STRAIGHT 
WIRE CARRYING A STEADY CURRENT 

( 16-58) 

( 16-59) 

We return to the current-carrying wire of the example in Sec. 
16 .2. Figure 1 6-8 shows a positive charge Q moving at a velocity 
vQ parallel to a stationary wire carrying a current I at a distance y. 
Let us calculate the force exerted by the wire on Q. 

In the reference frame S of the wire, the net linear charge 
density in the wire is zero: 

( 16-60) 
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Fig. 16-8. A positive charge moves at a velocity v parallel to a 
straight wire carrying a current I. The magnetic force Qv X B is in 
the direction shown because, for the charge Q, the wire is 
positively charged. If Q is positive , the force is repulsive. 

where p refers to the lattice of positive charges and n to the 
conduction electrons. The conduction electrons drift at the 
velocity Vn ,  and their linear charge density, in their own reference 
frame S ' ,  is A�. Because of the Lorentz contraction , ( V�) - 1I2 

Yn = 1 - 2" c ( 16-61 ) 

In S ,  the positive charges are stationary, and exert on Q a 
repulsive force in the y direction 

F = QE = Q
(
�

)
. p 2nEoY (16-62) 

Similarly ,  the conduction electrons exert in their own frame an 
attractive force 

F' = QA� = QAn 
n 2nEoY Yn2nEoY ' 06-63) 

where A� is negative and y' = y. This force also points in the y 
direction. From Table 15-4, 

F = F' 
(

1 _ VnVQ) = QAn (1 _ Vn VQ) 
n n Yn 2 2 " . c nEoY C 

This force does not quite cancel Fp . 

( 16-64) 

The net force exerted by the wire on the charge Q. In the 
reference frame S of the wire, is 

F = Fp + Fn = QAp + QAn _ Q(An Vn)�Q . 2nEoY 2nEoY 2nEoYc (16-65) 

Now Anvn is equal to the current that flows to the right, and 
-AnVn = I, as in the figure. So substituting /10 for 1/Eocl, 
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f.101 F = QvQ - .  2.ny 
Expressing this as a magnetic force Qv X B, we find that 

f.101 , B = - l/J  2ny 

(16-66) 

( 16-67) 

in the direction shown in the figure. We shall rediscover this law in 
Sec. 18.2.2. 

This magnetic force is infinitesimal compared to the force 
between Q and the conduction electrons in the wire and to the 
force between Q and the lattice of positive ions. 

Say we have a copper wire with a cross-sectional area of 1 
millimeter2 and carrying a current of 1 ampere. Then suppose that 
Q is an electron traveling at the drift velocity of conduction 
electrons in the wire. We can calculate these forces as follows. 

We found in Sec. 4 .3 .2 that the drift velocity is about 10-4 
meter/second or about 40 centimeters/hour. Then y is equal to 
unity within 1 part in 1025. 

Copper contains 1029 atoms per cubic meter and one conduction 
electron per atom. Then 1 meter of the wire contains 1 . 6  x 104 
coulombs of conduction electrons. If y is 1 centimeter, then the 
force of attraction between the electron and the positive lattice is 

Ap 1.6 X 104 19 F = -- Q = 1 . 6  x 10- (16-68) 2nEoY 2n x 8.85 x 10 12 X 10 2 

= 4.6 X 10 - 3  newton. (16-69) 

This force , if acting alone, would impart to the electron an 
acceleration of 5 x 1027 meters/second2 ! The force of repulsion 
between Q and the conduction electrons in the wire is slightly 
larger. 

The net force on an electron of velocity 10-4 meter/second is the 
magnetic force of Eq. 16-66: 

1 . 6  x 10- 19 x 10-4 
F = 

4n x 10-7 x 1 / (2n x 10 2) 
= 3. 2 X 10-28 newton . ( 16-70) 

So the magnetic force, in this particular instance, is smaller that 
the electrostatic forces by 25 orders of magnitude! This is a purely 
relativistic effect that takes place for 11/ C = 10-4/(3 X 108) = 3 X 
10- 13• 

Of course, the force exerted on a second wire is appreciable, for 
the simple reason that it also contains an enormous number of 
conduction electrons. 

16 .5 .5  The Force FqQ 
To calculate the force exerted by q on Q in Fig. 16-2, we interchange the 
roles of q and Q in Eg. 16-44. This means: (1) replacing T by -T, as in 
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(b) 

Fig. 16-9. (a) The force FQq exerted by Q on q. (b) The force FqQ exerted by q on 
Q. These two forces are not equal and opposite , as one would expect from 
classical mechanics. 

Fig .  16-9 ; (2) interchanging 'V and v ;  (3) replacing () by () ' ; and (4) replacing 
f3 = 'VIc by f3' = vic and y by y' . 

Thus 
qQ r + 'V x (v X r)/c2 

F = - -- ---;o-:;-----'--;,----;,f--- -= qQ 
4nEo y ,2r3 (1 - f3,2 sin2 () ,?12 · (16-71) 

Clearly, FqQ "* - FQq .  The electric forces are in opposite directions, but 
their magnitudes are not the same because of the y' , f3' ,  () ' terms. The 
magnetic forces are totally different. The forces FQq and FqQ are equal if 
"/12 « c2 and if "/Iv « c2. 

There is a difference between FqQ and FQq that is noteworthy. The 
expression for FQq is valid if the velocity 'V of Q is constant, while that 
for FqQ applies if v is constant. 

The fact that FqQ "* FQq is not peculiar to electrical phenomena. It is a 
purely relativistic effect that occurs with any type of force . 

16 .6  TRANSFORMATION OF E AND B 
We have just seen that a purely electric field in one reference frame 
becomes both an electric and a magnetic field in another frame. We now 
deduce the general rule for transforming electric and magnetic fields by 
again transforming the force on a moving charge. 

A point charge Q moves at a velocity v in a region where there exists 
an E and a B, all measured with respect to the same inertial reference 
frame S. Then the Lorentz force on Q is 
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F = Q(E + V X B). (16-72) 
This same force, when it is measured in a different inertial frame S '  
moving a t  a velocity 'Y with respect to S, is 

F' = Q(E' + v ' X B' ) . ( 16-73) 
Since the charge Q is invariant, it has the same numerical value in both 
frames, from Sec. 16. 1 .  

We can find expressions for E and for B in terms of E', B ' , and 'Y in 
the following way. Starting with the above F ' ,  we find F and then 
transform v I to v. This gives F as a function of v, E' ,  B ' ,  and 'Y. 
Comparing this F with the one above gives E and B as functions of E' , 
B ' , and 'Y. 

Since the calculation is straightforward and fairly similar to that of Sec. 
16.5 , we run through only part of it . We set B' = O. Then 

F' = QE' = Q(E�I + E�) 
and, from Table 15-4, 

Now, from Table 14- 1 ,  

I vll - 'Y 
v = II 1 - V 'rle2 ' II I V1-V 1- = y(1 - v lI 'Vle2) ' 

and it is a simple matter to show that 

Substituting and simplifying, we find that 

Grouping the second and fourth terms on the right yields 

So, finally, 

(16-74) 

( 16-75) 

(16-76) 

( 16-77) 

(16-78) 

(16-79) 



Table 16-3 Transformation of E and B 

E = E �I + y(E� - 'V X B ') 

, ( ' 'V X E') 
B = BII + Y B"- + -c-2-

E' = E11 + y(E "" + 'V x B) ( 'V X E) 
B' = BII + y B"" - -c-2 -

303 

(16-80) 

Comparing with Eq . 16-72, 

(16-81 )  

The purely electric field E '  i n  S '  becomes both an  E and a B field in 
reference frame S. 

Table 16-3 shows the transformation equations that apply to any 
electromagnetic field. 

It is fairly simple to show that 

(16-82) 

and that 

E · B = E' · B ' .  (16-83) 

Therefore both B2 - E2/c2 and E . B are invariants. 

Example THE PARALLEL-PLATE CAPACITOR 

In its own reference frame a charged parallel-plate capacitor 
possesses only an electric field. But suppose the capacitor moves 
at a velocity 'V parallel to its plates . What field does a fixed 
observer perceive? 

Choose axes as in Fig. 16- 10, and call S' the reference frame of 
the capacitor and S the laboratory frame. Then 

E; = 0, E;, = E' ,  E �  = 0, B; = B; = B; = 0. ( 16-84) 

In S, from Table 16-3, 

Ex = 0, E,, = yE' .  Ez = 0, ( 16-85) 

Bz = 0, By = 0. 
'V 

Bz = y -:;  E' .  
C 

( 16-86) 
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I-�-- ----- --

i-' - -L/ y ---# . 
(a) Ib) 

Fig. 16-10. (a) Parallel-plate capacitor, as seen in its own refrence frame. The 
electric field strength is E' ,  and B ' = O. (b) The same capacitor moves to the right 
at the velocity 'Y. Here E = yE ' ,  and B = y('V Ic2)E'  in the direction of the 
z-axis. The origins of S and S' are on the lower plate. We have disregarded edge 
effects. 

This is not difficult to explain .  First, the electric field. In S' the 
electric charge densities are ±o'  = ± f'oE' . In S the charges are the 
same, the plates are shorter by the factor II y, and 0 = yo' . So 
E = yE' . (We shall see in Sec. 17. 1 that Gauss's law applies to 
moving charges. ) 

In S' the potential difference between the plates is V() = E's. In 
S, the potential difference Vo is Es = yV�. The spacing s is the 
same in both frames because that length is perpendicular to the 
velocity 'Y. We return to this question of voltages in Sec. 17 .8 . 

Now the magnetic field . An observer in the "fixed" reference 
frame S sees a current flowing to the right in the lower plate and 
an equal current flowing to the left in the upper plate . From Table 
16-3, 

( 16-87) 

where I is the current per unit width that results from the motion 
of the charged plates 

Finally, let us check the invariance of E2 - c2 B2 and of E . B:  

E2 - c2B2 = y2E'2 - C2y2(�rE'2 ( 16-88) 

= i( 1 - �2)E '2 = E'2 = E '2 - c28 '2. ( 16-89) 

Also, E · B = E ' ' B ' = 0 . 

16 .7  SUMMARY 

An electric charge is invariant: its numerical value is the same for all 
observers. 
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The four-current density is a four-vector that relates the current density 
to the charge density: 

dr J = (J, cp) = Po dt ' (16-10) 

where J is the usual current density, p is the electric charge density for a 
fixed observer , Po is the charge density in the reference frame of the 
moving charges, and r is the four-vector defining the position of the 
charges. The four-current density transforms as in Table 16- l .  

The four-dimensional operator 0 corresponds to  the del operator V: 

(16-20) 

It transforms as in Table 16-2. The four-divergence of a four-vector is a 
scalar: 

oat O · a = V · a + -.  at 

The d' Alembertian operator is 

The law of conservation of charge can be written as 

op V · J =  - - . at 

( 16-27) 

(16-30) 

(16-32) 

In the field of a charge Q moving at a constant velocity 'Y, the electric 
field strength and the magnetic flux density are given , respectively , by 

(16-46) 

(16-47) 

as in Fig. 16-3 . 
The transformation equations for E and B, in any field, are those of 

Table 16-3 . 
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PROBLEMS 

16- 1 . (16. 1 ) The invariance of electric charge 
Imagine that electric charge is not invariant and that Q = Qo(1 -

(V2/C2)] 1I2. (Remember that charge is ,  in fact, invariant, according to all 
experiments performed to date) .  The charge Qo is that measured by an 
observer moving with the charge, and Q is the charge for an observer 
moving at a velocity 'V with respect to it. 

If the electrons in a given sample have an average kinetic energy of 100 
electron volts, what percentage increase in their charge must we expect if 
their velocity increases by 1 % ?  

16-2. ( 16. 2) Conduction and convection currents i n  a moving ring 
A square conducting ring carries a current I' in its own reference frame, 

as in Fig. 16- 1 1 .  Its cross section is sil ' .  
(a) The ring moves at a velocity 'V in  the direction normal to i t s  plane . 
Find the current and the charge density with respect to a fixed reference 

frame . 
(b) The ring moves to the right at a velocity 'Vi. 
Find the currents and the charge densities in a fixed reference frame. 
(c) The motion of the space charge at a velocity 'Vi gives a convection 

current. Calculate the convection and conduction currents in the four sides . 

1 6-3 . ( 16. 5. 3) Alternate expressions for E and B 
Show that 

/-loyQ'V X r 

1 6-4. ( J  6. 5. 3) The field of a I O-megaelectronvolt proton 
Plot E and B as functions of the time at a point P one centimeter away 

from the path of a 1 0 megaelectronvolt proton. Set P at (0, 0.01 , 0) ,  with 
the charge at ("fit, 0, 0) . 

16-5. ( 16. 5) The force between electrons moving side by side 
Calculate the force , as observed in the laboratory, between two electrons 

� 'Y 

(J 

1 c A I 
[) 

-� 

o x Fig. 16-11. 
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moving side by side along parallel paths 1 millimeter apart if they each have 
a kinetic energy of (a) 1 electron volt and (b) 1 megaelectronvolt . Use Table 
15-4. 

16-6. ( 16. 6) E ·  B is invariant 
Show that E . B is invariant under a Lorentz transformation. 

16-7. ( 16. 6) B2 .- £2/ c2 is invariant 
Show that B2 - £2/C2 is invariant under a Lorentz transformation. 

16-8. ( 16. 6) The angle between E and B is not invariant 
Show that the angle between E and B is not invariant. 

16-9. ( 16. 6) Transformation of a relative permittivity E, 
A dielectric-filled parallel-plate capacitor moves at a velocity "fI'i with its 

plates (a) parallel to the xz plane (Fig. 16-10) and (b) parallel to the yz 
plane . Show that E, = E; in both cases. 

16-10 . ( 16. 6) The transformation of pt 
A dielectric situated in frame 5' contains N" atoms per cubic meter, 

each atom possessing a dipole moment p i  = QS ' .  SO P' = N"Qs ' .  
Show that , with respect to  frame 5, P = P�I + yP�. 

16 - 1 1 . ( 16. 6) Time-independent magnetic field . 
In reference frame 5 we have a constant magnetic field and no electric 

field. 
Show that E' = 'V X B' in 5 I .  Note the prime on the right-hand side. So 

E' is perpendicular to both 'V and B' .  

t The transformation for M i s  more difficult t o  prove . See Paul Penfield and Hermann A .  
Haus, Electrodynamics of Moving Media, M . L T .  Press, Cambridge, Mass . ,  1 967, p .  209. 
The transformation is the same as for P. 



CHAPTER 17 
* RELATIVITY V 
Maxwell's Equations. The Four-Potential A 

17 . 1 THE DIVERGENCE OF E 309 

17 .2  THE DIVERGENCE OF B 310  

17 .3  THE CURL OF E 3 1 1  

1 7 .4 THE CURL OF B 3 1 2  

1 7 .5  MAXWELL'S EQUATIONS 3 1 3  

1 7.6 THE VECTOR POTENTIAL A 3 14  

1 7.6. 1 THE VECTOR POTENTIAL IN THE FIELD OF A CHARGE MOVING AT A 

CONSTANT VELOCITY 314  

Example: THE VECTOR POTENTIAL NEAR THE TRAJECTORY OF A 

I O-GIGAELECTRONVOLT ELECTRON 3 1 6  

1 7 .7 THE SCALAR POTENTIAL V. THE ELECTRIC FIELD STRENGTH E 
EXPRESSED IN TERMS OF V AND A 3 1 6  

Example: THE SCALAR POTENTIAL I N  THE FIELD OF A CHARGE 

MOVING AT A CONSTANT VELOCITY 3 1 7  

Example: THE VALUES O F  V ,  VV, AND aA I at NEAR THE TRAJECTORY 

OF A I O-GIGAELECTRONVOLT ELECTRON 3 1 9  

1 7.8 THE FOUR-POTENTIAL A. TRANSFORMING V AND A 3 1 9  

Example: THE PARALLEL-PLATE CAPACITOR 32 1 

1 7.9 THE LORENTZ CONDITION 321 

1 7. 1 0  SUMMARY 322 

PROBLEMS 323 

This is our last chapter on relativity. We first check the validity of two of 
Maxwell's equations for the field of a point charge moving at a constant 
velocity. The simple process of transforming these two equations then 
yields the other two. We shall not discuss Maxwell's equations any 
further for the moment ; that will come in Chap. 27 . 

The latter part of this chapter concerns the four-potential A and its 
components , the vector and scalar potentials A and V. 
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17 . 1  THE DIVERGENCE OF E 

In discussing electrostatic fields in Chap. 9 we arrived at the equation 

(17-1)  

where P i s  the total charge density, free plus bound, Pf + Pb' This IS 
Gauss's law, and it is one of Maxwell's equations. In integral form, 

(17-2) 

where .s4 is the area of a closed surface enclosing the total charge 
Q = Qf + Qb' 

We shall check the validity of Gauss's law for moving charges in the 
following special case. A charge Q moves at a constant velocity 'Vi. At 
the instant it goes through the origin , as in Fig . 17- 1 ,  the flux of E over an 
imaginary sphere of radius r and area .s4, centered at the origin and 
stationary in the reference frame S of an observer, should be equal to 
Q /Eo · 

At that instant, t = 0, and, from Eq. 16-46, 

\ 
\ 
\ 

/ 
/ / / 

/ / 

/ 
I / 

Fig. 17-1. Gauss's law applies to a moving charge: the surface integral of the 
normal component of the E field of a moving charge Q, evaluated over a fixed 
sphere, is equal to Q 1 Eo, as if the charge were stationary. The excess field near 
f} = Jr 12 just compensates the weak field near f} = 0 and f} = Jr. See Figs. 16-5 and 
16-6. 
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f Q IJr 2nr2 sin e de E · dd = --
d 4n€oy2 0 r\1 - f32 sin2 e?12 

To integrate on the right we set cos e = u. Then 

Q 

" RELATIVITY V 

(17-3) 

(17-4) 

(17-5) 

Gauss's law therefore applies to the fields of charges moving at 
constant velocities . We have already utilized this fact in Figs. 1 6-5  and 
16-6. The law applies even if the charges accelerate. 

17 .2  THE DIVERGENCE OF B 

We disregard the fields of magnetic monopoles (Sec. 18 . 1 ) ,  and we 
consider only the fields of electric currents .  Such a magnetic field is the 
sum of the magnetic fields of the individual moving charges. 

We further restrict our discussion to currents in conductors. Conduc
tion electrons ( 1 )  move in all directions because of thermal agitation , (2) 
have kinetic energies that vary randomly, (3) drift in the direction 
opposite to E through a lattice of fixed positive charges, and (4) 
accelerate as they go around bends in the wire. 

The time-averaged B that results from thermal agitation is zero . So we 
need think of only the drift velocity. 

We can dispose of the centripetal acceleration of the drifting cloud of 
electrons at bends. We have not discussed the fields of accelerated 
charges, and all that we can say is that these accelerations give rise to 
magnetic fields that are of the order of v / c, typically about 3 X 10-13 , 
times the one that we calculated in the second example in Sec. 16 .5 .4 .  

Consider Fig .  16-4 . I t  shows that the lines of B for a given charge are 
circles centered on, and orthogonal to, the trajectory, with B uniform all 
around a given circle. Then imagine a volume of arbitrary shape situated 
in this field . Clearly the net flux of B emerging through its surface is zero. 
In other words , for any closed surface of area d, 

L B · dd = O  (17-6) 

for the magnetic field of one individual charge, and hence for the 
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magnetic field of any steady current distribution . This equation, in fact, 
applies to any magnetic field, excluding the fields of magnetic monopoles. 

This is Gauss 's law for magnetic fields, another one of Maxwell's 
equations. Applying the divergence theorem (Sec. 1 .6) yields the same 
law in differential form: 

(17-7) 

These two equations apply in any inertial reference frame. 

17 .3  THE CURL OF E 

We have just seen that V ·  B = 0 in any inertial frame, say S. Then, in a 
frame S' moving at a constant velocity "Y with respect to S, 

V' · B ' = O. (17-8) 

Transforming both V' and B' as in Tables 16-2 and 16-3 , we find an 
equation that is valid in any frame S:  

(17-9) 

Of course, the scalar product of a parallel component and a perpendicu
lar component is zero. This leaves only four terms on the left. Expanding 
and then dividing by y leads to 

'V aBII "Y X E VII · BI I + 2: ---;- + V..L · B..L - V..L · --2 - = 0. 
C ut C 

(17-10) 

The sum of the first and third terms is V ·  B, which is zero. Multiplying 
now by c2, 

(17- 1 1 )  

Now the orientation of "Y is arbitrary and 

aB "Y • - = V ·  ("Y X E) = E . ( V  x "Y) - "Y . ( V  X E) = - "Y . ( V  X E). at 
( 17-12) 
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We have used Identity 7 inside the front cover, as well as the fact that 'V 
is independent of the coordinates. Thus 

( V X E) II = _ (aB) . at II 
( 17-13) 

But, again, the direction of 'V, to which the subscript I I refers , is 
arbitrary. It follows that 

(17-14) 

This is still another one of Maxwell's equations. 
Applying Stokes's theorem, we find that 

J E - dl = -� J B - dd = _ d<l> 
Jc dt � dt ' (17-15) 

where C is a closed curve, si1 is the area of any open surface bounded by 
C, and <I> is the magnetic flux linking C. 

17 .4  THE CURL OF B 
We can proceed in a similar manner to relate the curl of B to the other 
field quantities. 

We saw above that 

V - E = '£ .  ( 17-16) Eo 

This equation is valid in any inertial frame 5, for either stationary or 
moving charges. Then, in another frame 5' moving at the velocity 'V with 
respect to 5, 

V ' - E ' = p ' . 
Eo ( 17-17) 

Transforming again all the primed terms according to Tables 16- 1 ,  16-2 
and 16-3 , we find that 

( y'V a ) y ( 1/111) yVI I + -2 - + V1- - [E11 + y(E1- + 'V X B)] = - p - -� . c at Eo C 
( 17- 18) 
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We now expand the left-hand side , as in the preceding section,  and then 
divide by y. Then 

'Y aE 1 ( "/011 ) V · E + - · - - 'Y .  ( V X B) = - p - - . c2 at Eo c2 

The first terms on either side cancel, and 

'Y aE 'Y . J - . - - 'Y .  ( V X B) = - . c2 at EoC2 

( 17-19) 

(17-20) 

The orientation of 'Y being arbitrary, we can again disregard the scalar 
multiplication by 'Y. Also , since Eof..LoC2 = 1, from Sec. 16.5 .4 ,  we have 
the last of Maxwell's equations, 

or 

1 1 aE V X B = -J + - -EoC2 c2 at ' 

I V x B  - 'O"O� � "'" I 
( 17-21) 

(17-22) 

In these equations J is the total current density at a point, including 
polarization currents in dielectrics (Sec. 9.3 .3) and equivalent currents in 
magnetic materials (Sec. 20.3) . 

Applying Stokes's theorem leads to the integral form of the above 
equation: 

( 17-23) 

where siJ. is the area of any open surface bounded by C. 

17 . 5  MAXWELL'S EQUATIONS 

Table 17- 1 groups Maxwell's equations. These are the four fundamental 
equations of electromagnetism. We shall use them constantly throughout 
the remaining chapters. We have already used the first pair repeatedly in 
Chaps. 3 to 12. These equations apply in any inertial reference frame. Of 
course , x, y. Z, t, p, J, E, and B all refer to the same reference frame. 

These equations are invariant : if we transform all the variables to 
primed quantities, then we obtain identical equations that are valid in 
another inertial reference frame S I .  
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Table 17-1 Maxwell's equations 

DIFFERENTIAL FORM 

V · E = !!... 
Eo 

V ' B = O  

aB 
V X E  + - = 0  

at 
1 aE 

V X B - - - = /l  J 
c2 at " 

INTEGRAL FORM 

LB · dd = 0  

J E . dl = - � f B . dd = _ del> 
'Yc dt vi dt 

J B . dl = Ii" f (J + Ell 
aE) . dd t· � at 

The equation D ·  J = 0 (Sec . 1 6.4) for the conservation of charge 
follows from the equation for the curl of B, simply by taking the 
divergence of both sides. 

We return to Maxwell's equations in Chap. 27 . 
Observe that the equations for V ·  B and for V X E are closely related. 

Indeed, transforming one gives the other. We deduced the second from 
the first, but the inverse operation is equally effective. These two 
equations are sometimes called the first pair. 

The equations for V ·  E and V X B are similarly related . They form the 
second pair. 

17 .6  THE VECTOR POTENTIAL A 

You will remember from Chap . 3 that, in electrostatic fields , E = - Vv. 
The magnetic flux density B can be expressed in an analogous fashion as 

B =  V X A , ( 1 7-24) 

where A is the vector potential, expressed in tesla-meters. It can be 
shown mathematically that if V ·  B = 0, then there exists a function A 
that satisfies the above equation . 

The vector potential A is not uniquely defined by B :  for a gIven 
B(x, y, z) there exists an infinite number of possible A(x,  y, z ) 's . 

17 .6 . 1 The Vector Potential in the Field of a Charge 
Moving at a Constant Velocity 

We now verify that , at a point P in the field of a point charge Q moving 
at a constant velocity 'Y, 
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A = /1oQ'Y 
4n,( 1 - f32 sin2 8) 112 ' 

3 15 

(17-25) 

with 'Y, r, and 8 defined as in Fig. 17-2. The curl of this quantity should 
equal the B of Sec . 16 .5 .4 .  

First recall from Sec. 16 .5 .2  that 

Thus 

The four partial derivatives of 1 / , '  are as follows: 

a l l 2 ' y\x - 'Yt) 

ax -;; = - -2,-,3 [2y (x - '» t)] = - --,--;' 3;---'- ' 

3 1  1 Y 3 1  z 
- - = - - 2y = - -oy " 2, ,3 , ,3 ' OZ " , ,3 '  

o 1 1 2 y2'Y(X - /It) 
- - = - - [2y (x - 'Vt)( - 'Y)] = 

Then 

ot " 2," , ' 3 

s 

() S'  

p 

0' 

r, x '  

(17-26) 

(17-27) 

( 17-28) 

( 17-29) 

( 17-30) 

Fig. 17-2. The charge Q moves to the right at a velocity 'Y. We calculate A and V 
at the point P. The distance QP is , in the fixed reference frame S, and it is , '  in 
'} '  
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A aA A aA A 110 ( zy YZ) V X A = V X (Ax) = -y - - z = - yQ'V - - + - (17-3 1) az ay 4Jr r ,3 r , 3  
l1oyQ'Y x r l1oQ('Y x r) 

4Jrr,3 4Jry2r2(1 - f32 sin2 e?12 '  (17-32) 

which is the B that we found in Sec. 16 .5 .4 .  

Example THE VECTOR POTENTIAL NEAR THE 
TRAJECTORY OF A lO-GIGAELECTRONVOLT 
ELECTRON 

As in the first example of Sec. 16 .5 .4 , y = 2 .0 X 1 04 and If = c. 
The vector potential is maximum at e = 900 and ,  at 10 millimeters 
from the path, 

f.loyQIf 4n x 10-7 x 2 X 104 x 1 . 6 X 1 0- 19 x 3 X 1 08 
Amax = � = 4n x 10 2 

( 17-33) 
= 9. 6 x 10- 1 2 tesla-meter. ( 17-34) 

17 .7  THE SCALAR POTENTIAL V. THE ELECTRIC 
FIELD STRENGTH E EXPRESSED IN TERMS 
OF V AND A 

We have seen in Sec. 17.3 that V X E  = -aBlat. Now the curl of a 
gradient is zero . It follows that the equation E = - VV of Chap. 3 cannot 
be general. 

Electric fields result from two phenomena that we may consider, for 
the moment, to be distinct. First, accumulations of charge give rise to 
both an E and a V, with E = - Vv. However, if some of the charges 
move , there is also a B and an A.  If A is time-dependent, then there 
exists a further electric field E = - aAI at. So the general expression for 
the electric field strength is 

aA E =  - VV - at ' 
(17-35) 

as in Fig. 17-3 . In this context, V is termed the scalar potential. This is an 
important equation . We shall return to it in Sec. 23 .5 .  

As we shall see in  Sec. 17-8, the relative values of the two terms on the 
right-hand side of the above equation depend on the reference frame of 
the observer. So , in that sense, the two phenomena that we have referred 
to above are not distinct . 
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E 

Fig. 17-3. E is the vector sum of - VV and - aA/ at. 

THE SCALAR POTENTIAL IN THE FIELD 
OF A CHARGE MOVING AT A CONSTANT 
VELOCITY 
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We first write down the expression for the scalar potential V in the 
field of a single point charge Q moving at a constant velocity 'V, as 
in Fig. 17-2, and then we check the above equation. 

In this field , 

yQ yQ (17-36) 
4.7H'o" 

-
4.7H'o[ /(x - "Vt)2 + y2 + Z2] 1I2 

. 

Observe the analogy with the expression for A given in  Eq. 17-25. 
Figure 17-4 shows equipotentials surrounding a moving charge , 

as seen by a fixed observer, for six values of 13 = "V / c. These 
equipotentials are spheres that are elongated by a factor of 
y = (1 - 132) - 112 in the directions perpendicular to the trajectory 
(Prob. 17-1) .  

We now check the validity of  the above equation by proceeding 
as in Sec. 17.6. 1 :  

av � av � av � aA 
E = - - x - -y - - z - -

ax ay az at 
( 17-37) 

= _ yQ [ _ y2(X - "Vt) i _ L � _ � z] _ f..loyQ"V/"V(x - "1ft) x 
4.7fEo , ,3 ,d Y , ,3 4.7f"lf, ,3 . 

Recalling that Eof..loC2 = 1 ,  we find that 

E = � [ (x - "Vt) /( 1 - �2)i + yy + zz] 
4.7fEo" C 

yQ 
[( Ofr ) � � �] yQr = ---3 X - r t x + YY + zz = ---

3 4.7fEo" - 4.7fEo" 

Qr 
4.7fEoy2,2( 1 - 132 sin2 8)3/2 ' 

as in Sec. 16.5 .4 .  

( 17-38) 

( 17-39) 

(17-40) 

(17-41) 
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f3 = () 

f3 = () 75 

f3 � o .xo 
f3 = () .x�  

f3 = () 'if) 

Fig. 17-4. Equipotentials for a point charge moving either to the right or to the 
left. The equipotentials near Q are too close together to be shown. Remember 
that E equals - l"V - CJA /CJt, not - l"v. 
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Example THE VALUES OF V, VV, AND 8A/8t NEAR THE 
TRAJECTORY OF A lO-GIGAELECTRONVOLT 
ELECTRON 

From the first example in Sec. 16 .5 .4 , y = 2.0 X 104• At a fixed 
distance r from the trajectory, 

(17-42) 

and is y times larger than if the electron were stationary. At 10 
millimeters from the trajectory, 

2 X 104 X 1 . 6  X 10- 19 
Vmax = 4n X 8. 85 X 10- 12 X 10-2 = 2.9 millivolts. (17-43) 

To calculate VV, we use Eg. 17-36 and polar coordinates: 

av 1 av , 
VV = - ,. + - - 8 ar r ae 

Q ( A f32 sin e cos e A ) = -r +  8 4nEor2( 1 - f32 sin2 8) 112 1 - f32 sin2 e 
yQ,. ---

= -0. 29,. volt/meter (r = lO mm) . 

(17-44) 

(17-45) 

( 17-46) 

( 17-47) 
This is also y times larger than if the charge were stationary. 

The vector potential is parallel to the velocity but points in the 
opposite direction because electrons are negative. At e = 90°, the 
distance r is minimum and the angle e is maximum, so A is 
maximum, aA/at is zero, and 

E = - VV = 0. 29" volt/meter (r = 10 mm). (17-48) 

17 .8  THE FOUR-POTENTIAL A. TRANSFORMING V 
AND A 

We now demonstrate that A and V /e are, respectively, the space and 
time components of a four-vector A. 

We are interested in the potentials at a point P in space-time defined 
by the four-vector 

r = (x, y, z, et) (17-49) 

in a reference frame S. The source of the field is a charge Q moving at a 
velocity 'Y. We found above that 
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A = f.1oyQ'Y 
4.nr' , V = � 4.nEor "  (17-50) 

where r' is the distance from Q to P in the reference frame S' of Q. 
For a given four-vector r the distance r' is a specific distance in a 

specific frame. Then we may rewrite A as follows: 

f.1oyQ drQ f.1oQ drQ A = -- -- = - -
4.nr' dt 4.nr ' dto ' (17-5 1) 

where rQ defines the position of Q at the time t ,  and to is the time in the 
reference frame S' of the charge Q. We saw in Sec. 14 .3 that dt = y dto · 

Similarly , 
yQ c2f.1oQ dt V = -- = -- -4.nE or '  4.nr ' dto ' (17-52) 

We have used the relation Eof.1oC2 = 1 .  
We can now see that A and Vic are the components of the 

four-potential 

= f.1oQ � (r ct) = f.1oQ drQ 
4.nr ' dto Q' 4.nr' dto . 

( 17-53) 

(17-54) 

Equation 17-53 is general, while Eqs. 17-54 apply to a single charge Q. 
Note the analogy with the four-momentum of an object of proper mass 

rno (Sec. 15 .6) 

p = (p, !) = rno dr 
c dto ( 17-55) 

and with the four-current density resulting from the motion of a charge of 
proper density Po (Sec. 16.2) :  

dr J = (I, cp) = PO -d . (17-56) to 

We have therefore shown that, in the field of a point charge moving at 
a constant velocity, A and Vic are the components of a four-vector . This 
is true for any electromagnetic field. 

Since A is a four-vector, it transforms like r. Thus A and V transform 
as in Table 17-2. 



Example 

Table 17-2 Transformation of the four-potential A == (A, V /e) 

( , 'V ) , A = y A I I  + eZ V ' + A � 

� = y(V '  
+ 'VAil) 

e e e 

A '  = Y(AI I -� V) + A"

V '  = y(� _ 'VA il ) 
e e e 

THE PARALLEL-PLATE CAPACITOR 
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In the example in Sec. 16 .6 we transformed the E of a 
parallel-plate capacitor. Let us now transform V. In  reference 
frame S' of the capacitor, we may set A '  = 0, since there is zero 
magnetic field. 

Let the potential of the lower plate be zero and that of the top 
plate be - Vc" as in Fig. 16-10 .  Then 

V '  
V'  = - � = -yE' .  

s 
( 17-57) 

From Table 17-2 , 

So 

Ay = 0, V = - yyE' .  ( 17-58) 

2A 2V 2A 2V E = - VV - 2"t = - 2y Y - 2"t = - 2y y = yE' ,  ( 17-59) 

2A 2A 2A 'V B = V X A  == -y - - £  = - - £ = y - E'£, ( 17-60) 
2z 2y 2y e2 

as in the example in Sec. 16 .6 
You can easily check that IAI  = IA' I ,  or that A2 - V2/e2 = 

A 'z - V '2/e2. 

17 .9 THE LORENTZ CONDITION 

The expressions for A and V of Secs. 17 .6 and 17.7 are so closely related 
that one suspects the existence of some general relation linking them. 
Such a relation does exist (Prob. 17-8), and it is called the Lorentz 
condition : 

D · A = O, (17-61 )  

where D i s  defined i n  Sec. 16.3 and A i n  Sec. 17 .8 .  Thus 
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av V · A  + Eoflo- = O, at 

which is the more usual form of the Lorentz condition . 

' RELATIVITY V 

( 17-62) 

Since the divergence of a four-vector is invariant , the Lorentz 
condition applies in any inertial reference frame. 

Again ,  this result is valid for any electromagnetic field: one can always 
select V and A so as to satisfy the Lorentz condition. Observe that the 
Lorentz condition is mathematically similar to the law of conservation of 
charge (Sec. 16.4) . 

We shall return to the Lorentz condition on various occasions. 

17 . 10 SUMMARY 

Gauss 's law for electric fields states that 

( 17-1 )  

where p is the total charge density, free plus bound, or Pr + p" . This law 
applies even to moving charges. 

Gauss 's law for magnetic fields is 

We also found that 

aE V X B - Eoflo- = flo}. at 

(17-7) 

(17-14) 

(17-22) 

These are the four equations of Maxwell. They apply In any inertial 
reference frame. 
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The vector potential A is defined by 

B =  V X A. (17-24) 

The general expression for the electric field strength is 

aA E = - VV - - . at (17-35) 

The first term on the right results from charge accumulations, and the 
second from changing magnetic fields . 

The four-potential A groups together the scalar potential V and the 
vector potential A :  

or 

The Lorentz condition relates A to V:  

O · A = O, 

av V . A + Eo!lo - = o. at 

( 17-53) 

( 17-61 )  

(17-62) 

PROBLEMS 

17- 1 .  ( 1 7. 7) The equipotentials of a moving point charge are foreshortened 
spheres 

Show that the equipotentials of a moving point charge are foreshortened 
spheres, as in Fig. 17-4. for a stationary observer. Set V = 1 and 
yQ /4nEo = 1 .  

17 -2. ( 1 7.  8 )  The integral for A 
Verify that 

A = 110 f � dv ' .  
4n ,.' r 

17-3 .  ( 1 7.  8) Transforming the field of a parallel-plate capacitor 
A charged parallel-plate capacitor moves at a velocity 'Vi in the direction 

normal to its plates. The capacitor plates have an area s!l and are separated 
by a distance s. The vector E' points in the positive direction of the x-axis, 
and the positive plate is at x '  = O. 

Find V. A ,  E. and B with respect to a stationary reference frame. 
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17-4. ( 1 7. 8) Transformation of the field of a solenoid moving in a direction 
perpendicular to its axis 

Inside a long solenoid , B = /loN'I  if N' is the number of turns per meter 
and the current is I. The solenoid moves at a velocity 'V in a direction 
perpendicular to its length. 

(a) Calculate E and B, both inside and outside the solenoid , as measured 
by a stationary observer. The axis of the solenoid is the z '  -axis, and 
'V = 'Vi. 

(b) You can also calculate this field by transforming the potentials. First 
show that , in the frame of the solenoid , the vector potential 

B "  B "  
A '  

Y . ,  + X A ,  = - -
2
- x  -

2
-Y 

gives the correct B ' .  Note that there exists an  infinite number of possible 
expressions for A ' . For example, we could have set A '  = B 'x 'y ' .  

(c) Set V '  = O. Now calculate A ,  V, E ,  and B inside the solenoid . Both 
V and A depend on the expression that we chose arbitrarily for A ' . 
Nonetheless, the relations E = - VV - aA / at and B = V X A always apply. 

At points outside the solenoid, in its own frame, A =1= 0, as we shall see in 
the example in Sec. 19 . 1 .  

17-5 . ( 1 7. 8) Transformation of the field of a solenoid moving parallel to its axis 
The solenoid of Prob. 17-4 moves at a velocity 'V in the direction of its 

axis. Find E and B inside and outside the solenoid, as measured by a 
stationary observer. 

1 7-6. ( 1 7. 8) The paradox of the perpendicular capacitors 
Figure 17-5 shows two identical capacitors set at right angle , one parallel 

to the velocity 'V and the other perpendicular. In the reference frame of 
the capacitors s� = s�, V('u = V('h , and E� = E�. 

For a stationary observer, Eu = yE� and Sa = 05;,. So v,'u = Eusu = yE��;, = 
yV('a. However, Eh = E�, Sh = s�/y, and V,'h = Ehsh = E�� = V('h/ y = 
Vojy2. 

This is absurd because the capacitors are in parallel and v,'u must equal 
V,'h ! You can solve this paradox if you transform the potentials and the 
fields carefully. 

1 7-7. ( 1 7. 8) How the magnetic force Qv X B  becomes an electric force 
Q(- VV'  - aA ' /at ' )  

A charge Q moves at  a velocity v in a constant, but not necessarily 
uniform, magnetic field B. The magnetic force is Qv X B. All three 
variables refer to a stationary frame S. There is no electric field. 

The charge accelerates. However, at a given instant, it occupies an 
inertial frame S' that travels at the instantaneous velocity v of the particle. 
With respect to S ' ,  Q is at rest and F ' = QE' .  The charge has the same 
value in both frames. From Prob. 16- 1 1 ,  

E '  = 'V X B '  = 'V X ( V' X A ').  



y' 

y 

Show that 

f----------:l> 'V 

x 

aA ' 
E'  = - V' V '  - - . 

at' 

x' 

Fig. 17-5. 

You will have to show that 'V( al ax ' )  = al at ' for this particular field. 

17-8. (1 7. 9) The Lorentz condition 
Show that the Lorentz condition 

D · A = O, or 
av 

V . A + £00110 - = 0, 
at 
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applies to the field of a point charge moving at a velocity 'V with respect to 
the observer. 
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Imagine a set of charges moving around in space . t At any point r in space 
and at any time t there exists an electric field strength E(r, t) and a 
magnetic flux density B(r, t) that are defined as follows. If a charge Q 
moves at velocity v at (r, t) in this field ,  then it suffers a Lorentz force 

F = Q(E + v X B). (18-1 ) 

The electric force QE is proportional to Q but independent of v, while 
the magnetic force Qv x B is orthogonal to both v and B. 

t If you have not studied Chaps. J 3  to 17 on relativity, simply disregard references to 
them from here on . 
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I n  Chaps . 3 to 12  we studied the E fields of charges that are fixed in 
position or that move slowly. Fixed charges have no magnetic field; a 
magnetic field exists only if there are moving charges .  

In this chapter we study the magnetic fields of constant electric 
currents . We assume that the electric charge density p is also constant . 
Thus ap/ at = 0, and hence, from Sec. 4.2 ,  V ·  J = O. We also assume that 
there are no magnetic materials, and no moving materials , in the field. 

* 1 8 . 1  MAGNETIC MONOPOLES 

We assume here that magnetic fields arise solely from the motion of 
electric charges. 

However , Dirac postulated in 193 1 that magnetic fields can also arise 
from magnetic "charges ," called magnetic monopoles. Such particles have 
not been observed to date (1987) . The theoretical value of the elemen
tary magnetic charge is 

h 
- = 4. 1356692 X 10- 15 weber. t e (18-2) 

where h is Planck's constant and e is the charge of the electron. See the 
table inside the back cover. 

At a distance r from a stationary magnetic monopole of "charge" Q * ,  
we would have that 

Q* A B = --2 r. 4.nr (18-3 ) 

Also, the force of attraction or repulsion between two monopoles Q; and 
QZ would be 

(18-4 ) 

A magnetic field would exert a force Q * B / 110 on a monopole in free 
space. 

18 .2  THE MAGNETIC FLUX DENSITY B. 
THE BIOT-SAVART LAW 

In the neighborhood of an electric circuit C carrying a steady current I 
there exists a magnetic field and, at a point P in space , as in Fig . 18- 1 ,  

t This is the Dirac charge; the Schwinger charge i s  twice as large. 
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B 

c 

Fig. IS-I .  Circuit C carrying a current I and a point P in its field. At P the 
magnetic flux density is B. 

B = /101 ,! dl' � r 
. 4;r Jc r ( 18-5) 

As usual , the unit vector r points from the source to the point of 
observation P. This is the Biot-Savart law. The integration can be carried 
out analytically only for the simplest geometries. See below for the 
definition of /10. 

This integral applies to the fields of alternating currents, as long as the 
time ric, where c is the speed of light, is a small fraction of one period 
(Sec. 37 .4) . 

The unit of magnetic flux density is the tesla. We can find the 
dimensions of the tesla as follows . As we saw in the introduction to this 
chapter, vB has the dimensions of E. Then 

volt second weber Tesla = -- --- = --- . meter meter meter2 

One volt-second is defined as 1 weber. 
By definition, 

/10 = 4;r x 10-7 weber/ampere-meter. 

This is the permeability of free space. 

( 18-6) 

( 18-7) 

We have assumed a current I flowing through a thin wire. If the current 
flows over a finite volume, we substitute J dsi' for I, J being the current 
density in amperes per square meter at a point and dsi' an element of 
area, as in Fig. 18-2. Then J dsi' dl' is J dv ' and , at a point P, 
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d/' 

.��--------��---+----�� J 

�----------'-----���dd' 
d. 

Fig. 18-2. At a given point in a volume distribution of current, the current 
density is J. The vector dd ' specifies the magnitude and orientation of the 
shaded area. Shifting this element of area to the right by the distance dl' along J 
sweeps out a volume d.stl ' dl' = dv ' .  

B = !1° f J X TdV ' 
4n p' r2 • ( 18-8) 

in which v '  is any volume enclosing all the currents and r is the distance 
between the element of volume dv ' and the point P. 

The current density J encompasses moving free charges , polarization 
currents in dielectrics (Sec. 9 . 3 . 3) ,  and equivalent currents in magnetic 
materials (Sec. 20. 3) . 

Can this integral serve to calculate B at a point inside a current 
distribution? The integral appears to diverge because r goes to zero when 
dv ' is at P. The integral does not , in fact, diverge: it does apply even if 
the point P lies inside the conducting body. We encountered the same 
problem when we calculated the value of E inside a charge distribution in 
Sec. 3 . 5 .  

Lines of B point everywhere i n  the direction o f  B .  They prove to be 
just as useful as lines of E. The density of lines of B is proportional to the 
magnitude of B. 

As with electric fields again , a great deal of convenience attends the 
use of the concept of flux. The magnetic flux through a surface of area .s4 
is 

<P = LB .  dsIJ. webers. ( 18-9) 

The surface is usually open; if it is closed, then <P = 0, as we shall see 
below. 

18 .2 . 1 The Principle of Superposition 

The above integrals for B imply that the net magnetic flux density at a 
point is the sum of the B's of the elements of current I dl' ,  or J dv ' .  The 
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principle of superposition applies to magnetic fields as well as to electric 
fields (Sec. 3 .3 ) :  if there exist several current distributions, then the net B 
is the vector sum of the individual B 's 

Example A LONG STRAIGHT WIRE 
An element dl' of a long,  straight wire carrying a current I, as in 
Fig. 18-3 , gives, at the point per, e, CP), a magnetic flux density 

( 18-10) 

The relative orientations of 1 and B satisfy the right-hand screw 
rule. Here 

Thus 

1 =  p tan a, dl' = 
r da = r

2 da 

cos a p 

/101 
J
' rrl2 - /101 -

B = - cos a da q,  = - q,. 
4np -rr12 2np 

(18-11)  

( 18-12) 

Lines of B are circles lying in a plane perpendicular to the wire 
and centered on it. The magnitude of B falls off as 1/ p. 

I 

J_dJ' II 

Fig. 18-3. Long, straight wire carrying a current I. At the point P 
the element 1 dl' contributes a dB in the direction shown. A line 
of B is a circle centered on the wire. 
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B 

Fig. 18-4. Coil of wire of radius R carrying a current I, the field 
dB that originates in the element I dl, and the total field B. 

THE CIRCULAR LOOP 
To calculate the value of B on the axis of a circular loop of radius 
a, refer to Fig. 18-4. The figure shows the dB of an element of 
current I dl ' . By symmetry, the total B points along the axis and 

/10 I dl ' 
dBz = - -2- cos e, 4n r 

/10 2naI /1oIa
2 

Bz = 4n ? cos e = 2(a2 + Z2)3/2 
. 

( 18-13) 

( 18-14) 

Along the axis, B = /1oI/2a at z = 0 and falls off as 1 / Z3 for 
Z2 » a2. 

THE SOLENOID 

The above result can serve to calculate B on the axis of the 
solenoid of Fig. 18-5 by summing the dB's of the individual turns. 
The solenoid is close-wound, of length L, with N' turns per meter, 
and its radius is R. At the center, 

( 18-15) 

(18- 16) 
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Fig. 18-5. Solenoid. 

Fig. 18-6. Lines of B for a solenoid whose length is equal to twice its diameter. 
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See Fig. 18-5 for the definitions of em and ee. At one end, again 
on the axis, 

/.loN'I sin e, B = '--"-----== 
2 (18-17) 

The magnetic flux density is larger at the center than at the ends 
because the lines of B flare out at the ends, as in Fig. 18-6. Inside 
a long solenoid, at points remote from the ends, B = /.loN'I. 

Calculating B at a point off the axis would be much more 
difficult .  

18 .3  THE DIVERGENCE OF B 

Assuming that magnetic monopoles do not exist (Sec. 18 . 1 ) ,  or at least 
that the net magnetic charge density is everywhere zero, all magnetic 
fields result from electric currents , and the lines of B for each element of 
current are circles, as in Fig. 18-3 . Thus the net outward flux of B 
through any closed surface is zero: 

LB . dd = O. ( 18- 18) 

Applying the divergence theorem, it follows that 

V · B = O. ( 18-19) 

These are alternate forms of one of Maxwell's equations. Observe that 
Eq. 18-19 establishes a relation between the space derivatives of B at a 
given point. Equation 18-18, on the contrary, concerns the magnetic flux 
over a closed surface. 

18 .4  THE VECTOR POTENTIAL A 

We have just seen that V ·  B = O. It is convenient to set 

B =  V X A, ( 18-20) 

where A is the vector potential, as opposed to V, which is the scalar 
potential. The divergence of B is then automatically equal to zero because 
the divergence of a curl is zero. 

It is immediately apparent that, for a given B, there exist an infinite 
number of possible A 's .  Indeed, one can add to A any quantity whose 
curl is zero, for example 25i, without affecting B. The magnetic flux 
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density is a measurable quantity, but A is known only within an additive 
term. t 

Note the analogy with the relation 

E = - VV (18-21 ) 
of electrostatics . 

The vector potential is an important quantity; we shall use it as often 
as V. 

Notice also that B is a function of the space derivatives of A,  just as E 
is a function of the space derivatives of V. Thus, to deduce the value of B 
from A at a given point P, one must know the value of A in the region 
around P. 

We now deduce the integral for A,  starting from the Biot-Savart law of 
Sec. 18 .2: 

B = 
flo f J � i dv ' 

= 
flo f ( v�) x J dv ' , 4][ v '  r 4][ v '  r (18-22) 

from Identity 16 inside the back cover. Applying now Identity 1 1 ,  we find 
that 

(18-23) 

where the second term on the right is zero because J is a function of 
x ' , y ' ,  z ' ,  while V involves derivatives with respect to x, y, z .  Thus 

and 

B = � f (V x !\ dv ' = V x (flO f !. dv ') , 4][ tJ ' �) 4][ v ' r 

A = flo f !. dv ' . 4][ v ' r 

(18-24) 

(18-25) 

This expression for A has a definite value for a given current distribution. 
This integral, like that for B, appears to diverge inside a current

carrying conductor, because of the r in the denominator. Actually, it is 
well behaved , like the integral for V inside a charge distribution. 

If a current I flows in a circuit C that is not necessarily closed, then , at 
a point P(x, y, z ) in space, 

t See Richard P .  Feynman, Robert B. Leighton, and Matthew Sands, Lectures on 
Physics, Vol. 2 ,  Sec. 15-5, Addison-Wesley, Reading, Mass . ,  1964, for a discussion of some 
quantum mechanical aspects of A . 
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A = flol ( d/ ' 
4JT Jc r ' (18-26) 

where the element dl' of circuit C is at P' (x ' , y ' , z ') , and r is the distance 
between P and P ' .  

These two integrals apply t o  the fields of alternating currents if the 
time delay r / c is a small fraction of one period. 

Example A AND B NEAR A LONG, STRAIGHT WIRE 

We first calculate A and then deduce B in the field of the long, 
straight , current-carrying wire of Fig. 18-7. We should find the 
same value of B as in the first example in Sec. 18 .2 . l . 

At a distance p 

flo I dt' 
dA = -- . 

4n r 
( 18-27) 

The vector A is parallel to the wire and points in the direction of 
the current. 

For an infinitely long conductor, dA is proportional to dl' / t for 
large values of r where r = t. Then A tends to infinity 
logarithmically. However, the fact that a function is infinite does 
not mean that its derivatives are infinite; that is, B can be finite 
even though A is infinite. 

We can circumvent this infinite value of A by first calculating A 
and B for a wire of finite length L and then setting L »  p at the 
end of the calculation . Referring to Fig. 18-7, we see that 

/' 

p 
B 

Fig. 18-7. The element of vector potential dA due to the element 
I d/' .  The vector B is azimuthal, as in Fig. 18-3. 
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flol rJt 
= - In -2n p 

MAGNETIC FIELDS I 

( 1 S-2S) 

( 1S-29) 

In this last expression we have neglected a term in In (LjrJt) and 
we have arbitrarily set A = 0 at the radius rJt. See also Prob. IS-B. 

To calculate B = V X A,  we use cylindrical coordinates, keeping 
in mind that A is parallel to the z -axis and independent of both cP 
and z. From the expression for V X A on the back of the front 
cover, 

B = V X A = flol tf, 
2np 

as in Sees. 16 .5 .4 and 18 .2 . 1 . 

PAIR OF LONG PARALLEL CURRENTS 

( 1S-30) 

Figure IS-S shows two long parallel wires separated by a distance 
D and carrying equal currents I in opposite directions. To 

1kC--- [) --

/' 
/' 

Fig. 18-8. Pair of long parallel wires carrying currents of the same 
magnitude in opposite directions. The vector A is zero in the 
vertical plane that passes through the dashed line, and it points 
upward on the left and downward on the right. 
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Example 

calculate A,  we use the above result for the A of a single wire and 
add the two vector potentials: 

A = llo1 ( In � -In L ) = llo1 
In Po = llo1 

In 
x2 + (D - y)2 

2n Pb Po 2n Pb 4n x2 + y2 
(18-3 1  ) 

The vector A points in the direction of the current that is closer to 
P ;  it is zero in the plane Po = Pb. Then 

B = 3A = _ llol (D - y + L) x 
3y 2n P; p� ' 

B,. = 
- �; = �� C� 

-:�) , 
Bz = 0. 

Along the line midway between the two wires, 

21lnl 
B, 

= - nD
' B,. = 0, 

A IN THE FIELD OF A MAGNETIC DIPOLE 

( 18-32) 

(18-33) 

(18-34) 

(18-35) 

A magnetic dipole is a loop of wire carrying a current I, as in Fig. 
18-9. We calculate A in this section and B in the next. This will 
lead us to an interesting relationship between the B field of a 
magnetic dipole and the E field of an electric dipole. 

We calculated the field on the axis of a circular loop in the 
second example in Sec. 18.2 . 1 .  We now calculate A and B at any 
remote point in space , at distances r that are much larger than the 
radius a of the loop. Figure 18-lO(b) shows the field close to and 
inside the loop. The field in that region , away from the axis, IS 

difficult to calculate. 
At the point P in Fig. 18-9, 

(18-36) 

By symmetry, A is azimuthal: for any value of r ' we have two 
symmetric dl's whose y-components add and whose x-components 
cancel. Then we need calculate only the y-component of the A in 
the figure, and 

A = Ilnl L2>< a de/> cos e/> . 4n 0 r ' ( 18-37) 

We can express r ' as a function of r and e/> in the following way. 
Refer to the figure. First, 

( 18-38) 
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Fig. 18-9. Magnetic dipole . The vector A is azimuthal. 

Now 

and 

x cos 1> = , cos 1Jl ( 18-39) 

, ,2 = ,2 + a2 - 2ax cos 1>, ( 18-40) 

" = '{ 1 + [�- 2 � (� COS 1» ]r2 = ,{ 1 + [  W12. ( 18-41 ) 
Observe that x !, cos 1> :s: 1 . 

Since we are interested in the field only at points where , »  a, 
we expand 1 /,' as an infinite series and disregard terms involving 
higher powers of a !,. Thus 

Setting 

we find that 

1 1
{ 1 3 7 } - = - 1 - - [ ] + - [ ]" - . . . . , ' , 2 R 

(� COS 1» = ( ) , 

( 18-42) 

( 18-43) 



(a)  

( b )  

Fig. 18-10. The fields (a)  of an electric dipole and (b) of a 
magnetic dipole,  in the immediate vicinity of the dipoles. 
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� = � { 1 - � [�- 2 � ( )] + � [� - 4�( ) + 4�( )2] _ . .  J 
( 1 8-44) 

Discarding now all terms containing the third and higher powers 
of a!" 

1 1 {
a 

[
1 3 2] al} -; = - 1 + - ( ) - - - - ( )  - . 

" , 2 2 ,2 (18-45) 

Finally, substituting into Eg. 1 8-37 yields 

/-lola 
J
b
[ 

a (X 
) (

1 3 x2 
) 

a 2] A = -- 1 + - - cos ¢ - - - - - cos2 ¢ - cos ¢ d¢. 4n, 0 " 2 2 ,2 ,2 

( 18-46) 
Only the second term between the brackets survives, and 
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Ilo/a 'x llola 2 sin e A = -- = '--"---c---
4r' 4r2 

By definition, 

( 18-47) 

( 18-48) 
is the magnetic dipole moment of the loop. If there are N turns, 
then m is N times larger .  

Since A is azimuthal. 

II" m X r A = - --
4.rr r2 

(r' » a ') .  ( 18-49) 

The condi tion r' » a ' is easy to satisfy: at r = Sa, a '! r' = ,ts . 
B IN THE FIELD OF A MAGNETIC DIPOLE 
The value of B = V X A follows immediately: 

110m A ' -
B = --, (2 cos e r + Sin 8 8) .  4.rrr ( 18-50) 

The analogy with the field of the electric dipole of Sec. 5 . 1  is 
obvious. The analogy. however. applies solely at distances r that 
are large compared to the sizes of the dipoles. Figure 18- lO shows 
the near fields. 

18 .5  THE MAGNETIC DIPOLE MOMENT OF AN 
ARBITRARY CURRENT DISTRIBUTION 

Assume first a plane loop of arbitrary shape carrying a current I. Then we 
can set 

m = .st1.lZ. ( 18-5 1 )  

where .st1. i s  the area of  the loop, and where the unit vector i i s  normal to 
the loop and satisfies the right-hand screw rule. The above expressions 
for A and for B apply as long as a' « r" where a is now the longest 
dimension of the loop. 

According to Prob . 1 -3 ,  we can also write that 

m = V1 r X dl ' ,  fe ·  ( 18-52) 

where the line integral runs in the direction of the current I. The origin of 
r can be anywhere . 

What if loop C does not lie in a plane? Imagine an arbitrary surface 
bounded by C, as in Fig. 18- 1 1 .  divided into infinitesimal plane cells . 
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Fig. 18-11. Loop C carrying a current l. The loop is not plane. We have divided 
an arbitrary surface bounded by C into infinitesimal plane cells, each carrying a 
current I. 

each one carrying a current I around its periphery. Adjoining currents 
cancel, and the magnetic dipole moment of C is the vector sum of the 
magnetic dipole moments of the individual cells. Thus 

m = L Hf r X dl ' = Hi. r X dl' , 
cell jc 

and Eg. 18-52 applies to any closed circuit. 

(18-53) 

An arbitrary current distribution possesses a magnetic dipole moment 

m = �f r X J dV "  
v '  

(18-54) 

We have replaced I dl' by J dsIJ ' dl' and dsIJ ' dl' by dv ' .  The origin of r 
can be anywhere . 

18 .6  SUMMARY 

A charge Q moving at a velocity v in the field of an arbitrary distribution 
of charges and currents is sUbjected to a Lorentz force 

F = Q(E + v X B), (18-1) 

where QE is the electric force, Qv X B is the magnetic force, and B is the 
magnetic flux density, expressed in teslas. 
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In the field of a current I flowing through a circuit C, 

B = flol 1, d/ '  : r .  
4JT 'fc. r 

In the field of a volume current distribution, 

B = flo J J � r dv ' .  4JT p '  r-

Lines of B point everywhere in the direction of B. 
The magnetic flux through an area si is 

<l> = LB . d.9l webers. 

The principle of superposition applies to magnetic fields . 
The net magnetic flux through a closed surface is zero: 

Hence 
V · B = O. 

( 1 8-5) 

( 1 8-8) 

( 1 8-9) 

( 18- 18) 

( 1 8- 19)  

These are , respectively , the integral and the differential forms of one of 
Maxwell's equations. 

The equation 
B =  V X A  ( 18-20) 

defines the vector potential A. For a volume current distribution, 

A = flo J � dv ' 4JT v '  r 

while , for a current I flowing through a circuit C, 

A = flo/ J d/ '  . 
4JT c r 

In the field of a magnetic dipole, 

flo m X r A = - --
4JT r2 ' 

( 18-25) 

( 18-26) 

( 1 8-50) 

where the magnitude of the magnetic dipole moment m is the area of the 
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loop , times the number of turns, times the current. The vector m is 
normal to the plane of the loop , in the direction defined by the right-hand 
screw rule . Refer to Fig. 18-9. Also , 

�om -B = --3 (2 cos e r + sin e 8).  4JTr ( 18-50) 

The magnetic dipole moment of an arbitrary circuit C carrying a 
current I is 

m = !I 1, r X dl' . 
Jc 

(18-53) 

For an arbitrary current distribution occupying a volume v , 

m = �J r X J dv I ,  
v '  

(18-54 ) 

where J is the current density at a point and r is the position vector for 
that point. The origin of r is arbitrary. 

PROBLEMS 

18- 1 .  ( l8. 1 )  The force on a magnetic monopole situated in a magnetic field 
Show that the equation F = Q;Q: I( 4Jfl1o':) is dimensionally correct. 

This means that F = Q*Bll1o ,  and not Q*B, as stated by some authors. 

18-2. (18. 2. 1 )  The field of two parallel wires 
Two parallel wires of radius R and separated by a distance 2D carry a 

current I in opposite directions . 
(a) Find B along a perpendicular line passing through the wires. 
(b) Plot B for R = 1 . 00 millimeter, D = 10.0 millimeters, and 1 =  

1 ampere. 

18-3 . ( 18. 2. 1 )  Saddle coils 
Figure 18- 12(a) shows two views of a pair of saddle coils. In (a) we have 

shown just one turn in each coi l ,  and (b) shows a cross section C. More 
generally , we could have the current distribution of Fig. 18-12(b) , where 
the two parts carry equal current densities. There is zero current in the 
central region. We could also have the current distribution of Fig. 18- 12(c) . 
As we shall see , the magnetic fields in the cavities are uniform. 

(a) Show that B = I1,J X rl2 inside a conductor of circular cross section. 
The origin of , is at the center of the cross section . 

(b) In Fig. 18- 12(a) ,  B is the same as if each conductor occupied a full 
circle , with opposite currents in the central region. 

Find B in the central region. 
(c) Find B in the cavities of Figs. 18- 12(b) and (c) . 
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(a )  

(h )  (e )  

Fig. 18-12. 

18-4. ( 18. 2. 1 )  The magnetic flux density at the center of a sunspot 
The Zeeman effect observed in the spectra of sunspots reveals the 

existence of magnetic fields as large as 0.4 tesla. These fields are associated 
with pancake-shaped current distributions in the plasma near the surface. 
In effect, one has a disk of electrons, with a radius of, say , 10

7 
meters, 

rotating at an angular velocity of the order of 3 x 10-
2 
radian/second. The 

thickness of the disk is small compared to its radius. 
(a) Calculate the surface density of electrons required to achieve a B of 

0.4 tesla at the center. 
(b) Calculate the current. 

18-5 . ( 18. 2. 1 )  The Bohr magneton 
According to the old Bohr model of the atom, electrons describe orbits 

around the nucleus. Atomic and molecular magnetic moments are ex
pressed in Bohr magnetons. 

(a) Find the magnetic moment of an electron on a circular orbit of 
radius r. 

(b) According to the Bohr postulate, the angular momentum is quan
tized: mvr = nil = nh /2n = n x 1 . 0546 x 10-

34
, where n is an integer and a 

quantum number. 
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Calculate the value of the Bohr magneton /1" ,  which is the magnetic 
moment of an electron orbit for which n = 1 .  The number of Bohr 
magnetons per atom or per molecule is of the order of a few and is, in fact, 
not an even number. 

18-6. (18. 2. 1) Rotating magnetic field 
Three identical coils, oriented as in Fig .  18-13(a) , carry three-phase 

alternating current. Their magnetic fields are 

Bn = Bm cos (wt + 2;) , 
and point as in Fig. 18-13(b) . 

(a) Show that the resulting field has a magnitude of 1 . 5Bm and rotates at 
an angular velocity w. This is the method used to generate rotating 
magnetic fields in large electric motors. 

(b) Does the field rotate clockwise or anticlockwise? 

18-7. ( 18.2. 1 )  The Fabry equation for solenoids 
A solenoid has an inner radius R J ,  an outer radius R2, and a length 2L. 

The current is I. 
(a) Show that at the center 

(l' + ( (l'2 + {32t2 
B = /1onlL In ( R2) '/2 1 + 1 + ,.,  

where n is the number of turns per square meter (=I /cross section of the 
wire) ,  (l' = R2/R 1 ,  and (3 = L/R I • 

(b) Show that the length of the wire is 

1 =  nV = 2nn((l'2 - I){3R�, 

where V is the volume of the winding. 

h 

c 

(a) (b) 

Fig. 18-13. 
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(c) Check the Fabry equation, which states that at the center of any 
solenoid (PAO) 1/2 

B = G  -R I  . 

Here G depends on the geometry, P is the dissipated power, ,\ = me,:!. is the 
filling factor, or the fraction of the coil cross section occupied by the 
conductor ,  , is the radius of the wire , and ° the resistivity. 

lS-S. (18. 2. 1 )  A short, thick solenoid 
Figure lS- 1 4  shows the cross section of a coil. The dimensions shown are 

in millimeters. The wire has a square cross section of 2 millimeters2 and a 
resistance of S .93 ohms/kilometer. The current is 1 ampere. See the 
preceding problem. 

(a) Calculate B at the center. Use the formulas given in Prob. l S-7. 
(b) Calculate the power and the applied voltage. 
( c) Plot B as a function of z along the axis, from z = - O. 3 to 

z = 0. 3 meter. 

18-9 . ( 18.2. 1)  Helmholtz coils provide a uniform field 
The Helmholtz coils of Fig. 18-15(a) provide a simple means of obtaining 

a uniform magnetic field over a given volume. Roughly speaking, B, is 
uniform within 10% inside a sphere of radius O. la. 

(a) Find B as a function of z along the axis. 
If you have the patience to expand this expression about z = 0, you will 

find that ( 144z" ) 
B = B  1 - -- + . .  · o 125a" 

. 

This means that the first, second. and third derivatives of B with respect to 
z are zero at z = O. So the curve of B( z) is exceptionally flat near the 
center. 

(b) Plot B/(/loNI/a) as a function of z/a from z/a = -0.5 to z/a = 0.5 .  
Figure I S- 16(b) shows B,(z)  for values of r ranging up to 0. 16a. 

1 8- 10 .  (18. 2. 1 )  A Maxwell pair provides a uniform gradient of B 
Plot B / (/l"N I /2a) as a function of z / a for a pair of coils like those of Fig. 

T��I 
wo wa 1 1 

Fig. 18-14. 
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0. 1 6" 0 04�====���=�==��:::: 

- O.2a 

Fig. 18-15. 

o 
(b) 

+ O.2a 

18-15(a) but with a spacing of 2a, instead of a, and with currents flowing in 
opposite directions. This is a Maxwell pair. You will find that dB / dz is 
surprisingly linear between about z = -0.7a and z = 0.7a. 

18- 1 1 .  (18. 4) The vector potential A 
In a given region, B = Bz. Suggest possible A 's and a characteristic of the 

corresponding current distribution. 

18-12. (18. 4) In two-dimensional magnetic fields a line of constant A is a line 
of B 

A certain magnetic field has a zero z-component. 
(a) Show that A = Az is one possible value of A .  
(b) Show that a line o f  constant A i s  a line o f  B. 
(c) Show that this applies to the field of a straight current-carrying wire. 

18-13 .  ( 18. 5) The magnetic field of a spinning electrically charged sphere 
A conducting sphere of radius R is charged to a potential V and spun 

about a diameter at an angular velocity Ol .  
(a) Show that the  surface current density is Cl' = EoOlV sin e = M sin e, 

where M is EoWV. 
(b) Find that the magnetic flux density Bo at the center. 
(c) What is the numerical value of the Bo for a sphere 100 millimeters in 

radius, charged to 10,0 kilovolts, and spinning at 10,000 turns per minute? 
(d) Show that the dipole moment is �JrR3Mz, where z is a unit vector 

along the axis, related to the direction of rotation by the right-hand screw 
rule . 

(e) What is the dipole moment of the above rotating sphere? 
(f) What current flowing through a loop 100 millimeters in diameter 

would have the same dipole moment? 
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In this second chapter on magnetic fields , we first derive a direct 
consequence of the definition of the vector potential A :  the line integral 
of A . dl over a closed curve is equal to the encircled magnetic flux. This 
result is general .  However, the rest of the chapter applies only to static 
fields. The expressions that we shall find here for V2A,  V ·  A ,  V X B, and 
V2B are all truncated: they all lack time-dependent terms. It is only in 
Chap. 27 that we shall find the full-fledged expressions. 

19. 1 THE LINE INTEGRAL OF A ·  dl 
AROUND A CLOSED CURVE 

Consider first a simple closed curve ,  as in Fig. 19-1(a) . The line integral 
of A . dl around C is equal to the magnetic flux linking C :  

1 A . dl = f ( V  X A)  . d.91. = f B . d.91. = <1> , fe· s1 .71 
( 1 9- 1  ) 
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c 

(a) (b) (e) 

Fig. 19-1. (a) A simple closed circuit C. (b) An N-turn coil. The turns are all 
close together. (c) A more complex closed circuit. 

where Sff is the area of any surface bounded by C. We have used Stokes's 
theorem . 

Now suppose the coil has N turns wound close together, as in Fig .  
19-1 (b) . Over any cross section of the coi l ,  say at P, the various turns are 
all exposed to approximately the same A .  Then 

( 19-2) 

where A is the flux linkage and s4 is the area of any surface bounded by 
the coil . 

The unit of flux linkage is the weber turn. 
What if one has a circuit such as that of Fig . 19-1 (  c)? Then 

1 A . dl = J B . ds1. = A, rc s1 
( 19-3) 

except that now it is difficult to devise a surface bounded by C. Luckily 
enough, this surface is of no interest because the flux linkage A is easily 
measurable (Sec. 24 .2) .  

Example THE VECTOR POTENTIAL A IN THE FIELD OF 
A LONG SOLENOID 

Let us first see, qualitatively, how A varies with position, both 
inside and outside a long solenoid. Remember the integral for A 
that we found in Sec. 18.4:  

A = f.101 J. dl ' 
. 4JT Jc r 

( 19-4) 

At a point on the axis of the solenoid, the dA of an element 
I dl ' situated somewhere on the solenoid cancels the dA of the 
element I dl' situated diametrically opposite the first one. On the 
axis of a long solenoid. A is therefore zero. 
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At a point P inside the solenoid , but off the axis, the elements 
I d/' closest to P will contribute most. So A is azimuthal, as in Fig. 
19-2, and it increases with the radius r. 

At a point P' outside the solenoid, B is zero, as we shall see in 
the second example in Sec. 19.5 .  But A is clearly not zero because 
the elements I dl' closest to P' contribute most. 

A vector potential A can therefore exist in a region where B is 
zero. This simply means that V X A = 0 for A "*  0, which is 
perfectly sensible. For example, if A = ki, where k is independent 
of the coordinates, then V X A = O. We are already familiar with a 
similar situation in electrostatics: V can take any uniform value in 
a region where E = - VV = O. 

Outside a long solenoid, the vector A is again azimuthal,  but 
now it decreases with r as in the figure. 

Now let us calculate A. 
First , consider the field inside the solenoid. At a point remote 

from the ends, B is parallel to the axis, uniform, and equal to 
/loN'I, where N'  is the number of turns per meter (Sec. 18.2.4). 
Then, from Sec. 19. 1 and at a radius r as in the figure, 

/loN'Ir 
A

'
= -

2
-

Outside a solenoid of radius R, at the radius r ' .  

a 

(19-5) 

Fig. 19-2. Long solenoid seen endwise and lines of A inside and 
outside. The magnitude of A is proportional to r inside and 
inversely proportional to r outside. 
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(19-6) 

Think how laborious it would be to calculate A by integrating 
I dl/r over the winding! 

19 .2  THE LAPLACIAN OF A 

You will recall from Sees. 3 .4 . 1 and 4. 1 that 

1 f P V = -- - dv ' 4.nEo v ' r ' ( 19-7) 

The first equation relates the potential V at the point P(x, y, z) to the 
complete charge distribution, p being the total volume charge density at 
P' (x ' , y ' , z ' )  and r the distance PP' .  The second equation expresses the 
relation between the space derivatives of V at any point to the volume 
charge density p at that point. 

There exists an analogous pair of equations for the vector potential A .  
We have already found the integral for A in  Sec. 18.4 :  

A = 110 f !. dv ' 4.n v' r ' (19-8) 

where v '  is any volume enclosing all the currents. The x component of 
this equation is 

Ax = 110 f � dv ' . 4.n v ' r (19-9) 

Then, by analogy with Eq. 19-7 , 

( 19-10) 

Of course , similar equations apply to the y - and z-components, and 

( 19- 1 1) 

This equation applies only to static fields. 

19 .3  THE DIVERGENCE OF A 

We can prove that , for static fields and for currents of finite extent , the 
divergence of A is zero . First , 
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flo f J , flo f (J) , V ·  A = V ·  - - dv = - V · - dv , 4.n v ' r 4.n v ' r 
( 19- 12) 

where the del operator acts on the unprimed coordinates (x, y, z )  of the 
field point , while J is a function of the source point (x ' , y ' , z ' ) .  The 
integral operates on the primed coordinates. As usual , r is the distance 
between these two points, and the integration covers any volume 
enclosing all the currents. 

We now use successively Identities 15 , 16, and 6 from the back of the 
front cover: 

V . A = - V - . J dv = - - V - . J dv flo f ( 1) , flo f ( , 1) , 
4.n v ' r 4.n v ' r 

= - - V  . - + -- dv ' .  flo f ( , J V ' · J) 
4.n v ' r r 

( 19-1 3) 

( 19-14) 

In a time-independent field, ap / at = 0 and, from the conservation of 
charge (Sec. 4.2), V '  . J = O. Therefore 

V . A = - flo f V '  . !.. dv ' = - flo f !.. . dsd ' = 0 4.n v ' r 4.n S'l '  r 
' ( 19-1 5) 

where s1' is the area of the surface enclosing the volume v ' .  We have 
used the divergence theorem to transform the first integral into the 
second. The second integral is zero because, over s1 ' ,  J is either zero or 
tangential. 

19 .4 THE CURL OF B 

From Definitions 5 , 10, and 15 on the back of the front cover 

V X B = V x ( V X A) =  V( V · A) - V2A.  ( 19-16) 

Thus, from Sees. 19 .2 and 19 .3 ,  

(19-17) 

This equation is valid only for static fields. 

19 .5  AMPERE'S CIRCUITAL LAW 

The line integral of B . dl around a closed curve C is important : 
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+ 

l a )  ( 0 )  

Fig. 19·3. (a) Closed path of integration C linked by a current I .  Ampere's 
circuital law states that the line integral of B . dl over C is equal to 1101. (b) Here 
the line integral of B . dl over the dashed curve is equal to 6110/. 

f, B . dl = J ( V  X B) . dd = f.10 J J .  dd = 1101. 
C sJ .s4 

( 19·18) 

In this set of equations we first used Stokes's theorem, s'i being the area 
of any surface bounded by C. Then we used the relation V X B = l1aI that 
we found above. Finally, I is the net current that crosses any surface 
bounded by the closed curve C. The right-hand screw rule applies to the 
direction of I and to the direction of integration around C, as in Fig. 
1 9-3(a) . 

This is Ampere's circuital law: the line integral of B . dl around a 
closed curve C is equal to 110 times the current linking C. This result is 
again valid only for constant fields. 

Sometimes the same current crosses the surface bounded by C several 
times. For example , with a solenoid, the closed curve C could follow the 
axis and return outside the solenoid, as in Fig. 19-3(b) .  The total current 
linking C is then the current in one turn , multiplied by the number of 
turns, or the number of ampere-turns. 

The circuital law can be used to calculate B, when B is uniform along 
the path of integration. This law is analogous to Gauss's law, which we 
used to calculate an E that is uniform over a surface . 

Example LONG CYLINDRICAL CONDUCTOR 
Let us apply Ampere's circuital law to calculate B inside and 
outside the long, straight cylindrical conductor of Fig. 19-4 
carrying a current 1 uniformly distributed over its cross section. 
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Fig. 19·4. Long cylindrical conductor of circular cross section 
carrying a current I. The circles are paths of integration for 
calculating B. 

We use cylindrical coordinates with the z-axis along the 
conductor. 

Outside the conductor, B is azimuthal and independent of ¢. 
Then 

B = f.1ol
. 2:np 

Inside the conductor, for a circuital path of radius p. 

See Fig. 19-5 . 

p ( meter! 

( 19-19) 

( 19-20) 

Fig. 19·5. B as a function of p for a wire 1 millimeter in radius 
carrying a current of 1 ampere. 
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Example THE LONG SOLENOID 

We return to the long solenoid and recalculate B inside, in a 
region remote from the ends. This renders end effects negligible. 
See Fig. 19-6. We assume that the pitch of the winding is smalL 
We again use cylindrical coordinates. The figure shows a solenoid 
of circular cross section. However, our main conclusions will be 
valid for any cross section. 

First note that B possesses the following general characteristics: 

( 1 ) By symmetry , B i s  everywhere independent of  z and of lj>.  

(2) Imagine an axial cylinder as in the figure. Its radius is either 
smaller or larger than that of the solenoid. The integrals of 
B . dd over the end faces cancel. Then the integral of B . dd 
over the cylindrical surface is zero, from Gauss's law for B (Sec. 
18 .3) . Then ,  both inside and outside, B" = O. 

(3) The curl of B is zero everywhere except inside the wire, 
where J =1= O. Then, from the expression for the curl in cylindrical 
coordinates, outside the wire, 3Bz /3p = O. By symmetry , 3Bz /3lj> 
is also zero. Then Bz is uniform inside the solenoid and it is also 
uniform outside, neglecting end effects. 

Fig. 19·6. Long solenoid carrying 
a current I, with paths of integra
tion a, b, c. 
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Now consider the field outside the solenoid. 

(1) We can show that Bz = 0 by considering path a in the figure . 
The net current linking this path is zero , and the line integral of 
B . dl around it is therefore also zero. Now, since the line integrals 
along sides 1 and 2 are zero (BI' = 0), the line integrals along sides 
3 and 4 cancel. But sides 3 and 4 can each be situated at any 
distance from the solenoid, so Bz is either zero, or nonzero and 
independent of p. Now the flux outside is equal to the finite flux 
inside. Therefore , outside, Bz tends to zero. 
(2) A path such as b is l inked once by the current. Thus, outside 
the solenoid, B<p = !loI/2np. This flux is usually negligible. 

Now let us look inside the solenoid. 

( 1 )  There is zero flux in the ¢-direction inside because the line 
integral of B<p dl over a circle of radius p, say the top edge of the 
small cylinder shown in the figure, is 2npB<p ; and this is zero, 
according to Sec. 19.5 because the path encloses zero current. 
(2) Consider now path c in the figure. Remembering that Bp = 0 
both inside and outside, and that Bz == 0 outside , we see that , if 
there are N' turns / meter, Bzs = !loN '  / Is and Bz = !loN'I. 

THE REFRACTION OF LINES OF B AT A 
CURRENT SHEET 

A thin conducting sheet carries a surface current density of a 
amperes/meter, as in Fig. 19-7. In passing through the sheet . the 
lines of B bend as follows. 

Since V ·  B = 0, the normal component of B is the same on the 
two sides: BIn = B2n • 

Applying Ampere's circuital law to the path of length L shown 
in the figure, 

Fig. 19·7. Refraction of a line of 
B crossing a current sheet. 
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(19-21)  

A line of B therefore deflects in the clockwise direction for an 
observer looking in the direction of a. 

We can also arrive at this result in another way. The magnetic 
flux density B results from the existence of a current in the sheet 
and to currents flowing elsewhere. According to Ampere's 
circuital law, the magnetic field of the sheet, just below the sheet, 
is f.i"a/2 and points left .  Just above , the field is again f.ioa/2, but it 
points right. Adding this field to that of the other currents leads to 
tangential components that differ as above. 

19 .6  THE LAPLACIAN OF B 
We can deduce the value of the Laplacian of B from that of the Laplacian 
of A (Sec. 19 .2) .  Since 

(19-22) 
then 

( 19-23) 

Now the curl of a Laplacian is equal to the Laplacian of a curl and thus 

(19-24) 
Finally. 

( 19-25) 

again for static fields . 

19 .7  SUMMARY 

The line integral of A . dl around a closed curve C is equal to the 
magnetic flux linking C: 

1 A . dl = J B ·  d.sll = A, Yc .<4 

where .s4 is the area of a surface bounded by C. 
For static fields , 

V2A = - (.loJ, 
V · A = 0, 
V X B =  (.loJ, 

V2B =  -(.lo V XJ. 

( 19-3) 

( 19- 1 1 )  
(19-15) 
( 19-17) 
( 19-25) 
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Ampere's circuital law states that 

{B . dl = 1-10/, (19-18) 

where 1 is the net current that crosses any open surface bounded by the 
curve C, in the direction given by the right-hand screw rule. 

PROBLEMS 

19-1 .  ( 19. 1) The vector potential inside a current-carrying conductor 
Show that, inside a straight current-carrying conductor of radius R, 

if A is set equal to zero at p = R. 

19-2. (19. 5) Van de Graaff high-voltage generator 
In a Van de Graaff generator, a charged insulating belt transports electric 

charge to the high-voltage electrode. 
(a) Calculate the current carried by a SaO-millimeter-wide belt driven by 

a lOa-millimeter-diameter pulley that rotates at 60 revolutions/second.  if 
E = 2 X 10

" 
volts/meter at the surface of the belt. 

(b) Calculate the B close to the belt. 

19-3. ( 19. 5) The toroidal coil 
Figure 19-8 shows a toroidal coil of square cross section. There are N 

turns, and the current is l. 
Find (a) the azimuthal field along paths a and c, (b) B inside the toroid. 

and (c) the line integral of B along path d. 
19-4. ( 19. 5) B near a conducting sheet 

A conducting sheet carries a current density of a amperes/meter. There 
are no other currents in the vicinity. 

(a) What is the value of B, close to the sheet? 

- - - - -, 
I 
I 
I 
I 

C d 
I 

/ '/ 

Fig. 19-8. 
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(b) How is B oriented with respect to a? 
(c) A conducting body carries a high-frequency current that is confined 

near the surface . The surface current density is a amperes/meter. Show 
that , in the air near the conductor, B = {.loa X n, where n is a unit vector 
normal to the surface and pointing outward. 

19-5. (19. 5) The magnetic field near the axis of a circular loop 
A circular loop carries a current I. Choose the axis of symmetry as the 

z-axis, and calculate Bp and Bz near the axis. 

19-6. (19.5)  The average B over a sphere is equal to B at the center 
Refer to Prob. 3-16 concerning the average E over a spherical volume. 
Show that , in a region where there are no currents, the average B over a 

spherical volume is equal to the B at the center. 

19-7. (19. 5) The field of a short thick solenoid, compared to that of a long 
solenoid 

The value of B at the center of a short, thick solenoid given in Prob. 18-7 
can be written as B = {.loN'Ig, where {.loN'I is the field of a long solenoid. 
Find g. 
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Thus far we have studied magnetic fields associated with moving charges , 
although we did allude to the magnetic materials that we shall study in 
this chapter and the next . 

All atoms contain spinning electrons that give rise to magnetic fields. It 
is our purpose in these two chapters to express these fields in macroscopic 
terms . 

In dielectric materials, individual atoms or molecules can possess 
electric dipole moments which, when properly oriented, confer a net 



20.2 THE MAGNETIZATION M 361 

electric moment to a macroscopic body. Magnetic materials are analo
gous in that their atoms can act as magnetic dipoles that can also be 
oriented. The body is then said to be magnetized. Magnetic effects are 
weak in all but ferromagnetic substances, and those are grossly nonlinear. 

This first chapter on magnetic materials sets forth a few fundamental 
ideas . Then, in the end, it provides a glimpse of the complexities of 
ferromagnetism . 

Chapter 21 concerns ferromagnetism and some of the methods that are 
available for designing devices incorporating ferromagnetic materials. 

20 . 1  
TYPES OF MAGNETIC MATERIAL 

There exist three main types of magnetic material . 

( 1 ) All materials are diamagnetic. This magnetism originates from the 
fact that the application of an external magnetic field induces moments 
according to the Faraday induction law (Sec. 23 .4) . This effect is usually 
imperceptible , and it disappears upon removal of the external field. 

(2) In most atoms the magnetic moments resulting from the orbital and 
spinning motions of the electrons cancel .  If the cancellation is not 
complete, the material is paramagnetic. Thermal agitation causes the 
individual moments to be randomly oriented, but the application of a 
magnetic field brings about a partial orientation . 

(3) In ferromagnetic materials such as iron , the magnetization can be 
orders of magnitude larger than in either diamagnetic or paramagnetic 
substances. This effect comes from electron spin, together with group 
phenomena that align the moments throughout a small region called a 
domain. 

20 .2  
THE MAGNETIZATION M 

The magnetization M is the magnetic moment per unit volume of 
magnetized material at a point . If there are N atoms per unit volume, 
each possessing a magnetic dipole moment m oriented in a given 
direction, then 

M = Nm. (20-1 ) 

The magnetization M in magnetic media corresponds to the polariza
tion P in dielectrics. The unit of magnetization is the ampere per meter. 
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20 .3  
THE MAGNETIC FIELD OF A 
MAGNETIZED BODY 

To find the magnetic field of a magnetized body, we shall integrate the 
expression for the vector potential dA of a magnetic dipole M dv over the 
volume of the material. This calculation will show that the field is the 
same as if we had an equivalent volume current density V X M, plus an 
equivalent surface current density M X ii, situated in a vacuum. 

You will recall that we arrived at a similar situation when we discussed 
dielectrics: the electric field of a polarized dielectric is the same as if we 
had volume and surface charge distributions Pb and 0b situated in a 
vacuum. 

This result is interesting, but it is of no use for calculating magnetic 
fields because M is itself a function of B, and unknown. 

In practice, one calculates B either by rather crude , semiempirical 
methods such as those of Chap. 21 or by means of elaborate computer 
codes. 

We shall find that the equivalent volume current density Je is equal to 
V X M. Thus V ·  Je is zero and charge cannot accumulate at a point by 
virtue of Je • Furthermore, the equivalent currents do not dissipate energy 
because they do not involve electron drift and scattering processes like 
conduction currents. 

Let us calculate B at a point outside a magnetized body , as in Fig .  20-I .  
From the third example in Sec. 18 .4 ,  the vector potential at a point P 

located at a distance r from a current loop of magnetic moment m is 

Fig. 20-1. Element of volume inside 
a magnetized body and an external 
point P. 
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(20-2) 

The unit vector r points in the direction of P, from the center of the loop, 
and r is large compared to the largest dimension of the loop. Then, for a 
volume v ' of magnetized material, 

A = 110 J M � r dv ' = 110 J M X v , (!) dv ' .  4,n  v ' r 4,n  t o '  r (20-3) 

We have used Identity 15 from the back of the front cover. The volume 
of magnetized material is v ' , and its surface has an area sti.' . 

Then , from Identity 1 1  and from Stokes's theorem, 

A = - 110 J (V ' x M\ dv ' + 110 J V ' X M dv ' 
4,n v ' --; ) 4,n v ' r 

= 110 J M X n dsti.' + 110 J V X M dv ' 4,n sJ' r 4,n v ' r ' 

(20-4) 

(20-5) 

n being the unit vector normal to the surface of area sti. of the magnetized 
material and pointing outward. We may omit the prime on the del that 
operates on M, since that del clearly operates on the coordinates x ' , y ' , 
z ' of the point where the magnetization is M. 

These expressions for A are all equivalent, but the last one lends itself 
to a simple physical interpretation. It is clear that the vector potential in 
the neighborhood of a piece of magnetized material is the same as if one 
had, instead, volume and surface densities 

and ae = M  X n. (20-6) 

Inside a magnetized material none of the above integrals diverge, and 
the field is again the same as if the magnetized material were replaced by 
its equivalent currents . 

More generally,+ 

t The question is sometimes raised as to whether the term £0 aE / at should be included 
under the integral sign. Then one would replace the polarization current density by the 
displacement current density aD/at (Sec. 9 .10) .  The term £0 aE/at does not belong here 
because magnetic fields arise solely from the motion of charge. This is confirmed by the fact 
that one can calculate the field of a transmitting antenna in free space from the currents 
flowing in it. disregarding displacement currents in free space. See also Sec. 37. 1 .  
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A = 110 I (If + ap + V X M) du ' , (20-7) 4.7t v ' at 

where If is the current density of free charges and ap / at is the 
polarization current density of Sec. 9 .3 .3 .  

Thus a more general form of the Biot-Savart law (Sec. 18 .2) is 

Example 

B = 110 1 (If + ap/at: V XM) X "du ' . 4.7t v ' r 

THE EQUIVALENT CURRENTS IN A 
UNIFORML Y MAGNETIZED ROD 

(20-8) 

Suppose the magnetization M is uniform and parallel to the axis. 
This is an idealized situation because the elementary dipoles tend 
to orient themselves along B, which is only approximately axial. 
Since M is uniform, V X M = 0, and there are no equivalent 
volume currents. Also, since M is parallel to the axis, the current 
density on the cylindrical surface is M, in the direction shown in 
Fig. 20-2 , and there are no currents on the end faces . The rod 
therefore acts as a solenoid with N'I = M, where N'  is the number 
of turns per meter. Observe that , inside, B and M point in the 
same general direction. 

20.4 
THE DIVERGENCE OF B IN THE PRESENCE 
OF MAGNETIC MATERIAL 

Magnetic fields originate either in the macroscopic motion of charge or in 
equivalent currents. The relation 

I V . B = O ] (20-9) 

Fig. 20-2. A uniformly mag
netized rod acts as a solenoid 
carrying a surface current density 
a'e = M. 
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that we found in Sec. 18 .3  applies even in the presence of magnetic 
materials .  This is one of Maxwell's equations . 

20 .5 THE MAGNETIC FIELD STRENGTH 
H. 

THE CURL OF 
H 

In Sec. 19 .4 we found that, for static fields in the absence of magnetic 
materials, 

(20-10) 

Henceforth we shall use Jt, instead of the unadorned J, for the current 
density related to the motion of free charges. 

In the presence of magnetized materials , 

(20- 1 1 )  

This equation, of course , applies only i n  regions where the space 
derivatives exist, that is, inside magnetized materials, but not at their 
surfaces. Then 

v X B = 110(Jt + V X M), (20-12) 

V x  (� - M) = Jt. (20-13) 

The vector within the parentheses, whose curl equals the free current 
density , is the magnetic field strength : 

B H = - - M. 
110 

Both H and M are expressed in amperes/meter . Thus 

B = 110(H + M) 

and , even inside magnetized materials , 

for static fields . 

(20-14) 

(20-15) 

(20-16) 
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20. 5 . 1  Dielectric and Magnetic Materials Compared 

Compare the above equation for B with the corresponding Eq. 9-20, 

1 E = - (D - P) .  
Eo 

(20-17) 

Note the difference in sign : minus P instead of plus M. 
Figure 20-3 illustrates the difference . In Fig. 20-3(a) the capacitor 

plates carry free charges that are not affected by the presence of the 
dielectric, neglecting edge effects .  So D = a is fixed . All th ree vectors 
point to the right. Without the dielectric , E would be equal to DIEo. 
With the dielectric, E is smaller because the field of the bound charges 
opposes that of the free charges. 

In Fig .  20-3(b) , the coil applies a given H. All three vectors point to 
the right again. Without the magnetic core , B = !1oH. With the core , B is 
larger because the field of the equivalent currents aids that of the free 
currents. 

Remember that we are concerned here solely with the space- and 
time-averaged fields inside matter. Remember also that the similarity 
between the fields of electric and magnetic dipoles exists only at points 
remote from the dipoles. Closer in, the fields are totally different, as 
shown in Fig. 18- 10. 

§ + 

+ 
D - + 
E -
1' - + 

+ 

+ 
(7"1 (7"" rT" "I 

I E =  - (D - PI B = /J.o(H + .U) 
Ell 
(a) (b) 

Fig. 20-3. (a) Plane-parallel capacitor .  The plates carry fixed surface charge 
densities o. Introducing the dielectric reduces E by the factor of t, . neglecting 
edge effects. Note the orientation of the small dipole and its field . (b) Solenoid 
carrying a fixed current I. Introducing the magnetic core increases B by a factor 
of flu neglecting end effects. Note again the orientation of the small dipole and of 
its field . 
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20 .6  
AMPERE'S CIRCUITAL LAW IN THE 
PRESENCE OF MAGNETIC MATERIAL 

Let us integrate Eq . 20-16 over an open surface of area s1. bounded by a 
curve C:  

J (V  X H) . dd = J Jf . dd, 
d d 

(20-18) 

or, using Stokes's theorem on the left-hand side, 

(20-19) 

where If is the current of free charges linking C. The right-hand screw 
rule applies to the direction of integration and to the direction of z. Note 
that If does not include the equivalent currents. The term on the left is 
the magnetomotance. 

This is a more general form of Ampere's circuital law of Sec. 19 .5 ,  in 
that it can serve to calculate H even in the presence of magnetic 
materials. It is rigorously valid , however, only for steady currents. 

Example SOLENOID WOUND ON A MAGNETIC CORE 

Imagine a long solenoid wound on a magnetic core, as in Fig. 
20-4. At points remote from the ends, H is parallel to the axis 
inside the solenoid , and essentially zero outside . Then , from 

( I 
I 

/ �  / / I 
� / I 

Fig. 20-4. Long solenoid wound on a magnetic core, According to 
Ampere's circuit law. H = N'l inside the core, 
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Ampere's circuital law applied to the path shown, if the number of 
turns per meter is N' and the current is I, 

HI = N'/l, H = N'I  (20-20) 

inside the core, whatever it is made of. 

20 .7 
THE MAGNETIC SUSCEPTIBILITY Xm AND 
THE RELATIVE PERMEABILITY 

/-lr 

It is convenient to define a magnetic susceptibility Xm such thae 

(20-21) 
Then 

(20-22) 
where 

!1r = 1 + Xm (20-23) 

is the relative permeability and 

(20-24) 

is the permeability of a material . Both Xm and !1r are pure numbers. 
Thus 

B M = Xm - '  
!1 

(20-25) 

The magnetic susceptibility of purely diamagnetic materials is negative 
and of the order of 10-5. In paramagnetic materials, Xm varies from about 
10-5 to 10-3 . The susceptibility of ferromagnetic substances can be as 
large as 106. 

The equation B = !1o(H + M) is general , but equations involving either 
!1r or Xm assume that the material is both isotropic and linear. In other 
words, they assume that M is proportional to H and in the same 
direction. 

In ferromagnetic materials, B and H do not always point in the same 
direction , and when they do , !1r can vary by orders of magnitude, 
depending on the value of H and on the previous history of the material 
(Sec. 21 .2) .  In a permanent magnet, B and H point in roughly opposite 
directions. 

t Compare with P = X,EnE (Sec. 9.8) .  
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*20 .7 . 1 The Magnetization Curve of a 
Ferromagnetic Material 

If an unmagnetized ferromagnetic material is subjected to a gradually 
increasing H, then B increases along a roughly S-shaped curve, as in Fig. 
20-5 .  After a while , saturation sets' in and M increases no further . For 
most ferromagnetic materials saturation occurs at about 2 teslas. 

*20 .7 .2  Four Definitions of the Relative Permeability /-lr 
The behavior of ferromagnetic materials is so complex that several 
different types of relative permeability have been defined. We mention 
only four. All definitions relate to the magnetization curve . Relative 
permeability is often loosely called permeability . This is what we do here . 

(1) The word permeability, left unqualified, simply means the order of 
magnitude of the ratio B / !1oH on the magnetization curve, possibly over 
some specified range of B or of H. 

(2) The meaning of the term maximum permeability is obvious . 

(3) The initial permeability is the ratio B / !1oH at very weak fields. 

2 . 5  

L--------� 
) � � 

� V 
� f:;?-D .----

2J  

V 7 p / /  
( / ./ � / 1 7 7 V 

/ 
l . i J 

I j/ / VM 
I l O I III 10- 10' 10' 10' 

H (Ampere-tums/meter) 

Fig. 20-5. Magnetization curves for various materials: S ,  Supermendur: Fe , 
annealed pure iron ; D. Deltamax; P, Permalloy; PI ,  powdered iron; C. gray cast 
iron; M. Mone l .  
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(4) The differential permeability is the ratio dB / flo dH, or the slope of 
the magnetization curve divided by flo, at a given point on a hysteresis 
loop. 

20 .8 BOUNDARY CONDITIONS 

Both B and H obey boundary conditions at the interface between two 
media . We proceed as in Sec . 10.2 . 

Figure 20-6(a) shows a short Gaussian volume at an interface . From 
Gauss's law , the flux leaving through the top equals that entering the 
bottom and 

Fig. 20-6. (a) Gaussian surface straddling the interface between media 1 and 2. 
The normal components of the B's are equal . (b) Closed path piercing the 
interface. The tangential components of the H's are equal . 
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(20-26) 

The normal component of B is therefore continuous across an interface . 
Consider now Fig. 20-6(b) . The small rectangular path pierces the 

interface . From the circuital law of Sec .  20 .6 ,  the line integral of H ·  dl 
around the path is equal to the current I linking the path . With the two 
long sides of the path infinitely close to the interface , I is zero and the 
tangential component of H is continuous across the interface : 

(20-27) 

These two equations are general . 
Setting B = f.1H for both media, the permeabilities being those that 

correspond to the actual fields , and assuming that the materials are 
isotropic, then the above two equations imply that 

tan 8, f.1r1 
tan 82 f.1r2 (20-28) 

We therefore have the following rule for linear and isotropic media : 
lines of B lie farther away from the normal in the medium possessing the 
larger permeability. In other words, the lines "prefer" to pass through 
the more permeable medium. as in Fig . 20-7 . You will recall from Sec. 
10 .2 .4 that we had a similar situation with dielectrics. 

Fig. 20-7. Line of B crossing the interface between linear and isotropic media 1 
and 2. The permeability of medium 1 is larger than that of medium 2. Points a 
and b are at equal di,tances from the interface. The path in higher-permeability 
mt:dium I is longer than the path in 2: the line of B "prefers" to be in the 
highn-rt:rmt:ahil ity makria l .  
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20.9  SUMMARY 

The magnetization M is the magnetic dipole moment per unit volume in 
magnetized material. The magnetic field , both outside and inside , is the 
same as if the material were replaced by its equivalent volume and surface 
current densities : 

and ae = M X n. (20-6) 

The divergence of B is zero even in the presence of magnetic materials: 

I V . B = o· 1 (20-9) 

The magnetic field strength H has the same dimensions as M, and 

B H = - - M  
110 ' B = 1l0(H + M), (20-14), (20-15) 

(20-16) 

where If is the current density attributable to free charges. This last 
equation applies only to static fields . It follows that, for static fields, 

(20-19) 

where C is a closed curve linked by the current If. This is Ampere 's 
circuital law in a more general form . ' 

As with dielectrics , it is convenient to define a magnetic susceptibility 
Xm and a relative permeability Ilr as follows 

Ilr = 1 + Xm · 

(20-21 ) 
(20-22) ,  (20-23) 

Then 11 = Ilrllo is the permeability. In ferromagnetic materials the value of 
Ilr can vary by orders of magnitude , and even in sign, depending on the 
value of H and on the previous magnetic history of the sample . 

At the interface between two media the normal component of B and 
the tangential component of H are continuous . There is refraction of the 
lines of B at an interface, the larger angle with the normal being in the 
medium with the larger permeability. 
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20-1 .  (20. 2) The number of Bohr magnetons per atom in iron 

373 

The magnetization M in iron can contribute as much as 2 teslas to B. If 
one electron contributes one Bohr magneton, how many electrons per 
atom, on average . can contribute to M? See Prob. 18-5. 

20-2. (20. 2) The field of a disk magnet 
A disk of iron of radius a and thickness s is magnetized parallel to its 

axis. Calculate B on the axis, outside the iron . 

20-3. (20. 2) The field inside a tubular magnet 
You are asked to design a permanent magnet that would supply a 

magnetic field in a cylindrical volume about 20 millimeters in length and 20 
millimeters in diameter. Someone suggests a tubular magnet, magnetized 
along its length , that would surround this volume. What do you think of 
this suggestion? 

20-4. (20. 5) The divergence of H is not always zero 
Show that V ·  H is not zero in a nonhomogeneous magnetic material . 

20-5. (20. 5) The field in a cavity inside magnetic material 
Find B and H inside a thin,  disk-shaped cavity whose axis is parallel to B, 

inside magnetic material. 

20-6. (20. 7) The free and equivalent volume current densities 
Show that , in a homogeneous, isotropic, and linear magnetic material. 

Ie = (11, - 1)1/. 

20-7. (20. 7) Current-carrying wire along the axis of an iron tube 
A wire carrying a current 1 is situated on the axis of a hollow iron 

cylinder. 
(a) Find H, B, and M in the inner region , in the iron , and in the outer 

region. 
(b) Find the equivalent currents. 

20-8. (20. 7) The magnetization in terms of Xm and B 
Show that in a linear and isotropic magnetic medium, 
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In this chapter we first describe briefly the properties of ferromagnetic 
materials . These materials possess high permeabilities , but they are 
grossly nonlinear and lossy. 

Magnetic fields involving ferromagnetic materials do not therefore lend 
themselves to rigorous mathematical analyses. Elaborate computer codes 
are available for performing numerical calculations and drawing field 
lines. Otherwise , one uses approximate methods like the ones that we 
survey briefly here. 

*21 . 1  
FERROMAGNETIC MATERIALS 

Ferromagnetic and ferroelectric (Sec. 10. 1 .4) materials are , to a certain 
extent, similar. Ferromagnetic materials are partitioned into microscopic 
domains within which the spins are all spontaneously aligned in a given 

t This chapter may be omitted without losing continuity, except that the concept of 
reluctance (Sec. 21 .4) is a prerequisite for Sec. 25.4. 
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direction, even in the absence of an external field. In the unmagnetized 
state the spins of the various domains are randomly oriented and the net 
macroscopic field is zero . 

Upon application of a magnetic field, those domains that happen to be 
oriented in about the correct direction grow at the expense of their 
neighbors by the migration of the domain walls. Eventually , near 
saturation, the magnetization rotates to the imposed direction . 

Ferromagnetic substances are usually anisotropic. 

*21 .2  
HYSTERESIS 

One can measure B as a function of H with a Rowland ring, as in Fig. 
21- 1 .  t Winding a has Na turns and bears a current I. From Sec. 20-6, it 
applies an azimuthal magnetic field strength 

No! H = 2JTr ' (21-1)  

where r i s  the major radius. We have assumed that the minor radius of 
the toroid is much smaller than r. 

Fig. 21-1. Rowland ring for measuring B as a function of H in a ferromagnetic 
material. Winding a applies a uniform H. The voltage "V across winding b gives B 
as in the first example in Sec. 23.4.2. 

t The Rowland ring geometry has long been abandoned for obvious reasons: it is 
relatively difficult to machine a ring, especially if the material is brittle, and winding two 
coils on each sample takes time. Instead , one places a cylindrical sample of the material in 
the air gap of an electromagnet .  However, the calculation of H in the sample is then 
relatively difficult .  The Rowland ring remains an instructive exercise. 
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Fig. 21·2. Magnetization curve ab 
and hysteresis loop bcdefgb for 
one type of transformer iron . 

The magnetic flux density B is iP/.s!1, where iP is the magnetic flux and 
.s!1 is the cross-sectional area of the core. One measures iP by a method 
described in the first example in Sec. 23.4.2. 

If we start with an unmagnetized sample of ferromagnetic material and 
increase the current in coil a, then B increases along a curve such as ab of 
Fig. 21-2. This is the magnetization curve of Sec. 20 .7 . 1 .  

Reducing now the current i n  winding a to zero, B decreases along bc. 
The magnitude of B at c is the remanence, or the retentivity. If the 
current then reverses in direction and increases , B decreases to zero at d. 
The magnitude of H at this point is the coercive force. On further 
increasing the current in the same direction, a point e, symmetric to point 
b, is reached. If the current now decreases, then reverses and increases, 
point b is again reached.  The closed curve bcdefgb is a hysteresis loop. 

Although hysteresis loops are always of the same general shape , they 
take many forms. They can be narrow as in the figure, or broad, or even 
rectangular with nearly vertical and horizontal sides. 
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Soft magnetic materials possess a high permeability and a narrow 
hysteresis loop. They serve in electromagnets , transformers, motors, etc. 
Hard materials are characterized by broad hysteresis loops. They are 
used mainly for permanent magnets. 

As a rule, one records a hysteresis loop with H and B either parallel or 
antiparallel. In most applications however, H is only approximately 
collinear with B, because ferromagnetic materials are usually anisotropic. 

One can demagnetize an object by exposing it to the magnetic field of a 
coil carrying an alternating current and then gradually removing the 
object from the field, so as to take the material round smaller and smaller 
hysteresis loops. 

*21 .2 . 1 Energy Dissipated in a Hysteresis Cycle 

A ferromagnetic material dissipates energy in going around a hysteresis 
loop, as we shall see in the second example in Sec. 23 .4.2. The energy 
dissipated per cubic meter of material and per cycle is equal to the area 
of the loop, measured in tesla-ampere-turns per meter, or in weber
ampere-turns per cubic meter , or in joules per cubic meter. 

Example HYSTERESIS LOSSES IN A TRANSFORMER IRON 

The loop of Fig. 21-2 encloses an area of 1 50 joules/meter3 cycle, 
or 1 . 1  watts/kilogram at 60 hertz. This iron is suitable for power 
transformers, but there exist less lossy alloys. Hysteresis losses in 
some amorphous alloys called metallic glasses are lower by an 
order of magnitude. 

*21 .3  MAGNETIC FIELD CALCULATIONS 

As noted above , magnetic fields involving ferromagnetic materials do not 
lend themselves to rigorous mathematical analyses. 

Simple-minded calculations, such as the one in the example that 
follows, are useful .  However, they yield no more than the general 
features of a field. 

The concept of magnetic circuit (Sec. 21 .4) ,  when applicable, usually 
offers a somewhat more realistic approach . 

*21 .3 . 1 The Bar Magnet 

As we saw in the example in Sec. 20.3 ,  the B field of an idealized bar 
magnet that is magnetized uniformly parallel to its length is the same as 
that of a solenoid of identical dimensions and bearing a current density 
N'I equal to the magnetization M. Figure 21-3 shows the general features 
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Fig. 21-3. Lines of H (solid) for a uniformly magnetized cylinder, with M 
uniform, parallel to the axis, and pointing to the left. Lines of B are shown 
broken inside the magnet; outside they follow the lines of H. This figure is 
identical to Fig. 9-4. 

of this field. Observe how the lines of B break at the cylindrical surface . 
However, the lines of H pierce the cylindrical surface undisturbed. The 
normal component of B and the tangential component of H are 
continuous at the cylindrical surface and at the ends , as in Sec. 20 .8 .  

Outside , H = B / !-lo, while inside H = B /!-lo - M. 
Observe that inside the magnet B and H point in approximately 

opposite directions. 
Where is the point (H, B) situated on the hysteresis loop? Suppose one 

has a ring of the material with windings as in Fig .  21-1 . One varies the 
current in winding a so as to go, on the hysteresis loop of Fig. 21-2, from 
a to b and then to c. At that point H = 0 and B = !-loM. This is the 
situation near the center of a long bar magnet. 

One now cuts out a section of the ring , as in Fig . 21-4, to form a bar 
magnet. From Ampere's circuital law, the line integral of H ·  dl around 
path C is zero, because there are no free currents linking C. Outside , H 
points in the same direction as B, since B = !-loB. Therefore , inside , H 
and B point in roughly opposite directions . In other words, upon 
removing a section of the ring as in Fig .  21-4, there appears inside an H 
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Fig. 21-4. Thought experiment in which one cuts out a portion of a magnetized 
ring to obtain a bar magnet. Inside the bar, B and H point in opposite directions. 
Lines of B emerge from the North pole . 

that points in the direction opposite to B. The operating point of a 
permanent magnet therefore lies in the second quadrant of the hysteresis 
loop. 

The operating point of a long slender magnet is close to c, and that of a 
stubby magnet approaches d, on the hysteresis loop. 

The field of a real bar magnet is not that simple . Since the magnetic 
moments of the individual atoms tend to align themselves with the B 
field, the magnetization M, and hence the equivalent current density on 
the cylindrical surface, are weaker near the ends. Moreover, since M is 
not uniform, there are equivalent currents inside the magnet. The end 
faces also carry equivalent currents since M X n at the faces is zero only 
on the axis. The net result is that there are "poles" near the ends of the 
magnet from which lines of B, outside the magnet, appear to radiate in 
all directions . The poles are most conspicuous if the bar magnet is long 
and thin. 

Example THE BAR MAGNET AND 
THE BAR ELECTRET COMPARED 

It is instructive to compare the field of our uniformly magnetized 
cylinder of magnetic material, Fig. 21-5(a) , with that of its 
electrical equivalent, the uniformly polarized cylinder of dielectric 



( ti l  

Fig. 21-5. (a) Bar magnet. (b) Bar electret. (c) Solenoid whose B 
field is the same as that of the bar magnet. (d) Pair of electrically 
charged plates whose E field is the same as that of the bar electret. 

of Fig. 21-5(b). We discussed the field of the bar electret in the 
second example of Sec. 9 .7 .  

The B field of the magnet is that of an equivalent solenoid, Fig. 
21 -5(c), that carries a current density N'I = M. Then,  to find the 
H field, we use the relation 

B = fJ,o(H + M). (21-2) 

The E field of the electret is that of the bound charges on the 
end faces, as in Fig. 21-5(d), or of a pair of parallel and oppositely 
charged disks carrying uniform charge densities + P and -P. The 
D field then follows from 

1 
E = - (D - P) . 

Eo 
(21-3) 

Mathematically, the fields obey similar equations: 

Electret Magnet 

1 
E = - (D - P) (21-4), B = fJ,o(H + M) (21-5), 

Eo 

V · D = O  (21-6), V · B = O  (21-7), 

V X E = O  (21-8), V X H = O  (21-9). 

Indeed, the H field of the magnet is the same as if one had 
magnetic pole densities + M and -M on the end faces. 
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21 .4  
MAGNETIC CIRCUITS 

Imagine a ferromagnetic ring carrying a short N-turn coil . The current is 
I. We wish to calculate the magnetic flux «P through a cross section of the 
core . 

We expect the B inside the core to be much larger near the winding 
than on the opposite side . On the contrary, B is, in fact , of the same 
order of magnitude at all points around the ring. 

This is not difficult to understand. The magnetic field of the current I 
magnetizes the core in the region near the coil , and this magnetization 
gives equivalent currents that both increase B and extend it along the 
core . This further increases and extends the magnetization, and hence B. 

Some of the lines of B escape into the air and then return to the core to 
pass again through the coil . This constitutes the leakage flux that may, or 
may not, be negligible . For example, if the ring is a long, thin iron wire , 
most of the flux leaks across from one side of the ring to the other. 

If the winding extends all around the ring , 

as in Sec. 21 .2, and 

NI H = -
21fr ' 

B = J1.NI . 21fr 

(21-10) 

(21- 1 1 )  

The flux i s  the same a s  i f  the coil had no  core and J1.r times more 
ampere-turns. In other words, for each ampere-turn in the coil , there are 
J1.r - 1 ampere-turns of equivalent currents in the core. The amplification 
can be as high as 106• 

If RI is the radius where B has its average value and if R2 is the minor 
radius of the ring , then 

This relation is reminiscent of Ohm's law. Here NI is the 
magnetomotance, while 

(21-13) 

is the reluctance of the magnetic circuit, where L is its length and .sIi is its 
cross section . Thus 
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magnetomotance Magnetic flux = I (21-14) re uctance 

The inverse of a reluctance is a permeance. 
The corresponding quantities in electric and magnetic circuits are as 

follows: 

Current I Magnetic flux <l> 
Current density J 
Conductivity a 

Magnetic flux density B 
Permeability !l 
Magnetomotance NI 
Magnetic field strength H 

Reluctance (!/{ 

Applied voltage V 
Electric field strength E 
Resistance R 
Conductance G = 1 1  R Permeance 1 /(!/{ 

There i s  one important difference between electric and magnetic 
circuits: the magnetic flux cannot be made to follow a magnetic circuit as 
an electric current follows a conducting path . A magnetic circuit behaves 
much as an electric circuit would if it were submerged in salt water: part 
of the current would flow through the components, and the rest would 
flow through the water. 

The leakage flux can easily be one order of magnitude larger than the 
useful flux if the circuit is not designed carefully. 

Example MAGNETIC CIRCUIT WITH AN AIR GAP 

Figure 21-6 shows an electromagnet with a soft-iron yoke . Each 
winding provides NI/2 ampere-turns. We shall see that the 
magnetic flux in the air gap is equal to the magnetomotance NI 
divided by the sum of the reluctances of the iron yoke and of the 
air gap , assuming that the leakage flux is negligible . 

This is a general rule : reluctances and permeances in a magnetic 
circuit add in the same way as resistances and conductances in an 
electric circuit. 

From Ampere's circuital law, 

(21- 15) 

where the sUbscript i refers to the iron and g to the air gap. The 
quantity L, can be measured along the center of the cross section 
all around the yoke. 

We assume that the flux of B is the same over any cross section 
of the circuit: 
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Fig. 21-6. Electromagnet. The artist has removed part of the coil 
to expose the left-hand side of the yoke. 

(21-16) 

where .st1 is a cross section. 
Combining these two equations, 

(21-17) 

and 

(21-18) 

on the assumption that the reluctance of the yoke is negligible 
compared to that of the gap. You can now show that HiLi « HgLg 
if this assumption is correct . 

Since we have neglected the leakage flux , this equation can only 
serve to provide an upper limit for <l> and for Bg• 

There exist empirical formulas for calculating leakage fluxes. t 

t See Malcolm McCuaig. Permanent Magnets in Theory and in Practice, Wiley, New 
York . I Y77. Chap. 6 .  
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Let N = 10, 000, 1 =  1 .00 ampere, s'l, = 100 centimeters2, s'lg = 
50, 0 centimeters2, /1, = 1000, L, = 900 millimeters, LR = 10 , 0 milli
meters, Then 

0.9 10-2 

'!!l = 
103 X 4n x 10-7 X 10-2 + 4n x 10-7 X 5 X 10-3 

(21- 19) 

= 1. 7 X 106 ampere-turns/weber, (21-20) 

104 <I> = 6. 0 X 10-3 weber, (21-21) 
1 .  7 x 106 

5 .9 X 10-3 
Bg = 

5 X 10-3 
= 1 . 2  teslas. (21-22) 

With this particular design the leakage flux is approximately 70% 
of the flux in the gap. In other words, one can expect the B in the 
gap to be only 1 . 2/ 1 .7 = 0.7 tesla. 

*21 . 5  SUMMARY 

Ferromagnetic materials spontaneously magnetize over microscopic 
domains that can grow, one at the expense of another, upon application 
of a magnetic field. 

If one plots B as a function of H for an initially unmagnetized sample , 
B first increases with H along the magnetization curve. Over a complete 
cycle of H one obtains a closed curve called a hysteresis loop. The area of 
the loop is equal to the energy lost per cubic meter of material and per 
cycle. 

The concept of magnetic circuit is useful when the magnetic flux is 
mostly circumscribed to magnetic material . The magnetic equivalent of 
Ohm's law is then 

. fl magnetomotance Magnetic ux = , reluctance (21-14) 

with corresponding quantities as in Sec. 2 1 .4 .  The magnetomotance of a 
coil is NI, where N is the total number of turns. 

PROBLEMS 

21-1 . (21. 4 )  A permanent-magnet loudspeaker 
Figure 21-7 shows a cross section of a common form of magnetic circuit 

for a loudspeaker .  The permanent magnet is a cylinder marked NS. The 
yoke has the form of a cup with a top plate , and the voice coil lies in the air 
gap with its axis vertical. 

The top plate has a diameter of 25.0 millimeters, and the gap IS 

2.50 millimeters wide . The magnet is made of Alnico V, it is 



385 

Fig. 21-7. 

25.0 millimeters long, its diameter is 20.0 millimeters, and it operates at its 
optimum H of 4 x 104 ampere-turns/meter . 

Calculate B in the gap. The reluctance of the yoke is negligible. The 
magnetomotance of the permanent magnet is 4 x 104 times its length. The 
value of B in loudspeakers is usually in the range of 0 .3 to 2 teslas. 

21-2. (21. 4 )  Magnetic circuit 
A magnetic circuit comprises an air gap, as in Fig. 21-8, with R2 - R , « 

a. Find an approximate expression for the reluctance of the gap. 

21-3.  (21. 4 )  Iron ring with a thin air gap 
An iron ring carries a 300-turn coil .  The ring has a mean diameter of 

400 millimeters, a cross section of 1000 millimeters2, and a relative per
meability of 500. 

(a) Calculate B when the current in the coil is 1 ampere. 

I I I I I I I I I I I I I I I I I I I / ;1 I II I I / I I / I I / I I / I I / .-' I 1 / / 
: I�� ::� �/ 
'if:;" Fig. 21-8. 
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Fig. 21-9. 

(b) Calculate B for the same current when the ring has a gap of 
1.00 millimeter. 

21-4. (21. 4)  Plotting a magnetic field with an electrolytic tank. 
Figure 2 1-9 shows one example of the use of an electrolytic tank for 

plotting a magnetic field in a region where there are no currents and no 
magnetic materials. Here the electrodes are shaped like the pole pieces of 
an electromagnet. The model is strictly valid if the relative permittivity of 
the pole pieces is infinite. 

The lines of E for the model are identical to the lines of B for the 
electromagnet. Let us see why. 

(a) Which three differential equations does B satisfy in free space? The 
equation B = V X A is not useful here . Which three differential equations 
does E satisfy in the model? 

(b) Show that B is derivable from a potential : B = - Vu. The function u 
is the scalar magnetic potential. 

(c) Show that a surface of constant u is orthogonal to the lines of B. 
Thus a surface of constant u corresponds to an equipotential . 

(d) Show that V2u = O. 
(e) On the model, feE · dl = V, where C is any curve that goes from 

one electrode to the other and V is the applied voltage . What is the 
corresponding equation for B? 

(f) On the model , 1 =  f aE . dd, where I is the current between the 
electrodes. a the conductivity of the electrolyte , and dd an element of area 
on an electrode. What is the corresponding equation for the magnetic flux? 

One could also deduce the reluctance from the resistance V /1. 
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We shall study magnetic forces in two chapters, the present one and 
Chap. 26 . This is because we require the force Qv X B now, but we must 
defer a more general discussion of magnetic forces to a later stage. 

The Qv X B force manifests itself most clearly on electron and ion 
beams, say in television sets and certain ion accelerators. It is also the 
force that drives electric motors. 

22 . 1 THE LORENTZ FORCE 

Experiments show that the force exerted on a particle of charge Q 
moving in a vacuum at an instantaneous velocity v in a region where 
there exist both an electric and a magnetic field is 

F = Q(E + v X B).  (22-1 ) 
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This is the Lorentz force. This equation is valid , even if v approaches the 
speed of light . The variables E, B, and v can be space- and time
dependent , but they all concern the same reference frame. 

The term Qv X B is the magnetic force. Observe that the magnetic 
force is perpendicular to v. It can therefore change the direction of v ,  but 
it cannot alter its magnitude , nor can it alter the kinetic energy of the 
particle. It can nonetheless do useful work, as we shall see . 

Example THE HALL EFFECT 

In a bar of conducting material subjected to electric and magnetic 
fields as in Fig. 22-1 (a) or (b) the charge carriers drift 
longitudinally. They also drift sideways because of the Qv X B 
force . As a result, there appears a potential difference between 
the upper and lower electrodes .  This tendency of charge carriers 
to drift sideways in a transverse magnetic field is called the Hall 
effect. 

( a )  ( h )  

( e )  

Fig. 22·1. The Hall effect in semiconductors. (a) In p-type material the charge 
carriers are holes , and the Hall voltage is as shown. (b) In n-type material the 
carriers are electrons, and the Hall voltage has the opposite polarity. (c) In p-type 
material the transverse forces QE, and Qv X B are equal and opposite. (d) The 
transverse forces in n-type material. 
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Example 

If a voltmeter connected between the upper and lower 
electrodes draws a negligible current, then the plates charge until 
their transverse electric field halts the transverse drift . This 
transverse field is termed the Hall field. The net transverse force 
on the charge carriers is then zero, as in the figure. 

It is a simple matter to calculate the voltage V if we disregard 
end effects and assume that the externally applied B is both 
uniform and much larger than that of the current I of the figure. 
Once the transverse drift has subsided, 

QV 
QEr = b = QvB, (22-2) 

where b is the sample thickness as in the figure, and v is the 
longitudinal drift velocity. Then 

V =  vBb. (22-3) 

If the mobility of the carriers is .At (Sec. 4.3.3) and the 
longitudinal electric field strength is E1ong, then 

(22-4) 

The voltage is proportional to the mobility. 
Note that in the figures the charge carriers tend to drift 

downward, whether they are positive or negative. Thus the 
polarity of V depends on the sign of the carriers. 

The Hall effect serves to measure B, but it also serves several 
other purposes. See Prob. 22-8. 

The mobilities of semiconductors being larger than those of 
good conductors by orders of magnitude , Hall devices invariably 
make use of semiconductors. Some devices are microscopic and 
form part of integrated circuits. 

THE MAGNETO HYDRODYNAMIC GENERATOR 

The magnetohydrodynamic (MHD) generator is a large-scale 
application of the Hall effect. It converts part of the kinetic energy 
of a hot gas directly into electric energy. Figure 22-2 shows its 
principle of operation. A hot gas enters on the left at a velocity of 
the order of 1000 meters/second. It contains a salt such as K2C03 
that ionizes readily at high temperature, forming positive ions and 
electrons. The temperature approaches 3000 kelvins and the 
conductivity is about 100 siemens/meter. (The conductivity of 
copper is 5 .8 X 107 siemens/meter. )  The gas remains neutral. 

Positive ions curve downward, and electrons upward. The 
resulting current I flows through the load resistance R. This 
establishes an electric field E as in the figure. 

One obvious advantage of the MHD generator is that it 
comprises no moving parts, except for the gas. Another is that it 
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Fig. 22·2. Schematic diagram of a magnetohydrodynamic (MHD) 
generator. Part of the kinetic energy of a very hot gas injected on 
the left at a velocity v is converted directly into electric energy. 
The magnetic field B is that of a pair of superconducting coils 
situated outside the chamber and not shown. The moving ions 
deflect either up or down, according to their signs. 

can operate at such a high input temperature that the overall 
thermodynamic efficiency 

(22-5) 

exceeds 50% if the hot output gas feeds a conventional turbine 
generator. The fuel is either coal or oil. The thermodynamic 
efficiencies of conventional thermal plants range from about 30% 
to 33% .  

One transportable MHD generator serves to generate current 
pulses of 10,000 amperes for geophysical exploration. The largest 
MHD generator at this time is under construction and will 
produce 500 megawatts of electricity. 

Part of the kinetic energy associated with the bulk motion of the 
gas becomes electric energy in the following way. The magnetic 
force on a charged particle is normal to the velocity and has no 
effect on the kinetic energy. The function of the magnetic forces is 
to compel the positive particles to go to the positive electrode and 
the negative particles to go to the negative electrode. So the ions 
and the electrons both move uphill, so to speak, under the action 
of the forces shown in Fig. 22-3, and slow down. Since the gas 
pressure is above atmospheric, the mean free path between 
collisions is infinitesimal and the charged particles are embedded 
in the gas. Thus, slowing the particles slows the gas and runs down 
its bulk kinetic energy. 

Ideally, the charged particles should arrive at the electrodes at 
zero velocity. They arrive in fact at a finite velocity, the electrodes 
heat up, and only part of the kinetic energy of the particles 
becomes electric energy. An even smaller fraction of the bulk 
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QE 

b 

F 

(a ) (b) 

Fig. 22-3. (a) The electric force QE and the magnetic force Qt, X B acting on a 
positively charged ion in the MHD generator of Fig. 22-2. The sum F of those 
two forces points downward and to the left. (b) The force F has two components: 
a tangential braking force b and a normal centripetal force c. 

kinetic energy of the gas serves to generate electric energy. Also, 
some of the kinetic energy associated with the transverse motion 
of the charged particles only increases the random thermal energy 
of the gas. 

We suppose that E, B, and the particle velocity t' are uniform 
and mutually perpendicular inside the generator, as in the figure. 
These are crude assumptions indeed. 

The Lorentz force Q (E + v X B) acts on a charge Q as if the 
electric field strength were E + v X B. So, for a gas of conductivity 
a, 

111 = l a(E + v X B) I  = a(vB - E) = a(vB - ;) , (22-6) 

1 = d] = da( vB - I:) , (22-7) 

where 1 and R are as in the figure and where d is the area of one 
of the electrodes. Solving, 

f = 
vBb 

b/(ad) + R 
(22-8) 

Observe that v Bb is the open-circuit output voltage and that b / ad 
is the resistance of the gas in the transverse direction. We could, 
therefore ,  have arrived at this result directly from Thevenin's 
theorem (Sec. 8.3) .  

The output voltage is  fR. After cross multiplication, 
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/b 
V = /R = uBb - - . (22-9) asll 

The voltage V decreases linearly with /. 
Now let us look into the efficiency. We are not prepared to 

calculate the efficiency with which the bulk kinetic energy of the 
gas becomes electric energy. However, we can compare the Joule 
losses in the load resistance R to those inside the gas. So let us 
define the efficiency as 

'jg = 
Joule losses in R 

Joule losses in R + Joule losses in the gas 

/2R R 

/2R + /2b/ (asll) R + b/ (asll) ' 

as we would expect from Thevenin's theorem. 
From the above expressions for / and for /R, 

/ /R / 
'jg = R - = - = l - -- . 

uBb uBb aslluB 

(22-10) 

(22-1 1 )  

(22-12) 

The efficiency is therefore equal to unity when / = 0, or when 
R --+ 00. It is equal to zero when / = aslluB, or when R = 0, V = 0. 

*22 . 1 . 1  The Magnetic Force Inside Ferromagnetic Materials 

Imagine a charged particle , for example, a conduction electron or a 
high-energy cosmic ray proton , moving through magnetized iron . The 
particle "sees" an exceedingly inhomogeneous magnetic field because 
each individual electron in the material acts as a small coil .  The magnetic 
force Qv X B thus varies erratically with time , both in magnitude and in 
direction . 

It would be pointless to attempt a detailed description of the motion. 
All that matters is that, on a macroscopic scale, the magnetic force 
corresponds to some effective B that is not necessarily the same as the 
macroscopic B that we have been thinking of until now. 

For slow particles , such as conduction electrons in ferromagnetic 
materials, the magnetic force is Qv X f.-loH, where H is the macroscopic 
magnetic field strength and v is the drift velocity of the particle . 
However, Rasetti showed, many years agot that with high-energy 
particles the magnetic force is Qv X B. So the effective flux density in 
relation to the magnetic force in ferromagnetic bodies depends on the 
velocity of the particle. :j: 

t F. Rasetti, Physical Review, vol . 66, p. 1 (1944) . 
+ G. H .  Wanier, Physical Review, vol. 72, p. 4 ( 1947) . 
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We should really write Qv X Beff for the magnetic force, but we refrain 
from doing so, to avoid complicating the notation. The important point is 
that the effective B for either conduction electrons or holes is f..loH, and 
not f..lrf..loH. 

22 .2  
THE MAGNETIC FORCE ON A 
CURRENT-CARRYING WIRE 

A stationary wire of cross section s1. carries a current I in a region where 
there exists a magnetic field B originating elsewhere. The wire contains 
N charge carriers per cubic meter drifting at a velocity v, each one of 
charge Q. 

An element of length dl of the wire contains s1.N dl charge carriers. 
Then the magnetic force on dl is 

dF = s1.N dl Qv X B = (s1.NQv) dl X B = I dl X B, (22-13) 

since I is equal to the charge contained in a length v of the wire. 
The magnetic force per unit length on a wire bearing a current I is 

t herefore I X B. 
Now we have calculated the force on the charge carriers. How is this 

force transmitted to the wire? The charge carriers move sidewise , 
,lightly, as in Fig .  22-4, which sets up a Hall field , and the resultant 
electric force on the stationary positive lattice pulls the wire sideways. t 

The total magnetic force on a closed circuit C carrying a current I and 
lying in a magnetic field is 

. j EB 
B 

Fig. 22-4. Section through a wire 
bearing a current I in a magnetic field 
B. We have grossly exaggerated the 
charge separation. The magnetic force 
on the electrons pushes them to the 
left, leaving an excess of positive 
charge on the right. The resultant Hall 
field E inside the wire pulls the lattice 
of positive charges to the left. 

, See W. R .  McKinnon . S. P. McAlister. and C. M. Hurd. A merican Journal of Physics, 
Vol . 49 . p .  49:1 ( 1 9X l ) .  for a more rigorow. discussion of this force . 
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F = 1 1  d/ X B. Jc (22-14) 

If B is uniform, the net magnetic force F is zero. 

Example THE FLOATING-WIRE HOD OS COPE 
The floating-wire hodoscope t is a device that simulates the 
trajectory of a charged particle in a magnetic field. Say a charged 
particle of mass m, charge Q, and velocity v follows a certain 
trajectory in going from a point a to a point b in a magnetic field . 
Then a light wire carrying a current I, fixed at a and going over a 
pulley at b, in the same magnetic field , as in Fig. 22-5, will follow 
that trajectory if 

mv T 
Q I ' (22-15) 

where T is the tension in the wire . This statement is by no means 

Fig. 22-5. Floating-wire hodoscope. A light wire bearing a current 
I fixed at a goes over a pulley at b. A small weight provides a 
tension T. This device simulates the trajectory of an ion beam 
travelling through the same magnetic field. With the magnetic 
fields shown the wire adopts an S-shaped posture . 

t The term hodoscope also designates various devices that record the trajectory followed 
by a high-energy particle. The principles involved in those devices bear no relation to the 
material in this section. 
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Fig. 22-6. (a) A positive charge Q moving at a velocity v in a 
magnetic field B. The radius of curvature of the trajectory is R,. 
(b) Light wire carrying a current I in the opposite direction in the 
same magnetic field. The tension in the wire is T, and the radius 
of curvature is Rw' The two radii are equal if mv I Q is equal to 
TIl. 

obvious, but it is easy to prove , as we shall see. The advantage of 
the floating-wire hodoscope is that it is much easier to experiment 
with a wire than with an ion beam. 

Suppose the beam is normal to B as in Fig. 22-6(a) . Then, if R, 
is the radius of curvature of the trajectory, 

mv2 
QvB = 

R '  , 
mv 

R' =
QB ' (22-16) 

Now suppose the wire is also normal to B, as in Fig. 22-6(b) . 
The element dl, with a radius of curvature Rw, is i n  equilibrium if 
the outward magnetic force BI dl just compensates the inward 
component of the tension forces T:  

�- -- ---
I" 

Fig. 22-7. Two closed circuits a and b. 
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de dl BI dl = 2T sin - = T-
2 Rw'  

The two radii are equal if 

mv T 
Q I 

MAGNETIC FIELDS V 

(22-17) 

(22-18) 

Notice that the particle deflects downward if the magnetic force 
is downward, but the wire curves downward if the force is upward. 

If B is not uniform and if the beam is not perpendicular to B, 
then the wire does not always follow the trajectory. For example, 
a magnetic field can serve to both focus and deflect an ion beam. 
Then focusing forces on the beam can become defocusing forces 
on the wire , which then moves away from the trajectory. 

22.3  
THE MAGNETIC FORCE BETWEEN 
TWO CLOSED CIRCUITS 

We saw above that the magnetic force exerted on a stationary circuit 
carrying a current f is f times the line integral of dl X B. Then, applying 
the Biot-Savart law of Sec . 18 .2 ,  the magnetic force exerted by a current 
fa on a current I" , as in Fig . 22-7, is given by 

f illl f dla x r Fab = I" dlb X - Ia --� - , 
b 4.n a r 

(22-1 9) 

(22-20) 

where r is the distance between dla and dh, and r points from dla to dh. 
The fact that dla and dl" do not play symmetric roles in this integral is 

disturbing. The asymmetry appears to indicate that Fab -=1= Fba,  which is 
contrary to Newton's law. t That impression is false. We can transform 
the double line integral to a symmetric one and show that Fab = -Fha as 
follows. First, we expand the triple vector product: 

(22-21 )  

Then, rearranging terms, 

(22-22) 

t Action is equal to reaction at speeds much less than the speed of light. 
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The second integral on the right is zero for the following reason. It is the 
ordinary integral of dr/r2, with identical upper and lower limits, because 
circuit b is closed, by hypothesis. So the double integral on the left is 
zero, and 

F = - {.to I I � f � diu ' dlb 
ab 4 a b r 2 • 

:rr a b  r 
(22-23) 

It follows that F" b = -Fba because r points toward the circuit on which 
the force acts. 

The above double line integral is usually difficult to calculate analyti
cally ,  unless you have access to a computer that can perform symbolic 
calculations. We shall find more useful expressions in Chap. 26 . 

Example THE FORCE BETWEEN TWO PARALLEL 
CURRENTS 

We can calculate the force per unit length between two long 
parallel wires bearing currents as in Fig. 22-8, without having to 
carry out the integration .  At the position of h, Ba is Ilr/a/2nD in 
the direction shown in the figure. See the first example in Sec. 
18.4. The force on a unit length of wire b is thus 

/ / 

Fig. 22-8. Two long parallel wires bearing currents fa and fh. The 
force is attractive when the currents flow in the same direction . 
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F'  = B 1 = Ilolah 
. (22-24) a b 2nD 

The force is attractive if the currents flow in the same direction 
and repulsive otherwise . The force is normally negligible . 

22 . 3 . 1  The Definitions of /lo, the Ampere , the Coulomb , 
and Eo 

As stated previously in Sec . 18 .2 ,  

!l0 == 4n X 10-7 weber / am pere-meter. (22-25) 

If Ia = Ib = I amperes, then the force per unit length is 

2 x lO-7P 
F' = ----D newtons/meter. (22-26) 

This equation defines the ampere. 
The definition of the coulomb follows: it is the charge carried by a 

current of 1 ampere during 1 second. 
So the definitions of !lo . I, and Q are arbitrary and related. 
But Coulomb's law relates the force of attraction between two electric 

charges to their magnitudes, and force is defined in mechanics. 
Coulomb's law must therefore involve a constant of proportionality 
whose value must be measured. 

We could, in principle, deduce the value of Eo from the measurement 
of F, the Q 's, and r in Coulomb's law. However, this would not make 
much sense because none of those measurements can be very accurate . 
Instead, we use the fact that 

1 EO = --2 , !loc (22-27) 

where c, the speed of light, is defined to 9 significant figures. Thus 

EO = 8. 854187817 X 10- 12 farad/meter. 

22.4 THE MAGNETIC FORCE ON A VOLUME 
DISTRIBUTION OF CURRENT 

(22-28) 

In this chapter we have assumed that the conduction currents flow in thin 
wires. What if, instead , we have a volume distribution of current? We 
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B 

Fig. 22-9. Element of volume dv = dl da in a current distribution I. 

can find the magnetic force density without much effort. Consider a small 
element of volume of length dl parallel to J and of cross section dsd, as in 
Fig. 22-9. The magnetic force exerted on the element is 

dF = (l dsd) dl X B = J X B dv (22-29) 

and the force per unit volume is 

F ' =J x B. (22-30) 

The total magnetic force on a given distribution of conduction currents 
occupying a volume v is thus 

Example 

F = jJ X B dv. 
t I  

(22-3 1) 

THE HOMOPOLAR MOTOR 
A homopolar motor comprises a copper disk that rotates in a more 
or less uniform axial magnetic field , with contacts on the axis and 
on the periphery, as in Fig. 22-10. The magnetic force on the 
current flowing radially through the disk provides the driving 
torque. 

Homopolar motors are inherently low-voltage, high-current 
devices. They usually operate with direct current. They can 
provide high torques at low velocities and are suitable. for 
example. for ship propulsion. The current is then supplied by a 
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B :> 

/ 
/ �C 

(b) 

Fig. 22-10. Homopolar motor. (a) Principle of operation.  (b) Cross section 
showing the coil C, the disk D, the brush contacts BR, and the terminals V. The 
torque on the rotating disk D is equal and opposite to that on the fixed disk D' .  
Moreover, the field o f  the current through D and D '  is azimuthal. Thus there is 
no force on coil C. This is important because C is superconducting and enclosed 
in a cryostat. 

diesel motor-generator through a step-down transformer and a 
rectifying circuit . Superconducting coils provide the axial B. 

We assume that the electric field in the disk is purely radial . 
This requires contacts all around the periphery, which is the usual 
configuration. 

Refer to Fig. 22-1 1 .  (1) The charge carrier Q has an azimuthal 
velocity wr. (2) It is therefore subjected to the radial magnetic 
force QwrB. (3) The charge Q is also subjected to the radial force 
QE. (4) Its radial velocity is therefore .M(E - wrB), where .M is 
the mobility (Sec. 4.3.3). The mobility of a charge carrier is equal 
to the force divided by Qu. This radial velocity is smaller than wr 
by many order of magnitude. (5) This small radial velocity gives 
an azimuthal force Q[.M(E - wrB)]B. 

The azimuthal force per unit volume at the radius r is thus 

F' = NQ[.M(E - wrB)]B = aCE - wrB)B, (22-32) 

from Sec. 4.3.3, N being the number of charge carriers per unit 
volume. This force density is simply IJ X B I .  It points in the 
counterclockwise direction in the figure. 
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BEB r (2) Q.". 

(;;\ �(5)Q[ , (I(E - wrB)]B 
� ;;' (l ) wr  

(3) Q£1 1  (4). 11(£ - wBi 

(b) 
Fig. 22-11. (a) The rotor of a homo polar motor. The electric field is radial, while 
the magnetic field is axial. A charge carrier Q has an azimuthal velocity wr. 
(b) The velocity components of Q (straight arrows) and the various forces exerted 
on Q (wavy arrows). 

For a disk of thickness s, the torque per unit volume exerted on 
the charge carriers is r X F ' ,  and the total torque is 

T = fr[2nrSO(E - wrB)B] dr = 2nsoB fr2(E - wrB) dr (22-33) 

in the counterclockwise direction. Here a and b are , respectively, 
the inner and outer radii of the region of the disk where the 
current is radial. 

We must still find E as a function of r. That is easy because the 
radial current is independent of r: 

Then 

Finally, 

1 = 2nrsi = 2nrso(E - wrB). 

I 
E - wrB = -- . 

2nrso 

(22-34) 

(22-35) 

(22-36) 

This is the counterclockwise torque exerted on the charge carriers. 
It is also the torque exerted on the disk because the carriers 
continually collide with the atoms of the crystal lattice. 

There are three interesting points to note here. 
(1 )  The magnetic force does useful work here because it 

possesses an azimuthal component. The fact that it does not affect 
the kinetic energy of the charge carriers is irrelevant. 

(2) Equation 22-35 shows that E is a peculiar function of the 
radius: 

I 1 E = (wB)r + -- - . 
2nos r (22-37) 
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( 2 )  Qwr/! (-I)  //( urB - F: )  

( 3 )  Qi: 

(a) ( h i  

Fig. 22-U. This figure i s  similar t o  Fig. 22- 1 1 ,  except that i t  applies to a 
homopolar generator. (a) With w and B in the same directions as for the motor, 
the axle is positive and E is also in the same direction. (b) The product wrB is 
larger than E, and there is now a braking force (5). 

The volume charge density is 

1 d P = Eo r' · E  = Eo - - (rE) = 2EowB. 
r dr 

(22-38) 

This charge density is uniform. It is positive with w and B as in 
Fig. 22- 12(a) .  It results from the v X B field . See Sec. 4 .3 .5 and 
Prob. 22-9. 

(3) The voltage applied between the axis of radius a and the 
periphery at b is 

v = J" E . dl = J" (wBr + _I_ ! ) dr a " 2nsa r 

b2 - a2 I b 
= wB-- + -- ln - . 

2 2nsa a 

(22-39) 

(22-40) 

The coefficient of I is the resistance of the disk between radii a and 
b (Sec. 4 .3 .2) .  Also, the coefficient of w is the torque that we 
found above, divided by I. So 

(22-41 ) 

We could have expected this : multiplying both sides by I gives 

(22-42) 

This equation simply says that the power VI supplied by the 
source is equal to the mechanical power wT plus the thermal 
power loss in the disk I2R. We have disregarded other losses. 
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Example 

Equation 22-42 shows that, for a given V, the current I is 
maximum when w = O. From Eq. 22-36, T is maximum when I 
is maximum, and thus when w = O. Then the mechanical power is 
zero. Conversely, from Eq. 22-40, I and T are both zero when 

2V 
(22-43) 

This is the maximum angular velocity. The mechanical power is 
then also zero. Beyond this angular velocity, the device acts as a 
generator, with the axis as positive terminal , feeding current into 
the source V. 

Under what condition is the mechanical power maximum? Set 

Then 

d d 
- (wT) = - (VI - 12R) = O. 
dl dl 

I = � 
2R' 

VI = 2PR, 

and the mechanical power is equal to the louie power loss. 

(22-44) 

(22-45) 

The mechanical power is maximum when half the energy 
supplied by the source dissipates as heat. Then the efficiency is 
50% ,  and , from Prob. 22-13,  

V 
(22-46) 

THE HOMOPOLAR GENERATOR 

The homopolar generator, like the homopolar motor, is a 
low-voltage, high-current device. One application is the gener
ation of the large currents required for purifying metals by 
electrolysis on an industrial scale. 

Figure 22- 1 1  applies, except that now wrB is larger than E, as in 
Fig. 22-12. The above calculation also applies, with the same 
proviso. 

The force density P' is now clockwise. The magnetic torque 
exerted on the charge carriers 

BI(b2 - a2) 
T = 

2 (22-47) 

is also clockwise and therefore opposes the motion. 
Conservation of energy now requires that 

(22-48) 

where wT is the mechanical power fed into the generator, VI is 
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the electric power fed to the load resistance , and [2 R is the 
thermal power dissipation. We have again disregarded other 
losses. Substituting the value of T and simplifying, 

(22-49) 

The homopolar generator therefore acts as an ideal voltage source 
wB(b2 - a 2)/2, with an output resistance equal to the resistance R 
of the disk . 

22. 5 SUMMARY 

The force on a charge Q moving at a velocity v in a field E, B is 

F = Q(E + v X B). (22-1 ) 

This is the Lorentz force. The term Qv X B is the magnetic force. 
Charge carriers flowing along a conductor situated in a magnetic field 

tend to drift sideways because of the magnetic force . This is the Hall 
effect. 

The magnetic force per unit length on a current-carrying wire is I X B. 
The total net force on a closed circuit is thus 

(22-14) 

The magnetic force exerted by a closed circuit a on a closed circuit b is 

110 f � dla x r Fab = -4 /Jb dh x --2-:rr a b  r (22-20) 

(22-23) 

By definition , 110 = 4:rr x 1 0-7 weber/ampere-meter. Then the force per 
meter between parallel wires carrying the same current / and separated 
by a distance D is 2 x 1 O-7/2/D. The force is attractive if the currents 
flow in the same direction . 

The magnetic force exerted on a volume distribution of current is 

F = !J X B dV. " (22-31  ) 
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PROBLEMS 

22- 1 .  (22. 1 )  Electrons in the Crab nebula t 

In the Crab nebula there is a magnetic field of about 2 x 10-8 tesla and 
electrons whose energy is about 2 x 1014 electronvolts. 

(a) Find the radius of gyration. Compare this radius with that of the 
earth's orbit. (See the page inside the back cover) . 

(b) How long does an electron take to complete one turn, in days? 

22-2. (22. 1) The pinch effect 
A beam of charged particles of charge Q, mass m, and velocity v has a 

radius r. The beam current is /. Assume that the charge density is uniform. 
(This is a poor approximation; the current density as a function of the 
radius follows , in fact , a Gaussian curve .)  

Find the outward force on an ion situated at the periphery of the beam. 
You will find that there is an outward electric force and an inward magnetic 
force. The magnetic force tends to "pinch" the beam, or to concentrate it 
along the axis .  

I f  you cancel the electric force by adding ions of the opposite sign, then 
the magnetic force acts alone and the beam contracts. This phenomenon is 
easy to observe with positive ion accelerators. Residual gas in the path of 
the beam ionizes by impact, and the resulting low-energy electrons remain 
in the beam, while the positive ions drift away. If the pressure increases 
somewhat, the focusing improves .  This is gas focusing. 

At higher gas pressures the low-energy ions remain mostly inside the 
beam because their mean free path between collisions is shorter. The beam 
then becomes unstable because of phenomena that are not well understood 
at this time. 

22-3. (22. 1 )  The acceleration of an electron in a field E, Bt 

(a) Show that the equation of motion for a particle of rest mass mo, 
charge Q, and velocity v in a field E, B is 

dv ( V ) 
ymo 

dt 
= Q E + v X B - � v . E . 

If E is zero and B is static, 

dv QB 
- = v  X- = V X m  
dt m e , 

and the electron describes a circle at the angular velocity We = QB/m, 
which is called the cyclotron frequency. 

(b) A 12.0-MeV (million electronvolt) electron moves in the positive 
direction of the z-axis in a field E = 1 .00 X 106i, B = 1 .00x. 

Calculate its acceleration . The rest mass of an electron is 5 . 1 1  x 105 
electronvolts. 

t This problem requires a knowledge of relativity. 
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22-4. (22. 1 )  The motion of a charged particle in uniform and perpendicular E 
and B fields 

A particle of charge Q starts from rest at the origin in a region where 
E = Ej and B = Bi. 

(a) Find two simultaneous differential equations for v, and vy • 
(b) Find Vx and vy . Set We = BQ /m. This is the cyclotron frequency. 

Also, set Vx = 0, Vy = 0 at t = O. There will be two constants of integration. 
(c) Find x(t) and y(t). Set x = 0, y = 0 at t = O. 
(d) Describe the motion of the charge. 
(e) Sketch the trajectory for We = 1, E / B = 1 .  
(f) Show that the particle drifts a t  the velocity E X B / B2. Note that this 

velocity is independent of the nature of the particle and of its energy. In a 
plasma, charges of both signs drift at the same velocity, and the net drift 
current is zero. 

(g) Calculate the drift velocity of a proton at the equator under the 
combined actions of gravity and the B of the earth . Assume that 
B = 4 X 10-5 tesla, in the horizontal direction. Remember that in the region 
of the north geographic pole there is a south magnetic pole. Thus, at the 
equator, B points north. 

(h) In which direction does an electron drift at the equator? 

22-5. (22. 1 )  The crossed-field photomultiplier 
Figure 22-13  shows the principle of operation of a crossed-field photo

multiplier. A sealed and evacuated enclosure contains two parallel plates 
called dynodes. They provide the electric field E. An external permanent 
magnet superimposes the magnetic field B. 

A photon ejects a low-energy photoelectron. The electron accelerates 
upward , but the magnetic field deflects it back to the negative dynode. At 
this point it ejects a few secondary electrons, and the process repeats iself. 
Eventually, the electrons impinge on the collector C. 

It is possible to obtain in this way about 105 electrons per photon and 
output currents as large as 100 microamperes. Since the time of flight is 
nearly the same for all the electrons, this type of photomultiplier can be 
used at data rates in excess of 1 megabit/second. 

In actual practice there is an alternating voltage between the electrodes, 
but we simplify the problem by assuming a steady voltage. 

Let us find the value of a. 

Fig. 22-13. 
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B 

Fig. 22-14. 

(a) Find the differential equations for Vx and vy • The trajectory is not 
circular. You can simplify the calculation by setting Be 1m = Wc> the 
cyclotron frequency . 

(b) Find Vx as a function of y. 
(c) You can now find y, and then x, as functions of t. Set t = 0, 

dx I dt = 0, and dy I dt = 0 at x = 0, y = O. You should find that the trajectory 
is a cycloid. 

(d) What is the maximum value of y ?  
(e) What is the value of a ?  

22-6. (22. 1 )  Fermi accelerationt 
Fermi proposed the following mechanism, now called Fermi acceleration, 

to explain the existence of very high-energy particles in space. Imagine a 
clump of plasma traveling at some velocity veX. The plasma carries a 
current and thus has a magnetic field. Imagine now a particle traveling in 
the opposite direction at a velocity -vaX, both Vc and Va being positive 
quantities. The particle is deflected in the magnetic field and acquires a 
velocity vbi, where Vb is also a positive quantity. 

Set Vc = Va = c/2. Calculate the initial and final values of y. 
It is now believed that cosmic rays acquire their energy, not In the 

interstellar medium, but in stars and in sources outside our galaxy. 

22-7. (22. 1 )  Electromagnetic pumps 
Electromagnetic pumps are convenient for pumping highly conducting 

fluids, for example, liquid sodium in certain nuclear reactors. Their great 
advantage is that they have no moving parts, except the fluid. See Fig. 
22-14. 

The conduction current density in a liquid metal of conductivity a that 
moves at a velocity v in a field E, B is J = aCE + v X B). All quantities are 
measured with respect to a fixed reference frame. Then the magnetic force 
per unit volume is F '  = J X B = aCE + v X B) x B. As a rule, E, B, and v 
are orthogonal. 

t This problem requires a knowledge of relativity. 
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(a) Show that F ' = aB2(u - v ), where u = E X B/B2 and v is the fluid 
velocity, which is perpendicular to B. This means that the magnetic force 
tries to make v equal to u. 

(b) Calculate the efficiency, on the assumption that a permanent magnet 
supplies the magnetic field. Neglect edge and end effects. Is the efficiency 
high, or low? 

22-8. (22. 1 )  The Hall effect 
Let us investigate the Hall effect more closely. We assume again that the 

charge carriers are e lectrons of charge -e. Their effective mass is m *. The 
effective mass takes into account the periodic forces exerted on the 
electrons as they travel through the crystal lattice. As a rule, the effective 
mass is smaller than the mass of an isolated electron. 

The force on an electron is F = -e(E + v X B), where E has two 
components, the applied field Ex and the Hall field Ey • The average drift 
velocity is 

.MF 
v = - =  -.M(E + v X B), 

e 

where .M is the mobility (Sec. 4 .3 .3) .  The law F = m *a applies only 
between collisions with the crystal lattice. 

(a) Show that 

v, = -.M(Ex + vyB) , 

(b) Show that 

Ex - .MEyB 
Ix = Ne.M 

1 + .M2B2 , 

Thus, if Iy = 0, 

or 
b 

Vy = - .MYxB. 
a 

Note that the Hall voltage is proportional to the product of the applied 
voltage Yx and B. The Hall effect is thus useful for multiplying one variable 
by another. 

When it is connected in this way, the Hall element has four terminals and 
is called a Hall generator, or a Hall probe. 

(c) Calculate v" for b = 1 millimeter, a = 5 millimeters, .M = 7 meters2/ 
volt-second (indium antimonide) , Yx = 1 volt, B = 10-4 tesla. 

(d) Show that, if Ey = 0, then 

fiR 
= .M2B 2 

Ro 
' 

where Ro is the resistance of the probe in the x-direction when B = 0, and 
fiR is the increase in resistance upon application of the magnetic field . 

The Hall field Ey can be made equal to zero by making c small, say a few 
micrometers, and plating conducting strips parallel to the y-axis, as in Fig. 
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Fig. 22-15. 

22-15 .  The element then has only two terminals and is called a 
magnetoresistor. Magnetoresistors are useful for measuring magnetic flux 
densities. 

22-9. (22. 1 )  The electromagnetic flowmeter 
The electromagnetic flowmeter is the inverse of the electromagnetic pump 

(Prob. 22-7). It operates as follows. See Fig. 22-16. A conducting fluid flows 
in a nonconducting tube between the poles of a magnet. Electrodes on 
either side of the tube and in contact with the fluid measure the v X B field, 
and thus the quantity of fluid that flows through the tube per second. This is 
a Hall effect, except that here ions of both signs move with the fluid in the 
same direction. 

Faraday attempted to measure the velocity of the Thames River in this 
way in 1832. The magnetic field was, of course, that of the earth. 

In the absence of turbulence, the fluid velocity in a tube of radius R is of 
the form v = vo( 1  - r2 I R2). The v X B field in the fluid is therefore not 
uniform . This gives rise to circulating currents with J = a( - VV + v X B). 
The potential Va results from the charges that accumulate on the electrodes. 

(a) Sketch a cross section of the tube , showing qualitatively, by means of 
arrows of various lengths, the magnitude and direction of v X B. 

(b) Sketch another cross section, showing the lines of current flow. The 
current drawn by the electrodes is negligible. 

(c) Neglect end effects by setting al az = O. Use the fact that V ·  J= 0 to 
show that 

2 av av 
V V = B - = B - sin 4>. 

ay ar 

Since this Laplacian is equal to -pi Eo, the volume charge density p is zero 

x 

Fig. 22-16. 
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on the axis, where av / ar = ° and at </> = 0, and at Jr. See page 402. 
(d) Set V = V '  sin </>, where V' is independent of </>, and show that 

d2V '  1 dV' V '  dv -- + - - - - = B-
dr2 r dr r2 dr . 

(e) You can solve this differential equation as follows: ( 1 )  express the 
left-hand side as a derivative , (2) integrate , (3) multiply both sides by r, (4) 
express both sides as derivatives, (5) integrate. This will leave you with two 
constants of integration , one of which is easy to dispose of. You can find 
the value of the other by remembering that i, = 0 at x = 0 ,  y = R if the 
voltmeter draws zero current. 

Note that the output voltage is independent of the conductivity of the 
fluid, if one assumes that the voltmeter draws zero current. 

Find the output voltage as a function of the volume Q of fluid that flows 
in one second. 

(f) We have neglected edge effects in the region where the fluid enters, 
and emerges from, the magnetic field . Sketch lines of current flow for these 
two regions. These currents reduce the output voltage somewhat. 

22-10. (22. 2) Improving (?) electric motors 
(a) Someone suggests that , if the rotors of electric motors were wound 

with iron wire instead of copper wire , the torque could increase by a 
factor of 1000. 

Show that the torque would indeed increase, but by a negligible 
amount. The increased Joule losses render the substitution undesirable. 

(b) Here is another suggestion . The wires are located ,  not at the 
surface of the rotor, but rather in slots. Moving the wires to the surface of 
the rotor would place them in a stronger field and increase the torque by 
a factor of maybe 3 or 4 .  

You can show that this is  incorrect if  you are careful to distinguish 
between the magnetic field of the stator and that of the iron of the rotor. 

22- 1 1 .  (22. 3 )  The force between two parallel currents. 
Two long, straight, parallel wires of length 2L separated by a distance 

D carry equal currents I flowing in the same direction. 
Calculate the force of attraction. 

22-12. (22. 3 )  The magnetic force law does not apply to the forces between 
single particles. t 

We found that the force exerted between two charges Qa and Qb 
moving together at the same velocity v and a distance s apart is 

F = (1 - {32) 1I2QaQb 
4JrEoS2 

Now calculate this same force from Coulomb's law and from the magnetic 
force law, substituting Q"v for Ia di" and QbV for h dh. 

t This problem requires a knowledge of relativity. 
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22-13 .  (22. 4)  The pinch effect on a conductor 
We have seen that the magnetic force density on a conductor is J X B. 

If the force density is enormous, then any solid can be treated as a fluid, 
and if p is the pressure , Vp = J X B. 

(a) A conducting wire of radius R carries a current I. At the surface, 
p = O. Show that at the radius r, p = [!lo/2/ (4n2R2)](I - r2jR2) .  The 
magnetic force compresses the wire. 

(b) Calculate the instantaneous pressure on the axis for a current of 
30 kiloamperes in a wire 1 millimeter in radius. The wire , of course, 
vaporizes. Such large currents are obtained by discharging large, low
inductance capacitors. 

(c) Show that, with a tubular conductor of inner radius R ,  and outer 
radius R2 , the pressure in the cavity is given by 

!lo/2 1 - (R,/R2)
2[1 + 2 1n (R2/R,)] p = 

4n2R� [ 1 - (R, /R2?]2 

Disregard the skin effect . Transient pressures approaching 106 atmos
pheres have been obtained in this way . 

One type of x-ray source implodes thin, aluminized plastic tubes by 
discharging 1 mega joule in them. The resulting plasma generates a 
ISO-kilojoule pulse of radiation . 

22- 14. (22. 4) The homopolar motor 
(a) Find the mechanical power as a function of w for a homopolar 

motor, for a given applied voltage V. 
You can do this by first writing P = wT = wB(b2 - a2)1/2 = wAI, 

where A is a constant, and then expressing I as a function of w. 
(b) Sketch a curve of P as a function of w. 
(c) Show that the mechanical power is maximum at the angular 

velocity wmaximum pow« = V / [B(b2 - a2)] .  

22-15 .  (22. 4)  The homo polar motor 
Show that the centrifugal force on the conduction electrons in the rotor 

of a homopolar motor is completely negligible. Set B = 1 ,  w = 2n. The 
ratio of the magnetic force to the centrifugal force is enormous because 
the ratio e / m is equal to about 2 x 10" . 
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In the previous chapter we studied the magnetic forces exerted on 
moving charged particles and on currents situated in magnetic fields . 
These forces were of the form Qv X B. 

We now investigate the effect of a v X B field inside a moving 
macroscopic body. We shall see that in conducting bodies v X B acts like 
E. We shall also see that a time-dependent magnetic field gives rise to an 
electric field of strength - oAlot, where A is the vector potential, as 
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usual , and that V X E = - aB I at. The Faraday induction law neatly 
groups both phenomena. 

23 . 1  
THE V X B FIELD INSIDE A NONCONDUCTOR 

(1) Suppose that a nonmagnetic nonconductor moves in some arbitrary 
fashion in a constant magnetic field. Then a charge Q carried along inside 
the body at a velocity v, in a region where the magnetic flux density is B, 
experiences a magnetic force Qv X B. 

As we noted in Sec. 22. 1 ,  the velocity v can be any function of the 
coordinates and of the time. It can be uniform throughout the body, or it 
can vary from one point to another and with time. 

Of course, B can itself be any function of the coordinates. However, B 
is constant ,  by hypothesis ; we shall come to time-dependent magnetic 
fields in due time. 

Now v X B has the dimensions of E, because Qv X B is a force . 
Indeed, v X B adds to any E that may be present . The polarization is 
therefore given by 

P = EoXe(E + V X B). (23-1 ) 

(2) If the nonconductor is magnetic, its equivalent currents, of course, 
follow the moving medium, but they can be time-dependent if the 
ambient B is nonuniform. So the situation can be complex. 

23 .2 
MOTIONAL ELECTROMOTANCE. 
THE FARADAY INDUCTION LAW 
FOR V X B FIELDS 

Consider a closed circuit C that moves as a whole and distorts in some 
arbitrary way in a constant magnetic field, as in Fig .  23-1 . Then, by 
definition , the induced, or motional, electromotance is 

'Y = J. (v X B) . dl = - J. B . (v X dl) .  fc fe· (23-2) 

The negative sign comes from the fact that we have altered the cyclic 
order of the terms under the integral sign. 

Now v X dl is the area swept by the element dl in 1 second. Thus 
B . (v X dl) is the rate at which the magnetic flux linking the circuit 
increases because of the motion of the element dl. Integrating over the 
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B 

Fig. 23-1. Closed circuit C that moves and distorts in some arbitrary way in a 
constant magnetic field B. The element dl moves at a velocity v and sweeps an 
area v x dl in 1 second. 

complete circuit, we find that the induced electromotance is proportional 
to the time rate of change of the magnetic flux linking the circuit: 

d<l> 
r =  - d( '  (23-3) 

The positive directions for r and for <l> satisfy the right-hand screw rule . 
The current is the same as if the circuit comprised a battery of voltage r. 

This is the Faraday induction law for v X B fields. This law is 
important. As far as our demonstration goes, it applies only to constant 
B 's ,  but it is ,  in fact, general, as we see in Sec . 23 .4 . Quite often <l> is 
difficult to define ; then we can integrate v X B around the circuit to 
obtain r. 

If C is open, as in Fig. 23-2 , then current flows until the electric field 
resulting from the accumulations of charge exactly cancels the v X B 
field. 

Example A SIMPLE-MINDED GENERATOR 

An electric generator transforms mechanical energy to electric 
energy, usually by moving conducting wires in a direction 
perpendicular to a magnetic field. 
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Fig. 23-2. (a) Conducting rod moving at a velocity v in a magnetic field B. The 
v X B field drives conduction electrons upward. Current flows until the electric 
field E exactly cancels the v X B field . (b) Disk rotating in a magnetic field B. 
Here the v X B field causes conduction electrons to move outward. A radial 
current flows until the electric field cancels the v X B field. 

The simplest (and most impractical ! )  type of generator is that of 
Fig. 23-3(a) . The link slides to the right at a speed v such that 
v2 « c2 , where c is the speed of light, in a uniform B that is 
normal to the paper. The resistance at the left-hand end of the line 
is R, and that of the link is RI. The horizontal wires have zero 
resistance. 

The electromotance is 

er = _ d<P = BDv 
dt 

. (23-4) 

We have disregarded the magnetic flux resulting from the current 
1 

itself. In other words, the resistance R is large. Then 

1 =  BDv 
. 

R + RI 
(23-5) 

A conduction electron inside the link follows along at the 
velocity v, and the v X B field prods it downward. Its velocity v, 
relative to the link is strictly vertical, under steady-state condi
tions, because otherwise negative charges would accumulate 
indefinitely along one edge of the link, leading to an infinite 
potential. See Fig. 23-3(b) . 

In a fixed reference frame S, the force on a conduction electron 
of charge Q inside the link is Q (E + v X B). Thus, in the link , 

J 
= 

aCE + v X B) = a( - VV + v X B). (23-6) 
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(h) 
Let us calculate V in S. 

Fig. 23-3. (a) Simple-minded electric 
generator. Sliding the link to the right 
at a velocity v generates a current f in 
the direction shown. The magnetic 
field is constant and uniform. The 
resistance R is the load. (b) Section 
through the link: v is the velocity of the 
wire, Vr the velocity of a conduction 
electron relative to the link, E the Hall 
field. The Hall field exactly cancels the 
Vr x B  field. 

At b in Fig. 23-3(a) , Vb = fR. In either horizontal wire, J = aE 
is finite. Since a--4 oo, by hypothesis, then E = 0, rv = 0, and 

Vd = Va = 0, 

Inside R and R" with the y-axis as in the figure, 

y vBR 
V = fR - = -- y. 

D R + R/ 

The voltage v;, across R/ is fR : 

(23-7) 

(23-8) 

(23-9) 

This means that the motion generates a voltage vBD in the link, 
while its current causes a voltage drop fRIo 
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Fig. 23-4. (a) Voltmeter V connected across the link in the generator of Fig. 23-3. 
(b) Equivalent circuit. 

Suppose we connect a voltmeter across the link as in Fig. 
23-4(a) . Call the resistance K, with Rv » R,. This hardly affects 
the current /. What will be the reading on the voltmeter? If the 
current through the voltmeter is fv , then it will read a voltage 
f,,R,, , with the polarity shown in the figure. 

Now refer to Fig. 23-4(b) .  Clearly, fuRv = f,R, and the voltmeter 
reads the voltage drop f,R,. 

Chapter 17, on relativity, is a prerequisite for the rest of this 
example. 

All we know about the magnetic field is that B = -Bz; the 
current distribution that generates B is unspecified. Let us set 

Ax = nBy, Ay = (n + l)Bx, (23-10) 

where n is a pure number. It is a simple matter to check that 
B =  V X A. 

If n = 0, then the currents supplying B are all vertical. If 
n = - 1 , they are all horizontal. With a solenoid whose axis 
coincides with the z-axis, n = -� .  Therefore, inside R and R, 

oA 
E =  - VV - - =  - VV 

at 

vBR A -
R + R, Y' 

(23- 1 1 )  

(23-12) 

Let us now see what happens inside the link, in its own 
reference frame S ' .  We assume that v2 « c2, which makes y = 1 .  

From Sec. 17 .8 ,  

I vV  v2 BR 
Ax = Ax - ----:;- = nBy - -2 R

-
R 

y = nBy, 
c c + , 

(23-13) 
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A� = Ay = (n + 1)Bx = (n + 1 )Bvt, 

vBR ( R ) 
V' = V - vAx = -- y - vnBy = -- - n  vBy. 

R + R, R + R, 

v '  = (_R
_ - n

)
VBD. C R + R, 

(23-14) 

(23-15) 

(23-16) 

Note that the values of A '  and of V' depend on the value of n. In 
other words, they depend on the particular geometry of the coils 
selected for generating B. Observe also the appearance of a 
aA ' lat term in S' . 

Now 

where 

E '  = - V 'V '  _ aA ' 
at' ' 

(23-17) 

V v2 
t' = t - -; X = t - - t = t. (23- 18) 

C (2 
Thus 

, av' , aA ' av' , aA; , 
E = - -y - - =  - -y - - y  

ay at ay at 

( R ) R, = -
R + R, 

- 1  vBy = 
R + R, 

vBy. 

In general, - aA ' I at' is not equal to v X B. 

(23-19) 

(23-20) 

(23-21) 

The quantity n has disappeared ! We could have expected this 
because, clearly , E' must be independent of the configuration of 
the coils that generate the given magnetic field. 

We could also have found E' directly, by simply transforming 
E, with v2 « (2: 

E' = Ell + (E c + v X B) = E � + v X B ( vBR ') R, 
= - -- + vB y = -- vBy, R + R, R + R, 

(23-22) 

(23-23) 

as above. This shows that, in the moving reference frame of the 
link, E' is equal to E plus v X B. 

The current I' is equal to I, and the voltmeter reading is the 
same for an observer in S' as for an observer in S. 

AN ALTERNATING-CURRENT GENERATOR 

The loop of Fig. 23-5 rotates at an angular velocity w in a uniform, 
constant B. We calculate the induced electromotance 'V, first 
through v X B and then through d ct> I dt. 
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Fig. 23·5. Loop rotating in a 
constant and uniform magnetic 
field B. The slip rings provide 
contacts between the voltmeter 
and the loop. 

(a) Along the right-hand side of the loop, 

wa wabB A bv X B = 2: Bb sin e i = -
2
- sin wt x. (23-24) 

Along the left-hand side we have the same induced electro mot
ance , but directed downward as in the figure. Along the upper and 
lower sides, v X B is perpendicular to the wire. This crowds the 
conduction electrons sideways, thereby increasing the resistance 
imperceptibly, but v X B contributes nothing to the e1ectromot
ance . So 

/I' = abBw sin wt. (23-25) 

Notice that there is zero electromotance when wt = nlr, where n is 
a whole number. Then v and B are parallel ,  and v X B is zero. 

(b) The time rate of change of the magnetic flux gives the same 
result: 

dctJ d 
/1' =  - -d = - - abB cos wt = abBw sin wt. t dt 

23 . 3  LENZ'S LAW 

(23-26) 

Now let us return to Fig .  23-3(a) . Observe that sliding the bar to the right 
increases the linking flux , but the induced current tends to decrease it .  So 
t h e  induced electromotance drives a current whose field opposes a change 
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in the net magnetic flux linking the circuit .  This is Lenz's law. If the 
circuit was superconducting, the enclosed flux would remain constant. 

We return to Lenz's law later. 

23 .4 FARADAY'S INDUCTION LAW FOR 
TIME-DEPENDENT B's .  THE CURL OF 

E 

Imagine now two closed and rigid circuits as in Fig. 23-6. The active 
circuit a is stationary, while the passive circuit b moves in some arbitrary 
way ,  say in the direction of a as in the figure . The current fa is constant. 

From Sec. 23 .2 ,  the electromotance induced in circuit b is 

f d<l> 
11' = (v X B) · dl =  - - ,  

b dt (23-27) 

where <I> is the magnetic flux linking b. This seems trivial, but it is not, 
because d<l>/dt could be the same if both circuits were stationary and if fa 
changed appropriately . This means that the Faraday induction law 

11' = 
d<l> 
dt (23-28) 

applies whether there are moving conductors in a constant B or stationary 
conductors in a time-varying B. However, our argument is no more than 
plausible . A proper demonstration follows at the end of this chapter. It 
requires relativity. 

Fig. 23-6. Circuit a is active and fixed in position. Circuit b is passive and moves 
in the field of a. 
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Assuming the correctness of the above result, the electromotance 
induced in a rigid and stationary circuit C lying in a time-varying 
magnetic field is 

'V = 1. E . dl = f ( V  X E) . dd = - d<l> 
= -f aB . dd. fc· s1 dt s1 at (23-29) 

We have used Stokes's theorem in going from the first to the second 
integral , s!l. being an arbitary surface bounded by C. Also, we have a 
partial derivative under the last integral sign , to take into account the fact 
that the magnetic field can be a function of the coordinates as well as of 
the time , The right-hand screw rule applies. 

The path of integration need not lie in conducting material . 
Observe that the above equation involves only the integral of E . dl. It 

does not give E as a function of the coordinates, except for simple 
geometries , and only after integration , 

Since the surface of area s!l. chosen for the surface integrals is arbitrary, 
the equality of the third and last terms above means that 

I V x E �  -¥} I (23-30) 

This is yet another of Maxwell's equations. This equation, like the other 
two (Eqs. 9-15 and 1 8-19) , is valid on the condition that all the variables 
relate to the same reference frame. 

23 . 4 . 1  Lenz's Law Again 

The negative sign in Eqs . 23-28 and 23-30 is important. If <I> points into 
the paper and increases , then d<l>/ dt points into the paper. Then, 
according to the right-hand screw rule, the negative sign means that the 
induced electromotance is counterclockwise. 

Observe that the induced electromotance tends to generate a magnetic 
field that counters the imposed change in flux. So Lenz's law of Sec. 23.3 
applies here also. 

23 .4 .2  Flux Linkage 

If the closed circuit comprises N turns , each intercepting the same 
magnetic flux , then the electromotances add and the net electromotance 
is N times larger. Then the quantity N<I> is termed the flux linkage : 

i\. = N<I> and 'V =  di\. 
dt (23-31 )  
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Of course, the geometry of the circuit and the configuration of the field 
can be quite complex. Then this equation still applies and the geometric 
meaning of A becomes obscure, but /I, and hence A, are measurable 
quantities. 

Example MEASURING B IN A ROWLAND RING 

We are now in a position to understand how to measure B in the 
Rowland ring of Sec. 21 .2  to observe the hysteresis loop of a 
sample of ferromagnetic material. 

Let the low-frequency alternating current through winding a in 
Fig. 23-7 be 

I = 1m cos wI. (23-32) 

Then, from Sec. 20.6 ,  H is a sinusoidal function of the time and , if 
winding a has Na turns, 

Nalm cos wt 
H =  . 

2nr 
(23-33) 

We assume that the minor radius of the ring is small compared 
to its major radius. Then r is the mean radius. 

If the magnetic flux density, averaged over the cross section , is 
B, then the magnetic flux is Bd and, disregarding signs, the 
electromotance induced in the Nb turns of winding b is 

(23-34) 

This is the voltage at the terminals of winding b if the measuring 
device draws essentially zero current. 

To obtain B, we connect an integrating circuit (Prob. 7-9) to the 
terminals of winding b, as in Fig. 23-7. Then,  with an operational 
amplifier of gain A » 1, and if A wRC » 1 ,  

Fig. 23·7. The Rowland ring. This i s  basically a transformer with a primary a and 
a secondary b. The secondary is connected to an integrating circuit. A is an 
operational amplifier. The output alternating voltage V is proportional to the 
magnetic flux density B in the core . 
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Example 

1 II dB Nbs!l 
V = - - N s!l - dt =  -- B 

RC 0 
b 

dt RC ' 

We have set V = 0 at t = O. 

(23-35) 

So the voltage at the output of the integrating circuit is equal to 
a known constant times B. 

THE ENERGY DISSIPATED IN DESCRIBING A 
HYSTERESIS LOOP 
We can now also calculate the energy dissipated in describing the 
hysteresis loop of Fig. 21-2. We refer to the Rowland ring of Sec. 
21 .2 .  When the current fa increases, the flux <Il in the core 
increases, and the electromotance -Na d<ll/dt induced in winding 
a opposes this increase , according to Lenz's law. The extra power 
spent by the source is then 

d't ( d<ll) dB - = f N - = I N s!l -
dt a a 

dt 
a a 

dt ' 

if s!l is the cross-sectional area of the sample. Also, 

d't faNa dB dB - = - 2nr s!l - = Hv -
dt 2nr dt dt ' 

where v = 2nr s!l is the volume of the sample and 

't1 = v  fH dB 
g 

(23-36) 

(23-37) 

(23-38) 

is the energy supplied by the source in going from g to b on the 
loop of Fig. 21-2. This integral is equal to the area defined by the 
points agbh and to the energy supplied by the source per unit 
volume of core. 

When the current is in the same direction but decreasing, the 
polarity of the induced electromotance reverses, and in going from 
b to c, the energy 

(23-39) 

returns to the source. 
Proceeding in this way all around the loop, we find that, in the 

course of one complete cycle, the source supplies an energy 

't = v � H dB, (23-40) 

which is v times the area enclosed by the hysteresis loop . 
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23 . 5  
THE ELECTRIC FIELD STRENGTH 

E 
EXPRESSED IN TERMS OF THE POTENTIALS 

V AND A 

An arbitrary , rigid , and stationary closed circuit C lies in a time
dependent B. Then, from Sec. 23 .4 , 

1 E . dl = -� f B . dd, Je dt sl 

where sI1 is the area of any open surface bounded by C. 

(23-41)  

Now, from Sec. 19. 1 ,  we can replace the surface integral on the right 
by the line integral of the vector potential A around C: 

1 E . dl = - � 1 A . dl = _1 aA . dl. Je dt Je Je at (23-42) 

There is no objection to inserting the time derivative under the integral 
sign, but then it becomes a partial derivative because A is normally a 
function of the coordinates as well as of the time. 

Thus 

(23-43) 

where C is a closed curve , as stated above. Then, from Sec. 1 .9 . 1 ,  the 
expression enclosed in parentheses is equal to the gradient of some 
function: 

aA E + - = - VV at ' 

aA E =  - VV - at ' 

where V is, of course , the electric potential . 

. (23-44) 

(23-45) 

So E is the sum of two terms, - VV that results from accumulations of 
charge and - aAf at whenever there are time-dependent fields in the 
given reference frame. 

This is an important equation ; we shall use it repeatedly . Observe that 
it expresses E itself, not its derivatives or its integral ,  at a given point in 
terms of the derivatives of V and of A in the region of that point. Its 
magnetic equivalent is B = V X A (Sec. 18 .4) . 
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The Faraday induction law, in differential form (Eq. 23-30) , relates 
space derivatives of E to the time derivative of B at a given point. 

Observe that VV is a function of V, which depends on the positions of 
the charges. However, aA / at is a function of the time derivative of the 
current density J, hence of the acceleration of the charges. 

The relations 

E =  - VV -
aA 
at 

and B = V X A  (23-46) 

are always valid in any given inertial reference frame. t 
In a time-dependent B, the electromotance induced in a circuit C is 

Example 

II = -f aA ·. dl. 
c at 

EDDY CURRENTS 

(23-47) 

Imagine a sheet of copper lying inside a solenoid, in a plane 
perpendicular to the axis. The solenoid carries an alternating 
current. 

According to Lenz's law, the - aA/at electric field induces 
currents in the copper that tend to cancel the changes in the net B. 
These currents are azimuthal because A and aA / at are azimuthal 
(example in Sec. 19. 1 ) .  

Currents induced i n  bulk conductors by  changing magnetic fields 
are termed eddy currents. 

Eddy currents can be useful. For example, they dissipate energy 
in various damping mechanisms. 

They are harmful in transformers because they cause Joule 
losses in the core. Transformer cores are usually assembled from 
thin sheets of transformer iron , called laminations, a fraction of a 
millimeter thick in small units , insulated from each other by a thin 
layer of oxide. With a solid core the eddy currents would largely 
cancel changes in magnetic flux. Also, the Joule losses would be 
excessive. 

In audio transformers the iron alloy is sometimes in the form of 
a powder molded in an insulating binder. The transformer is then 
said to have a powdered iron core. 

Ferrites serve at audio frequencies and above. These are 
ceramic-type materials that are molded from oxides of iron and of 
various other metals. Their main advantage is that their electric 
conductivity is low, of the order of 1 siemens/meter, or 10-6 times 
that of fransformer iron. Eddy-current losses in ferrites are thus 
easily manageable . 

• Unless stated otherwise, all the reference frames that we refer to are inertial: they do 
not accelerate, and they not rotate. 



426 

Example 

(' + + 

MAGNETIC FIELDS V I  

THE INDUCED ELECTROMOTANCE IN 
A RIGID CIRCUIT 
In the rigid circuit of Fig. 23-8 , we assume that (1) the horizontal 
wires have zero resistance, (2) the resistance Ra is a long distance 
away from l' , and (3) both Ra and Rb are large enough to render 
the magnetic field of / negligible compared to that of I ' .  Thus B 
and A are essentially those of I' and point in the directions shown. 
According to Lenz's law (Sec. 23 .4 . 1 ) ,  an increase in I '  induces an 
electromotance and a current / in the counterclockwise direction. 

One may ascribe the induced electromotance either to the 
changing magnetic flux Il> or to the electric field strength - CJA / CJt 
in Rb, with 

Il> = ;: A . dl = AbD. fe· (23-48) 

The line integral runs clockwise because of the right-hand screw 
rule. The induced electromotance is thus 

(23-49) 

This is counterclockwise if Il> points into the paper and increases, 
or if l' increases. Thus 

/ =  
(CJAb/ CJt)D 

(23-50) 
Ra + Rb 

in the direction shown, again if l' increases. 

+ + + + / + + + + + + d 

. . 'Vi> /' f '  + 

,v" + 

- � " 1 
I 1 I EB EB 

I 
R" 

B <P 
E" 

A" 
JAj" rJt 

E" 
- / -

Fig. 23·8. Rigid circuit gcde terminated by resistances Ra and Rb and situated 
near a pair of wires carrying a current I ' .  The lengths of the arrows show the 
relative magnitudes of E, VV, and CJA /CJt, with Ra = Rb . 
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Inside the resistance Ra , A = 0 by hypothesis and 

IRa " 
E = - VV = - - y a a

D ' 

with Ea and VVa pointing as in the figure. 
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(23-51) 

The potential at e is zero for the following reason. Inside the 
horizontal wires, E = J / a, where J has some finite value and a is 
infinite , by hypothesis. So 

av aAx - - - - = 0. 
ax at (23-52) 

But Ax is everywhere zero because the currents I' have no 
x-component. So 

Similarly, 

av = 0 
ax ' (23-53) 

(23-54) 

This potential on the cd wire results from the accumulation of 
positive surface charges on the upper half of the circuit, and 
negative charges on the lower half, as in the figure. 

Inside Rb, therefore , 

(23-55) 

points upward, and 

(23-56) 

also points upward. Of course, E points in the same direction as J. 
If Ra = Rh, then 

23 .6 THE 
E, - VV, - oA/ ot, AND V XB FIELDS 

In any given inertial reference frame , say S, the equation 

always applies. 

aA 
E =  - vv - 

at 

(23-57) 

(23-58) 
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If a charge Q moves at a velocity v with respect to S. then for an 
observer on S the force is 

F = Q(E + v X B) = Q ( - VV - �� + v X B) . (23-59) 

All the variables are measured with respect to the same reference 
frame S. These equations are valid even if v approaches the speed of 
light . 

For an observer on the moving body. say in reference frame S ' . the 
body is at rest and 

F '  = QE' = Q (- V ' V '  _ OA ' ) . 
at' 

*23 .7 RELATING THE TWO FORMS OF THE 
FARADAY INDUCTION LAWt 

(23-60) 

We found above that if a rigid circuit moves in a constant B, then the 
induced electromotance follows Faraday's induction law. Then we 
concluded that the same law applies to a stationary circuit lying in a 
time-dependent B. 

Passing from one form of the law to the other requires relativity. 
In the rest of this chapter we shall call an electromotance 'Vern. and the 

velocity of S' with respect to S 'Vvel' 
Equation 23-28 refers to the induced electromotance, as measured in 

the fixed reference frame S. From our experience with relativistic 
calculations, it is by no means evident that, in the frame S '  of the moving 
circuit, 

d<Il' 
'V' = - --em dt ' 

That is , in fact, true because , as we shall see , 

<Il '  = <Il, dt ' = 
dt . 
Y 

(23-61)  

(23-62) 

We can immediately accept the third equation for the following reason. 
For any point in S' , 

( 'Y. X ' ) 
t = Y t '  + ;� , 

t Relativity is a prerequisite for Sec. 23.7 . 

(23-63) 
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from Sec. 13 .4 .  Thus , at any given point in S ' ,  x '  is fixed and 

dt = y dt ' . (23-64) 

Proving the other two equations takes a bit longer. 

23 .7 . 1  Transformation of a Magnetic Flux 

The magnetic flux linking a given closed circuit bounding an area si is 

� =  J B · dd 
.01 

(23-65) 

in a reference frame S and 

�' = J B ' · dd '  
s'; ' 

(23-66) 
in S ' .  

Of  course , the surface o f  area si i n  frame S has a different shape in 
frame S ' ,  because of the Lorentz contraction, and a different area si ' .  A 
given element of area (say it is painted red) carries a flux B . dd in frame 
S, and B '  . dd' in S ' .  Thus 

d�' B ' · dd ' 
d� B · dd 

But, from Secs. 14. 1 . 1  and 16.6, and setting E = 0, 

( dd�) B' · dd ' = (BII + yB�) · ddll + -y-

= BII • dd" + B� · dd� = B ·  dd, 

(23-67) 

(23-68) 

(23-69) 

and �' = �. The magnetic flux linking a rigid closed curve is invariant. 

*23 .7 .2 Transformation of an Electromotance 

Refer again to Fig. 23-6 and call S' the reference frame of the moving 
circuit .  In S ' , 

(23-70) 

Since we are only interested in motional electromotance for the 
moment, we may assume that B is constant and E is zero in S. Then , 
from Sec. 16-6, 
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°V�m = f y(rve1 X B) · dl ' . (23-71 ) 

Now the vector product is perpendicular to rve1 ' It is therefore only the 
perpendicular component of dl' that matters, dl� = dl1- ' and 

(23-72) 

We have therefore proved all three equations 23-62. As a consequence, 
we have shown that , under any circumstance , but in a single reference 
frame, the electromotance induced in a closed circuit associated with a 
changing magnetic flux is given by 

(23-73) 

The positive directions chosen for 'Vern and for <I> follow the right-hand 
screw rule. 

23 .8  SIX KEY EQUATIONS 

It is useful at this stage to group the following six equations: 

(G) aA 
E =  - vv - 

at ' 

(G) 

(G) 

(G) 

1 E . dl = - J aB
. d.rA, fc si at 

aB 
V x E =  - 

at ' 

B = V X A,  

V x B =  f.loJ. 

(Sec. 18 .4) and 

(Sec. 19 .5) 

(Sec. 19 . 4) 

(23-46) 

(23-29) 

(23-30) 

(23-46) 

The four equations preceded by (G) are general, while the other two 
apply only to slowing varying fields (Sec. 27. 1 ) .  In each equation all the 
terms concern the same reference frame .  



23.9 SUMMARY 431 

23 .9  
SUMMARY 

A body moves in some arbitrary fashion in a constant, but not necessarily 
uniform , magnetic field .  At a point fixed to the moving body, a charge Q 
experiences a force Qv X B. The motional electromotance is 

'V = L (v X B) . dl. (23-2) 

Here v is the velocity of a charge fixed in the body, and B is the magnetic 
flux density at that point in space . 

When the curve C is closed, the motional electromotance is also given 
by 

'V = _ d<I> 
dt ' (23-3) 

where <I> is the enclosed flux. This is the Faraday induction law. The 
right-hand screw rules applies . This law also applies to a fixed circuit 
situated in a time-varying magnetic field . 

At any point in space , in a given reference frame, 

I V x E � -¥, I (23-30) 

This is one of Maxwell's equations. 
Lenz's law states that the electromotance induced in a closed circuit 

tends to oppose changes in the magnetic flux linking the circuit . 
With a multiturn closed circuit , 

'V = _ dA 
dt ' 

where A is the flux linkage. 
In any given inertial reference frame, 

aA 
E =  - vv - 

at and 

(23-31 ) 

B = V x A. (23-46) 

A charge Q moving at a velocity v in superposed electric and magnetic 
fields is subjected to a force 

F = Q(E + v X B) = Q ( - VV - �� + v X B) . (23-59) 
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PROBLEMS 

23-1 .  (23. 2) The thought experiment of Fig. 23-3 
Show that there is conservation of energy in the thought experiment of 

Fig. 23-3(a) . 

23-2. (23. 2) Tides and the magnetic field of the earth 
Discuss how tides affect the magnetic field of the earth by considering 

the case of a river flowing into the sea in the east-to-west direction in the 
northern hemisphere. Remember that the magnetic pole situated at the 
north geographic pole is a south magnetic pole. The vector B points 
downward in the northern hemisphere. 

23-3. (23. 2) The magnetic braking force on a satellite 
A natural satellite whose diameter is 104 meters moves at a velocity of 

1 kilometer/second in the direction normal to the magnetic field of a planet 
in a region where B = 10-7 tesla. The satellite has an appreciable 
conductivity. 

(a) The satellite moves in a perfect vacuum. What happens? 
(b) The ambient gas has a density of the order of IOU) particles per cubic 

meter, the particles being either electrons or singly charged ions. Each half 
of the satellite collects particles of the correct sign in sweeping through 
space. Calculate the order of magnitude of the current. 

(c) Calculate the order of magnitude of the braking force . 
(d) Someone suggests that this current could provide power for an 

artificial satellite traveling in the same field at the same velocity. Inversely, 
a current in the opposite direction could serve to propel the satellite. What 
is your opinion? 

Artificial satellite velocities range from about 4 to 8 kilometers/second, 
and v X B in the ionosphere and magnetosphere ranges from about 
100 microvolts/meter to 320 millivolts/meter. 

23-4. (23. 3) Eddy-current damping 
Figure 23-9 shows one common type of eddy-current damper. Motion of 

the copper plate in the field of the permanent magnet induces currents that 
tend to oppose the motion, according to Lenz's law. Joule losses in the 
plate dissipate its kinetic energy. 

Dampers of this general type are used mostly, but not exclusively, in 
low-power devices such as watt-hour meters and balances. As you will see ,  
the braking force i s  proportional to  the velocity, a s  i n  a viscous fluid . 

(a) Explain qualitatively, but in greater detail, the origin of the braking 
force . 

(b) How could you design an automobile speedometer that uses eddy 
currents? 

(c) Say B is uniform over the pole face . The path followed by the 
current is complex; set R = 3a /obs . This quantity is of the order 3. The 
plate has a thickness s and a conductivity o. Calculate the current. 

(d) Calculate the braking force F. This is proportional to the conduc
tivity. So the plate should be either copper or aluminum. An even better 
solution is to use an iron plate faced with copper. 
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Fig. 23-9. 

(e) Calculate the power IV dissipated in the plate. This should be equal 
to Fv. 

(f) Estimate the value of B required in eddy-current disk brakes for a 
small bus. The conductivity of copper is 5 .8  x 107 siemens/meter. Estimate 
the power dissipated at each wheel. Why does a vehicle equipped with 
eddy-current brakes still need conventional brakes? 

In mountainous regions some buses and trucks are equipped with 
dynamos that brake by generating electric power that is dissipated in a large 
resistance on the roof. 

23-5 . (23. 4)  Detecting flaws in metal tubing 
Figure 23-10 shows the principle of operation of a device for detecting 

flaws in metal tubing, or rod. The coils a provide a large gradient of 
magnetic field along the axis, as in Prob. 18-10. Coil b is connected to a 
monitor. The tubing T moves at a constant velocity v along the axis of 
symmetry. A voltage appears across coil b when a flaw passes through. 
Explain. 

1I Fig. 23-10. 
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23-6. (23. 4)  The flux-gate magnetometer 
A magnetometer measures B. One common type is the jiux-gate 

magnetometer, which puts to use the hysteresis curve. There exist many 
forms, one of which is shown in Fig. 23- 1 1 (a) . The two rods are made of a 
ferromagnetic material such as a ferrite, whose hysteresis curve is shown in 
Fig. 23- 1 1 (b). The twin coils are in series and are wound as in the figure so 
as to magnetize the rods in opposite directions. The current through these 
coils is sufficient to carry the material through a complete hysteresis loop. 

In the absence of an external field Hex the magnetic fluxes through the 
rods cancel,  and V = O. 

(a) Sketch $(t) and Vet) for each rod when Hex = O .  
(b) Sketch the same quantities for Hex -=1= O .  You will notice that if the 

oscillator operates at a frequency j, the fundamental frequency of V is 2f. 

l! 

H 

(b l  

Fig. 23-11. 

This facilitates the measurement because the detector can be made to reject 
the frequency f. 

Flux-gate magnetometers can measure fields down to a few nanoteslas. 

23-7. (23. 4)  The peaking strip 
A peaking strip serves to measure B. It consists of a fine wire of 

permalloy (see below) oriented in the direction of B with a small pickup 
coil of a few thousand turns near the center, on the axis of a solenoid, as in 
Fig. 23-12. 

To measure the ambient B, the solenoid carries a direct current that just 
cancels B, plus a small alternating current. Then the H on the axis of the 
solenoid is that of the alternating current, and the strip goes through a 
hysteresis loop at every cycle. 

With molybdenum permalloy the loop is approximately rectangular, and 
the voltage induced in the small coil has two sharp peaks, one positive and 
one negative, which can be observed on an oscilloscope . 

When the oscilloscope sweep is synchronized with the alternating current 
in the solenoid, the two peaks are symmetric if the time-averaged H on the 
axis of the solenoid is zero. Then the steady field of the solenoid exactly 
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/ 
/ Solenoid 

-' Peaking strip 

Fig. 23-12. 

cancels the ambient B and the current in the solenoid is then a measure 
of B. 

The peaking strip has a rather limited range of applications. ( 1 ) The 
solenoid has to be at least about 10 centimeters long because it must be at 
least a few times longer than the strip, to avoid excessive end effects. But 
the length of the strip must be much larger than its diameter, again to 
reduce end effects, and a decrease in the strip cross section decreases the 
signal proportionately. (2) The ambient B cannot be larger than a few 
hundredths of a tesla, for otherwise the power dissipated in the solenoid 
becomes excessive. (3) If one measures B in the neighborhood of a 
pole-piece, the field of the solenoid alters the permeability of the iron 
locally. 

Calculate the peak voltage induced in the pickup coil under the following 
conditions : strip diameter, 25 micrometers; number of turns in the pickup 
coil ,  1000;  maximum value of fl." 75,000; frequency, 60 hertz; amplitude of 
the alternating H, 7 ampere-turns/meter. 

' ;  X. (23. 4)  Measuring a resistivity without contacts 
It is useful to be able to measure the resistivity of a sample without 

having to cement contacts to it. One method involves placing a disk of the 
material inside a solenoid carrying an alternating current, with the two axes 
parallel ,  and measuring the power absorbed by the disk. The disk has a 
radius a, a thickness s, and a conductivity a. The magnetic field is uniform, 
and B = Bm cos wt. We neglect the magnetic field of the induced currents. 
We therefore restrict ourselves to low-conductivity materials. 

Find the relation between a and the average dissipated power P. 
, ; Ii. (23. 5) The induction linear accelerator 

Figure 23- 1 3  shows a schematic diagram of an induction linear ac
celerator. It consists of a series of ferrite toroids linked by the ion beam and 
by one-turn loops that carry large pulsed currents. 

One such accelerator comprises 200 toroids and accelerates a 10-
kiloampere pulsed electron beam to 50 million electronvolts. Its total length 
i ,  HO meter,. and the pulses are 70 nanometers wide . 

Explain i h  operation quali tatively.  
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Fig. 23-13. 

23- 10. (23. 5)  A magnetometer that uses eddy currents 
Figure 23-14 shows the principle of operation of a magnetometer that can 

measure magnetic fields as small as lO-R tesla and up to 10-2 tesla. The 
aluminum plate P turns on the axis AA in the ambient field Bo that we wish 
to measure. The fluctuating eddy currents induced in P produce a 
fluctuating magnetic flux through the fixed coil C, which has N turns, and 
the voltage V is a measure of Bo. 

The plate is 10 millimeters square and is cemented inside the plastic rotor 
of a small air turbine that operates at 1000 revolutions/second. The only 
metallic parts are the plate and the coil. 

An exact calculation of V as a function of geometry, of w, and of Bo 
would be difficult . But this is unnecessary because we can calibrate the 
instrument with Helmholtz coils (Prob. 18-9). 

(a) How does V vary with B" and with w? Set wt == 0 when the plate lies 
in the plane of C. 

(b) What is the frequency of V? 

A 

Fig. 23-14. 
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This chapter concerns the electromotance induced in a circuit when its 
magnetic flux linkage changes. The change in flux can occur either 
because of a change in the current flowing through the circuit itself or in 
currents flowing elsewhere or because of a change in the geometry <.If the 
circuits. 

24 . 1  MUTUAL INDUCTANCE M 

24. 1 . 1  The Neumann Equation 

In Fig . 24-1 the active circuit a carries a current la . The magnitude flux 
tl> ab that originates in a and links b is 

(24-1 ) 

where r is the distance between the elements dla and dlh • Thus 
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Fig. 24-1. The active circuit a bears a current fa that increases . Part of its 
magnetic flux links the passive circuit b. The electromotance 'Yh induced in b is in 
the direction shown. 

(24-2) 

where 

(24-3) 

is the mutual inductance between the two circuits. Mutual inductance is 
expressed in webers per ampere , or in henrys. This is the Neumann 
equation. 

If the geometry is more complex than that of Fig . 24-1 ,  the above 
reasoning still applies, except that the flux <Pab becomes the flux linkage 
Aab (Sec . 23.4 .2) , and 

(24-4) 

The electromotance induced in b by a change in fa is 

(24-5) 

The mutual inductance is usually constant. Then the ICl5t term on the 
right vanishes. 

Therefore the mutual inductance between two circuits is 1 henry if a 
current changing at the rate of 1 ampere/second in one circuit induces an 
electromotance of I volt in the other . 
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If current Ia is sinusoidal, then 

(24-6) 

A device comprising two circuits designed to possess mutual inductance 
IS termed a mutual inductor, or a transformer. 

The Neumann equation is seldom useful because the double integral is 
difficult to evaluate, even for simple geometries. This is not a matter for 
concern, because mutual inductances are easily measured with impedance 
hridges . One can also calculate Mab from the ratio rb to dIa/dt. 

The Neumann equation is nonetheless interesting. It shows that mutual 
I nductance depends solely on the geometry of the system. We had a 
similar situation with respect to capacitance. 

Also , we can interchange the subscripts in the Neumann equation 
wi thout altering the mutual inductance. Therefore 

(24-7) 

l'his is surpnsmg because the circuits can have different shapes and 
different numbers of turns. This is a striking example of the reciprocity 
theorem of Sec . 8.7 . That is , 

Example 

if then (24-8) 

THE MUTUAL INDUCTANCE BETWEEN TWO 
COAXIAL SOLENOIDS 

In the third example in Sec. 18.2 . 1 we found that, inside a long 
solenoid with N' turns per meter and bearing a current I (ignoring 
end effects) , 

B = f.loN'1 (24-9) 

We add a second winding over the solenoid, as in Fig. 24-2, and 
we assume that both windings are long compared to their common 
diameter, in order to render end effects negligible. 

First, we assume that solenoid a, of radius R and number of 
turns Na, bears a current la . The magnetic flux of a that links 
solenoid b, of the same radius and with Nb turns, is then , from the 
third example in Sec. 18.2 . 1 ,  

and 

2 Na 
4>ab = nR f.lo - la, a 

(24-10) 

(24- 1 1) 
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Fig. 24·2. Two coaxial solenoids. We have shown different radii for clarity, but 
coil b is wound directly over a. 

Alternatively, we assume a current Ib in solenoid b. Then 

(24-12) 

This flux links only (b/a)Na turns of coil a, since B falls rapidly to 
zero beyond the end of a long solenoid. Thus 

(24-13)  

and Mab = Mba ,  as  expected. 
It is paradoxical that a varying current in the inner solenoid 

should induce an electromotance in the outer one, since B = 0 
outside a long solenoid. The reason for this is that the induced E is 
equal to minus the time derivative of A,  not B, and A does not 
vanish outside along solenoid, even though V X A is zero. 

24. 1 .2 The Sign of M 

As a rule , the sign of M is immaterial. There are occasions , however, 
when phases matter , and then one requires the sign of M. Also, the 
directions of forces and torques between circuits depend on the sign of 
M, as we shall see in Chap. 26. 

Fig. 24·3. Convention for showing the sign of M on a circuit diagram. If the 
positive directions chosen for the currents in the two windings are such that 
current enters through the wire carrying a dot , then M is positive , as it is here . 
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The sign of M is defined as follows. First we select arbitary positive 
directions for the currents in the two circuits. Then M is positive if a 
positive current in a gives in b a flux linkage of the same sign as that 
resulting from a positive current in b. See Fig. 24-3 . 

24 . 2  SELF-INDUCTANCE 
L 

A simple circuit carrying a current 1 is, of course, linked by its own 
magnetic flux, as in Fig. 24-4. The ratio 

A L = -
1 

(24- 14) 

I S  termed the self -inductance of the circuit .  As for mutual inductance, 
,clf-inductance depends solely on the geometry of the circuit and is 
measured in henrys. Self-inductance is  always positive . 

If the current 1 in a self-inductance L changes, then a voltage 

dA dl 'V = - - = -L -
dt dt (24-15) 

appears between its terminals. The negative sign means that this voltage 
opposes the change in current. See Fig . 24-4 . 

Therefore the self-inductance of a zero-resistance circuit is 1 henry if 
the current increases at the rate of 1 ampere/second when the difference 
of potential applied between the terminals is 1 volt .  

If both 1 and L are time-dependent , then 

+ 

v 

Fig. 24·4. Circuit linked by its own flux. If I increases, the voltage across L 
opposes I. 
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d dl dL - - (LJ) = - L - - / - . dt dt dt (24- 16 ) 

As a rule , L is constant . 
One can calculate a self-inductance, at least in principle, from the 

Neumann equation (Sec. 24 . 1 . 1 ) ,  with both line integrals running over 
the same circuit. If the conductor cross section is infinitely small , then the 
linking flux and the self-inductance turn out to be infinite . This arises 
from the fact that B tends to infinity in the immediate neighborhood of 
the wire. The region where B tends to infinity is itself infinitely small ,  but 
the flux tends to infinity logarithmically. With currents distributed over 
an infinitely thin surface, as in the next example, B remains finite and L 
is also finite . 

Self-inductance is easily measured. A circuit designed to possess 
self-inductance is called an inductor. 

Example 

Example 

THE SELF-INDUCTANCE OF A LONG SOLENOID 

If I is the length of a long solenoid, N the number of turns, and R 
its radius, then 

(24-17) 

The self-inductance of a short solenoid is smaller by a factor 
that is a function of the ratio R / l. 

A high-permeability nonconducting magnetic core increases 
B. and hence the self inductance , by a factor of about 
1 . 3  (length/diameter) l 7 .  

THE SELF-INDUCTANCE OF A TOROIDAL COIL 

The magnetic flux density inside the air-core toroidal coil of Fig. 
24-5 follows from the circuital law (Sec. 20 .6) :  

Thus 

/1oN1 
B = -- . 

2n 

liON! la+bl2 b /1oN!b 2a + b 
11> = -- - dr = -- ln -- ,  

2n a hl2 r 2n 2a - b 

Nil> /1oN2b 2a + b 
L = - = -- ln -- . 

1 2n 2a - b 

(24-18) 

(24-19) 

(24-20) 

If the relative permeability of the core is /1" then the 
self-inductance is II, times larger. 
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Fig. 24-5. Toroidal coil of square cross section. 

2 .. + ' 2 . 1 The Impedance of an Inductor 

The voltage V across an ideal zero-resistance inductor determines the 
rate of change of the current flowing through it. Disregarding the 
negative sign of Eq. 24-15 ,  

dI V = L - .  dt 

I f  I is a sinusoidal function of time, then 

V = jwLI 

; I Jld the impedance of an inductor is 

Z = jwL. 

(24-21) 

(24-22) 

(24-23) 

Real inductors are not that simple. Unless an inductor is superconduct-
1 I 1 g ,  one must usually take its resistance into account and write 

Z = R + jwL. (24-24) 

Increasing the frequency increases the ratio wL/ R, and this lessens the 
I L' l ative importance of R. However, this brings in another phenomenon. 
Ikcause of the voltage difference between turns, the inductor also acts as 
, I  capacitor, and its equivalent circuit is that of Fig . 24-6, where C is its 
l imy capacitance. Also , R increases with frequency because the current 
flows closer and closer to the surface of the wire as the frequency 
I I lL rcascs. This is the skin effect. 
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L R 

c 

Fig. 24-6. The equivalent circuit of a real inductor. The parameters R, L, and C 
depend on the geometry and on the nature of the materials. 

The impedance of a real inductor is thus 

Z = (R + jwL)/(jwC) = R + jwL 
R + jwL + l/ (jwC) (R + jwL)jwC + 1 

R + jwL (R + jwL)(1 - w2LC - RjwC) 
1 - w2LC + RjwC ( 1 - w2LC)2 + (RwC? 

_ R + jw[L - C(R2 + w2L2)] R ' + . - (1 - w2LC)2 + (RWC)2 ,x. 

- 6  r = 10.5 x 105 

(24-25) 

(24-26) 

(24-27) 

Fig. 24-7. Locus of the impedance Z = R '  + jX of a certain inductor as a function 
of frequency. The parameters R, L, and C of Fig. 24-6 are, respectively, 
1000 ohms, 1 .00 millihenry, and 100 picofarads. We have disregarded the fact that 
R increases with frequency. 
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iX 
z 

O �----�----------�--------R 
Fig. 24.8. Impedance Z in the complex plane. The power factor is equal to cos cpo 

For w = 0, Z = R, as one must expect. For large values of w, only its 
higher powers remain and Z = l/(jwC) : all the current then flows 
through the stray capacitance C, and the inductor is capacitive. As w 
tends to infinity, Z tends to zero . See Fig. 24-7 . 

Inductors are so designed that jwL, or at worst R + jwL, is a good 
approximation for Z over a given frequency range. 

24 .2 .2  The Power Factor A 
The ratio R/ IZ I  is the power factor of an impedance . This quantity is 
usually denoted by A and expressed as a percentage . With Z plotted in 
the complex plane as in Fig. 24-8, A = cos cpo If cP is 45°, then A is 70.7% .  

Example MINIMIZING LINE LOSSES 

Figure 24-9 shows a load 

Z = R'oad + jX = IZ I  exp jcp, 

X 
cp = arctan -- , 

R'oad 

R1rll<." -2 

-2 

(24-28) 

(24-29) 

z. y 

Fig. 24·9. A load impedance Z = R'oad + jX, or an admittance 
Y = G'oad + jB, connected to a source through a line of resistance 
Rhn •• The line resistance is equal to twice the resistance of one 
wire . 
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1 1 . . 
Y = - = - exp ( -JCP)  = G + JB 

2 12 1  

connected to  a source 

v = Vm expjwt 

(24-30) 

(24-31 ) 

through a line of resistance Rline «  12 1 .  We wish to minimize the 
losses in the line, for a given line , a given Vm ,  and a given power 
dissipation in the load. 

Defining V ' as in the figure, the current is 

/ = V ' Y = VY = V(G + jB). (24-32) 

Then the power in the load is 

Plo>.d = � Re V/* = � Re [VV*(G - jB)] = W�"G = V;m,G, (24-33) 

while the power lost in the line is 

Wline = ! Re (V - V ' )/* ] = � Re [(IR line)I* ]  

= �R line V�,( G2 + B2) = Rlinc V;m,( G2 + B2) 

= Rlinc(GWload + V�m,B2). 

(24-34) 

(24-35) 

(24-36) 

The power lost in the line is minimum when B = O. Then cP is zero 
and the power factor cos cP is 100%.  

Stated otherwise , the component of the current that i s  in 
quadrature (phase lead or lag of 900) with the applied voltage 
yields zero useful power in the load , but nonetheless gives rise to a 
power loss and to a voltage drop in the line . 

Electric motors are inductive loads. Therefore , in large 
installations, one connects capacitor banks across the line,  close to 
the motors, to make B equal to zero. 

24.3  
THE COUPLING COEFFICIENT k 

Consider a loop of wire a bearing a current fa and linked by its own flux 
<I> aa' Another loop of wire b, nearby, intercepts a fraction of this flux 

<I> ab = kab <I> aa ' 

where Jkab J  :S 1 .  The self-inductance of loop a is 

(24-37) 

(24-38) 



24.3 THE COUPLING COEFFICIENT k 

and the mutual inductance between the two loops is 

M = <l>ab = 
kab<l>aa = k L ab 1 1 ab a ' 

Likewise , 
a a 

Now Mab = Mha = M, from Sec. 24. 1 . 1 .  Thus 

M =  ± Jk k J 1 /2 (L L ) 1/2 = k(L L )1/2 ab ba a b a b , 

Jk J  = Jkabkba J lI2, 
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(24-39) 

(24-40) 

(24-41 )  
(24-42) 
(24-43) 

where k is the coupling coefficient for the two loops. Superposing the two 
loops makes k equal to unity. The sign of k is that of M. 

For coils of arbitrary shapes and sizes, one replaces the fluxes by the 
flux linkages 

k - Aba 
ba - A ' 

bb 
(24-44) 

and Eq. 24-42 applies. However, either kab or kba can now be larger than 
unity. 

The maximum possible magnitude of k is unity. We can prove this 
statement easily for two solenoids of the same length and nearly the same 
radius, one inside the other. Then kab and kba are both maximum. Say 
solenoid a has Na turns, and solenoid b has Nb turns. Then 

(24-45) 

Either one of these ratios can be larger than unity , but their product is 
equal to unity and k = l .  

In Sec. 24.2  we saw that the self-inductance of a circuit tends to infinity 
as the wire diameter tends to zero. However, mutual inductance remains 
well behaved even if both circuits are filamentary. The reason is that the 
flux close to a thin wire does not link another circuit some distance away. 
As the diameter of the wire tends to zero, L tends to infinity , k tends to 
zero, and M remains finite . 

Example COAXIAL SOLENOIDS 
The coaxial solenoids of the example in Sec. 24. 1 . 1  are of different 
lengths. Then . from Eq. 24-42 , 
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(24-46) 

with M as in Eq. 24- 1 10 and the L's as in Eq. 24-17. 

24.4  SUMMARY 

The mutual inductance M between two circuits a and b is given by the 
Neumann equation 

(24-3) 

where the line integrals run around each circuit and r is the distance 
between the elements dla and dlb . Because of the symmetry of the 
integral, 

If Aab is the flux that originates in a and links b, then 

Aab = Mabfa . 
The electromotance induced in b by the current in a is 

dAab dfa dM 'Vb = 
- dt = - M dt - fa dt . 

The self-inductance of a circuit is 

L = � f ' 

(24-7) 

(24-4 ) 

(24-5) 

(24-13) 

where A is the flux linkage when the current is f. The impedance of an 
ideal inductor is jwL. 

The coupling coefficient between two circuits is 

(24-46) 

This coefficient takes the sign of M, and its magnitude is at most unity. 
The power factor of an impedance is R/ IZ I .  

PROBLEMS 

24-1 .  (24. 1 )  The mutual inductance between a solenoid and a short coaxial coil 
A long solenoid of radius R and N' turns per meter carries a short coil of 

N turns near its center. 



0��----:;;/ 
I / 

(a) Calculate the mutual inductance M. 
(b) Does the radius of the short coil affect M? 
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Fig. 24-10. 

Note how much more difficult it would be to calculate the flux linking the 
solenoid for a given current in the short coil. 

24-2. (24. 1)  The mutual inductance between a toroid and an axial wire 
A long straight wire lies along the axis of a toroid of N turns, major 

radius a, and square cross section of side b, with a »  b. 
Calculate the mutual inductance (a) assuming a current I in the wire and 

(b) assuming a current I in the toroid. 

24-3. (24. 1)  The mutual inductance between a straight wire and a loop 
A loop of wire of radius R is centered at a distance 2R from a long 

straight wire . The wire is in the plane of the loop. 
Calculate the mutual inductance . 

24-4. (24. 1)  A zero-mutual-inductance magnetic dipole pair 
A certain device for geophysical exploration comprises two short coils in 

the position shown in Fig. 24-10.  The manufacturer states that the mutual 
inductance is zero. Is that true? 

24-5. (24. 1 )  Current transformer 
Figure 24- 1 1  shows a side-look current transformer for measuring large 

current pulses. Show that for a single-turn coil 

v = l10a ln (b + a) dI
. 

n b - a dt 

20 

20 
I--h 

Fig. 24-11. 
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One can obtain let) with an integrating circuit (Prob. 7-9) . 

24-6. (24. 2) A conducting shield for fluctuating magnetic fields 
It is often necessary to shield instruments from stray magnetic fields. If 

the only disturbing field is that of the earth , then one can set up a pair of 
Helmholtz coils (Prob. 18-9) to oppose the earth's field. If the field is static 
but not uniform, then one must use a shield made of high-permeability 
material. Multiple shields, one inside the other, are better than a single 
thick shield. 

Could a conducting enclosure be a good shield against fluctuating 
magnetic fields? The answer is yes, as we shall see , but only at quite high 
frequencies. 

Imagine a simple situation where the external magnetic field Bex is 
uniform, with Bex = Bex,m exp jwt. The shield is a long tube , parallel to the 
lines of B, a few times longer than its diameter 2a, and a few times longer 
than the shielded region. 

We assume that the current induced in the shield is uniformly distributed 
throughout its thickness b. In other words, we disregard the skin effect 
(Sec. 29. 1) .  If this assumption is not valid, then the shielding is better than 
our calculation would indicate. 

(a) Calculate the resistance R '  of the tube , per unit length, in the 
azimuthal direction. Calculate L. 

(b) Let Bin = Bin.m expjwt be the value of B inside the tube , away from 
the ends, Find the ratio Bin.ml Bex.m. 

(c) Show that , if the skin effect is negligible, this ratio cannot be smaller 
than 0 .5 .  A conducting enclosure therefore acts as a shield only through the 
skin effect. 

24-7. (24.2) Inductance and reluctance 
An N-turn coil links a magnetic circuit . Show that L = N2Pll . 

24-8. (24. 2) The Maxwell bridge 
See Prob. 7-12. Figure 24-12  shows a Maxwell bridge. This circuit serves 

to measure the inductance L and the resistance R of an inductor. One 
adjusts the values of Rh, R" Rd, and C until V equals zero. 

Find L and R in terms of the other components. 

24-9. (24, 2) Electromagnet operating on alternating current 
An electromagnet with a variable gap length operates on alternating 

current. How does the rms value of the magnetic flux depend on the gap 
length, for a given applied voltage , and neglecting leakage flux? 

24-10.  (24. 2) Power-factor correction 
A load is inductive, has a power factor of 65% ,  and draws a current of 

100 amperes at 600 volts. 
(a) Calculate the magnitude of Z, its phase angle, and its real and 

imaginary parts. 
(b) Calculate the in-phase and quadrature components of the current. 
(c) What size capacitor should be placed in parallel with the load to 

cancel the reactive current at 60 hertz? 



Fig. 24·12. 

(d) What is the current supplied by the source now? 
Note that Z ' is not equal to the real part of Z. 

24- 1 1 .  (24.2. 1 )  Power-factor correction with fluorescent lamps 

45 1 

A fluorescent lamp consists of an evacuated glass tube containing mercury 
vapor and coated on the inside with a fluorescent mixture. A discharge 
occurs between electrodes situated at each end . The discharge emits most 
of its energy at 253 .7 nanometers. in the ultraviolet. The fluorescent coating 
absorbs this radiation and reemits visible light. 

The discharge operates correctly only when it is connected in series with 
an impedance. A resistor would dissipate energy, so it is the custom to use 
a series inductor. Several types of circuit are in use. 

One particular fluorescent fixture operates at 120 volts and dissipates 
80 watts. Its power factor is 50% .  

(a) Find the reactive current. 
(b) What is the size of the capacitor connected in parallel with the 

discharge tube and its inductor that will make the power factor equal to 
100%? 
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This is the last chapter on electric circuits. We still have to discuss how to 
apply Kirchhoff's laws to circuits comprising self- and mutual induc
tances. Self-inductance is easy . Mutual inductance is less simple because 
it consists of an interaction between branches. However, with either one 
of two simple transformations , the application of Kirchhoff's laws 
becomes straightforward. 

A careful discussion of magnetic-core transformers is well beyond the 
scope of this book. We therefore limit ourselves to a crude, but useful, 
approximation called the ideal transformer. 
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25 . 1  
CIRCUITS COMPRISING SELF-INDUCTANCES 

If a circuit comprises self-inductance-we exclude mutual inductance for 
the moment-then both the Kirchhoff current law (KCL) and the 
Kirchhoff voltage law (KVL) (Sec. 7.8) apply as previously, the voltage 
drop across an inductor being L dI/ dt. 

For sinusoidal currents, the impedance of an inductor is jwL, and the 
delta-star transformations of Sec. 8.9 apply. Ohm's law becomes I = V /2. 

Example 

\ "" 

SERIES RESONANCE 
In Fig. 25-1 ,  a source of alternating voltage feeds a series LRC 
circuit. Then I = V /Z, where 

Z = R + j(WL _ _  1_) = R + jWL( l - _l _) . 
wC w2LC 

At resonance, 

1 wL = wC or 

(25-1 ) 

(25-2) 

The impedances of the inductance and of the capacitance then 
cancel, Z is real and equal to R, and I = V / R. The resonance 
circular frequency is 

(25-3) 

It is convenient to use the two dimensionless numbers 

and (25-4) 

Fig. 25-1. Series-resonant circuit connected 
to a source of alternating voltage. 
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The second one is a measure of the "quality" of a circuit: the 
higher the Q, the lower the dissipation! Then 

z . ( ' 1 ) - =  1 + JQ w - - . 
R w ' 

1 0  
(V ' 

(a) 

(h)  

(25-5) 

I ( J .O 

Fig. 25-2. (a) R IIZI as a function of w'  = wi Wr for the circuit of Fig. 25-1 and for 
various values of Q. (b) The phase rp of Z as a function of w ' for the same values 
of Q. 

t Estill I .  Green has recounted "The Story of Q" in The American Scientist, vol. 43, p. 
584 (1955 ) .  
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Example 

Figure 25-2(a) shows curves of R/ IZ I  = R I YI as a function of w '  
for various values o f  Q .  By  definition, the width of the resonance 
peak is the difference I).f between the frequencies for which 

and 

R 1 iZI = 
2112 = 0. 7071 .  

N =� . 

The higher the Q, the sharper the resonance peak. 
The phase angle of Z is 

cp = arctan [ Q ( w ' -�,)] 
and varies from -n12 to  n12, a s  i n  Fig. 25-2(b). 

PARALLEL RESONANCE 

(25-6) 

(25-7) 

(25-8) 

Figure 25-3 shows a parallel-resonant circuit fed by a source V. 
There is a resistance R in series with L ,  but none in series with C 
because real inductors are lossy, whereas real capacitors are nearly 
lossless. Here 

. 1 . R - jwL 
Y = )wC + 

R + jwL = )wC + 
RZ + wze 

and after a fair amount of algebra, we find that 

Fig. 25-3. Parallel-resonant circuit. 

(25-9) 

(25-lO) 
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J21 
R 

( a) 

1 0 

(h )  

Fig. 25-4. (a) IZ I/  R as a function of w ' for the circuit of Fig. 25-3 
for various values of Q. (b) The phase ¢ of Z as a function of w' 
for the same values of Q. 

Figure 25-4(a) shows the inverse of this quantity, namely IZ I /  R, 
as a function of w' for various values of Q. The maximum occurs 
slightly below w' = 1. Figure 25-4(b) shows the phase angle ¢ of 
Z. 

By definition , the width of the resonance peak is again the 
difference �f between the two frequencies where IZ I /R is equal to 
1 /2112, or 0.707 1 ,  and �f = f,JQ. This relation is now approximate. 
It is valid within 1% for Q 2! 1. 7. 
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25 . 2 CIRCUITS COMPRISING SELF-INDUCTANCE 
AND MUTUAL INDUCTANCE 

There exists a mutual inductance between branches a and b in the circuit 
of Fig. 25-5(a) . Then, to apply Kirchhoff's laws, one adds a voltage 
source -jwMh in branch a, as in Fig. 25-5(b) , and a voltage source 
-jwM1a in branch b. One chooses the sign of M as in Sec. 24. 1 .2 .  If 
branches a and b have a common terminal ,  then one can also proceed as 
in Sec. 25 .3 .  

We use signs and arrows on circuit diagrams, as  with direct currents. 
Then we apply Kirchoff's laws as we would with direct currents. 

Example SIMPLE CIRCUIT COMPRISING A 
TRANSFORMER 
Figure 25-6(a) shows a transformer fed by a source V and feeding 
a load resistance. Figure 25-6(b) shows a circuit that is equivalent 
but without mutual inductance. The Kirchhoff voltage law yields 
two equations ,  one for the primary mesh and one for the 
secondary: 

Here Z1 is the impedance R, + jwL1 of the primary winding, and Z;. = R2 + jWL2 is the impedance of the complete secondary circuit. 
Solving, 

\ I 

z ,  

I, 

I 

\ I 

I \ \ 

M 

f a )  

\ I 

I 

\ / 

I \ 
\ 

-Z,. 

I" 

jwMV, 
12 = - Z, Z;. + w2M2 ' 

\ I \ I 

I \ 
I \ 

(b) 

\ I \ I 

I \ 
I \ 

(25-12) 

Fig. 25-5. (a) Part of a circuit in which there exists a mutual 
inductance M between two branches. (b) Equivalent circuit. 
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/, 

L, 
8, 

8, 
M 

(a)  

/,  

z ,  

/(v/vll, 

(h) 

Fig. 25-6. (a) Transformer feeding a resistance. (b) Equivalent circuit . 

The current in the primary is the same as if one removed the 
secondary and added the reflected impedance we M2 / Z, in the 
primary. So the input impedance is 

(25-13) 

25 .3  
TRANSFORMATION OF A 
MUTUAL INDUCTANCE 

Figure 25-7(a) shows a mutual inductance M with its two coils connected 
at C. We can transform this mutual inductance to the equivalent star of 
Fig . 25-7(b) in the following way . Assume that C is at ground potential . 

A 7. , � ZH B 

c 
la) (b) 

Fig. 25-7. Transformation of a mutual inductance . (a) The actual circuit. Observe 
that, for this transformation, the two inductors must have one common terminal. 
(b) In the equivalent circuit ZA = ZI + jwM, ZB = Z2 + jwM, Zc = -jwM. 
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Since the two circuits are equivalent, they carry the same mesh 
currents p, q , r. We assume that the currents are sinusoidal , and we thus 
use phasors. 

In Fig. 25-7(a) , 
VA = (p - q)ZI + jwM(r - q). (25-14) 

The second term on the right is the voltage induced in branch AC. We 
have assumed that clockwise currents are positive. For the sign of M, see 
Sec . 24. 1 .2 . Also, 

In Fig. 25-7(b) , 

VB = (q - r)� - jwM(p - q). 

VA = (p - q)ZA + (p - r)Zc, 

VB = (q - r)Z8 + (p - r)Zc· 

(25-15) 

(25-16) 
(25-17) 

After equating the two values of VA ,  then the two values of V8, and 
simplifying , we find that 

P(ZI - ZA - Zc) + q (ZA - ZI - jwM) + r(Zc + jwM) = 0, (25-18) 
p (Zc + jwM) + q(ZB - � - jwM) + r(Z2 - ZB - Zc) = O. (25-19) 

These equations are valid for any set of arbitrary values of p, q , r. Then 
the six parenthetical expressions are zero, and 

ZB = � + jwM, Zc = -jwM. (25-20) 

If M is positive, then the reactance -jwM is capacitive . If M is negative , 
-jwM is the reactance of a pure self-inductance IMI .  

SOLVING THE TRANSFORMER CIRCUIT IN 
ANOTHER WAY 
The circuit of Fig. 25-8(a) is the same as that of Fig. 25-6(a).  We 
now find 11 , 12 , and Zin by transforming the mutual inductance. 
Note that 2, is the secondary impedance plus RL•  This leads to the 
equivalent circuit of Fig. 25-8(b) .  

Applying the Kirchhoff voltage law t o  the two meshes in 
succession ,  

VI - (Z, + jwM)I, - ( -jwM)(I1 - Iz) = 0 ,  

- ( -jWM)(I2 - I,) - (2, + jwM)Iz = O. 

These equations yield Eqs. 25- 12 .  

(25-21 )  

(25-22) 
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II 

VI rv ZI  

A B 

Z, 

Z I  + JwM 

(a) (bl 

Fig. 25-8. (a) A simple transformer circuit. The impedance Z2 is that of the 
complete secondary circuit. (b) The equivalent circuit. 

25 .4 
MAGNETIC-CORE TRANSFORMERS 

Magnetic-core transformers serve at frequencies ranging from a few hertz 
to about 1 megahertz. Figure 25-9 shows one common type that is used at 
60 hertz. 

A magnetic-core transformer possesses two essential features. ( 1 )  For a 
given cross section, the magnetic flux per ampere-turn in the primary is 
larger than with an air-core transformer by a few orders of magnitude. 
This permits the design of transformers that are smaller and have fewer 

� � � � � 
� � 

� 
(a) (b) 

Fig. 25-9. (a) Common type of magnetic-core transformer for use at 60 hertz. 
The core has the shape of a figure eight. Both primary and secondary windings 
surround the center leg. The core comprises two types of lamination, one shaped 
like an E and the other like an I. The laminations are assembled after the coils 
have been wound. (b) Schematic diagram for a magnetic-core transformer. 
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turns. (2) The magnetic flux through the secondary is nearly equal to that 
through the primary because the magnetic flux follows the core. Thus the 
coupling coefficient is close to unity and two such transformers can 
operate close together with little interaction. 

The core design minimizes the effects of eddy currents. (See the 
example of Sec. 23.5 . )  

The analysis of magnetic-core transformers i s  difficult for several 
reasons. First, the relationship between B and H in ferromagnetic 
materials is not linear (Sec. 21 .2) .  For example, if the flux linkage in a 
circuit is A when it carries a current J, then the self-inductance L is AI J, 
as in Sec. 24 .2 .  If there are no ferromagnetic materials in the field, A is 
proportional to J and L depends solely on the geometry of the circuit. 
However, in the presence of magnetic materials, A is not proportional to 
I, and the value of the self-inductance L = AI J can only be approximate. 

Moreover, the losses in a magnetic-core transformer are complex: 
there are eddy-current losses (Sec. 23 .5) , both in the iron core and in the 
copper windings , hysteresis losses in the iron core (Sec. 21 .2) ,  and louIe 
losses resulting from the currents flowing in the windings. All these losses 
can be expressed as an PR loss in the primary but , for a given 
transformer, R depends on the voltage applied to the primary, on the 
current drawn from the secondary , and on the frequency. 

25 .4 . 1 The Ideal Transformer 

The ideal transformer is a coarse, but useful, approximation. We make 
the following assumptions . ( 1 )  There are no louIe or eddy-current losses. 
(2) The hysteresis loop for the core is a straight line through the origin .  
Then B i s  proportional to  H,  and there are no hysteresis losses either. (3) 
All the magnetic flux is confined to the core . Then the coupling 
coefficient is equal to unity , and the flux through the primary is equal to 
that through the secondary. 

As a consequence of the first two assumptions, the transformer is 
lossless. The efficiency is, in fact, close to 100% for large transformers, 
hut only of the order of 75% for small power transformers supplying tens 
of watts . 

The assumption that B is proportional to H, and hence to J, is not 
realistic, but it is difficult to avoid. 

25 .4 .2  The Ratio Vl/ �  
As  a rule, the load connected t o  the secondary terminals i s  a resistance, 
which we denote RL . 
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With an ideal transformer the voltage VI applied to the primary is 
proportional to the magnetic flux in the core: 

(25-23) 

The voltage across the secondary is 

(25-24) 

where N\ and N2 are the numbers of turns in the primary and in the 
secondary windings , respectively, and 12 is the current in the secondary . 
Thus 

(25-25) 

In an ideal transformer and for a given Vb Vz is independent of the 
load current. Also V2 is either in phase with VI or Jr radians out of phase. 
Of course, one can change the phase of the voltage on RL by Jr radians by 
interchanging the connections to the secondary winding. 

Note that VI is equal to Ndwct>. Thus, for a given applied voltage, the 
magnetic flux is independent of the current drawn from the secondary. 

Also, ct> is B times the cross section of the core. Since the maximum 
possible value for B depends on the core material, Eq. 25-67 shows that, 
for a given }!, an increase in frequency permits the use of a smaller ct>, 
and hence of a core of smaller cross section .  

25 .4.3 The Ratio L[/ L2 
Let ct>[ be the magnetic flux when 12 is zero, and, similarly, let ct>2 be the 
magnetic flux when 1\ is zero. The reluctance (Sec. 2 1 .4) of the core is '?Ii. 
Then 

(25-26) 

Similarly, 

(25-27) 
and 

(25-28) 

The principle of superposition applies because, by hypothesis, B I H is 
constant. So ct> = ct>\ + ct>2 . 
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25 .4.4 The Input Impedance Zin 

From the example in Sec. 25.2, with M2 = L1 L2, R ,  = 0, R2 = Rv 

Then 

. w2L,L2 . ( jWL2 ) 
Zin = ]wL, + 

R . = ]WLI 1 - . L + ]WL2 RL + ]WL2 

RdwLl Ll 
-=--- = - R  
RL + jWL2 L2 L 

and the input impedance is real. 

25 .4 .5  The Ratio 11112 
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(25-29) 

(25-30) 

(25-31) 

The voltage induced in the secondary is equal to jwMI, . Therefore 

jwM/l = (RL + jwL2)/2' 

12 jwM M (Ll) 1I2 Nl 
I: = RL + jwL2 = L2 == L2 == N2 . 

(25-32) 

(25-33) 

rhus the transformer is lossless, as we assumed at the beginning: 
II V, = 12 V2. 

Fxample 

\ 'V 

THE AUTOTRANSFORMER 
Figure 25-1O(a) shows a schematic diagram of an autotransformer. 
Its single winding serves as both primary and secondary. The 
winding is often wound over a toroidal core. 

v, z 

l a l  (b) 

"'ig. 25·10. (a) Schematic diagram of an autotransformer. (b) The equivalent 
l'Irrui t .  
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Let us calculate the ratio VZ/VI •  We assume a coupling 
coefficient of unity, and we disregard the resistance of the 
winding. These assumptions are reasonable in practice . Let the 
numbers of turns on either side of the tap be NI and N2, with 
corresponding inductances L, and Lz as in Fig. 25- 1O(b). Then, if 
A is a constant of proportionality, 

We set 

where 

and 

VZ
=

V2 V '  
VI V' VI ' 

liz Z 
V' Z - jwM 

(Z - jwM)jw(Lz + M) 
Z - jwM + jw(L2 + M) 

(Z - jwM)jw(Lz + M) . ( M)
' 

. .  + Jw L, + 
Z - JwM + Jw(Lz + M) 

(25-35) 

(25-36) 

(25-37) 

After multiplying these two ratios, substituting the values of 
La , Lb, M, and simplifying, we are left with 

(25-38) 

So V2 is simply proportional to that fraction of the winding that 
is spanned by the secondary. The output voltage is even 
independent of the load impedance Z! Recall that we have 
disregarded the resistance of the winding. 

25 .4 .6 Power Transfer from Source to Load 
Through a Transformer 

As we saw in Sec. 8.8 ,  the power dissipated in a load is maximum when 
its resistance RL is equal to the output resistance of the source R" and 
when XL = -XS' As a rule, the reactances are zero. 

If it is impossible to vary either RL or R" then one can still achieve 
optimum power transfer by inserting a transformer between source and 
load, as in Fig. 25-1 1 (a) .  Let us see how this comes about. 

Assume that the transformer has a magnetic core, that the approxima
tions of Sec. 25 .4 are satisfactory , and that Xs = XL = O. Then , from Sec. 
25 .4.4, the transformer has an input impedance of (NI/N2)2RL ohms. In 
other words, the current and the power supplied by the source are 
precisely the same as if the transformer and its load resistance RL were 
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I, I, 

� 1/ 

V, I RL 

� � 

V, 

T 

(a) (b) 

Fig. 25-11. (a) Transformer T inserted between a source of internal resistance R 
and a load resistance RL. (b) Equivalent circuit. 

replaced by the resistance (NJ/Nz)ZRu as in Fig. 25-n(b). Remember 
that with our approximation the transformer has an efficiency of 100%.  

Then, with a transformer a s  i n  Fig. 25-16 ,  the power transfer is 
l lptimum when 

(25-39) 

rhe transformer is then said to be used for impedance matching. When 
this condition applies, the power dissipation in the load is maximum, but 
the efficiency is still only 50% .  

25 . 5 SUMMARY 

Kirchhoff's voltage and current laws apply to circuits compnsmg self
I nductances. The voltage drop across an inductance is L dl/dt, or jwLI 
with sinusoidal currents. 

I f a circuit comprises a mutual inductance M between two branches, 
I hen one can apply Kirchhoff's laws by disregarding M and adding to 
each branch a voltage source -jwM times the current in the other 
hranch. If the two branches have one common terminal, one can 
t ransform them into a Y circuit, as in Fig. 25-7. 

In an air-core transformer, the input impedance is 

(25-13) 
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where ZI is the impedance of the primary winding and � is the 
impedance of the complete secondary. Also , 

1 - - jwMVI 
2 - ZI � + w2M2 

and V2 is 12 times the load impedance ZL' 

(25-12) 

The ideal transformer approximates, in a crude way, the behavior of a 
magnetic-core transformer. We found that 

VI = jwNIcf>, (25-23) 
II V2 N2 (RL « wL2) (25-25), (25-33) 
12 VI Nl (Nlr Zin = 

N2 
RL , (RL « WL2) '  (25-3 1 )  

One can achieve maximum power transfer between a source and a load 
by interposing a transformer with a turns ratio Nt! N2 = (Rs l RL) II2. 

PROBLEMS 

25-1 .  (25. 1 )  Impedance 
(a) Calculate the impedance Z of the circuit shown in Fig. 25-12 .  What is 

the value of Z when (i) f = 0, (ii) f -4 oo? 
(b) Calculate the magnitude and the phase angle of Z at 1 kilohertz. 
(c) Calculate the amplitude and the phase angle of Y = l/Z at that 

frequency. 
(d) Calculate the power dissipation when the current is 100 milliamperes, 

again at 1 kilohertz. 
(e) Can the real part of the impedance become negative? 
(f) For what frequency ranges is the circuit equivalent to (i) a resistor in 

series with an inductor, (ii) a resistor in series with a capacitor? 
(g) At what frequency is the circuit equivalent to a pure resistance? 

5 pF Fig. 2S-ll. 
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Fig. 25-13. 

�)-2. (25. 1 )  The magnetic energy stored in an inductor 
A voltage source V is connected through a switch to an inductor of 

inductance L and resistance R. The switch closes at t = O. 
Show that at any time T the energy that has been supplied by the source, 

minus the energy dissipated in the resistance, is equal to the magnetic 
energy 12 L/2. 

�)-3. (25. 1 )  RL circuit 
Find the current in the inductance L of the circuit of Fig. 25-13 .  The 

switch closes at t = O. If you have studied Chap. 8, use the substitution 
theorem and then Millman's theorem . 

. 'S-4. (25. 1 )  The star-delta transformation with a self-inductance 
Section 8.9 is a prerequisite for this problem. Show that the star and the 

delta of Fig. 25-14 are equivalent at 1 kilohertz. 
�S-5. The coefficient of coupling 

The coefficient of coupling k between two single-turn coils was defined in 
Sec. 24.3. In general, ka '* kb . Show that kab/ kba = Lb/ La. 

A 

.� X 

H 

Fig. 25-14. 
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z, 

z, Fig. 25·15. 

25-6. (25. 2) Measurement of the coefficient of coupling k 
A transformer has a primary inductance L j ,  a secondary inductance Lz , 

and a mutual inductance M. The winding resistances are negligible. 
Show that 2,-,/ Zoo = 1 - e, where Zo and Zoo are the impedances measured 

at the terminals of the primary, when the secondary is short-circuited and 
when it is open-circuited. 

25-7. (25. 3) Impedances in parallel, with mutual inductance 
Calculate the impedance of the circuit shown in Fig. 25-15 .  

25-8. (25. 4) Improving (?) iron-core transformers 
In a iron-core transformer, the windings are outside the core, where B is 

orders of magnitude smaller than inside. Why not put them inside? 
25-9. (25. 4) Eddy-current losses in transformer laminations 

Eddy-current losses in magnetic cores are minimized by assembling them 
from laminations. Consider a core of rectangular cross section as in Fig. 
25-16. The eddy-current loss is proportional to V2/R, where V is the 
electromotance induced around a typical current path such as the one 
shown by a dashed curve. The resistance is also difficult to define, but it is 
of the order of twice the resistance of the upper half, or 2a/[a(b /a)L]. 

(a) Show that splitting the core into n laminations reduces eddy-current 
losses by a factor of n2• 

(b) Show that these losses increase as the square of the frequency. 
25-10. (25. 4) Hysteresis losses 

Hysteresis losses are proportional to the operating frequency f, while 
eddy-current losses increase as f2, as we saw above. You are given a 
number of transformer laminations. Can you devise an experiment that 
will permit you to evaluate the relative importance of the two types of 
loss? 

Fig. 25·16. 
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25-1 1 .  (25. 4. 4)  The reflected impedance 
Show that a positive (inductive) reactance in the secondary of a 

transformer is equivalent to a negative (capacitive) reactance in the 
primary, and inversely. 

25-12. (25. 4. 4) Electromagnetic crack detectors and metal detectors 
It is possible to detect cracks in metallic objects as follows. If the part 

to be examined is placed in the vicinity of a coil fed with alternating 
current, the inductance measured at the coil terminals is lowest when 
there are no cracks. Such instruments can detect cracks only 
10 micrometers deep. The coil forms part of a resonant circuit. t Metal 
detectors operate similarly. 

Consider the following simpler situation . A single-layer close-wound 
solenoid has a length l, a radius a, and N turns. Let us calculate how its 
impedance changes when one introduces into the solenoid a thin brass 
tube of wall thickness b. 

When an alternating current flows in the solenoid, the changing 
magnetic flux induces a current in the tube, which thus acts as a secondary 
winding. According to Lenz's law, the induced current tends to cancel 
drt>/dt, and hence jwrt>, and hence rt>. The presence of the tube thus 
reduces the inductance at the solenoid terminals. The effective inductance 
of the solenoid decreases when the resistance of the tube decreases. 

We disregard the skin effect (Sec. 29. 1) in the tube and the stray 
capacitance of the coil .  Also, we set l »  a so as to disregard end effects .  
The coefficient of coupling is  nearly equal to unity. 

(a) Calculate the resistance R ,  of the winding of the solenoid. Set the 
conductivity of copper equal to ac• 

(b) Calculate the impedance Zj of the solenoid without the brass tube. 
(c) Calculate the resistance R2 of the brass tube in the azimuthal 

direction . Set its radius equal to a, and call its conductivity abo 
(d) Calculate its inductance L2 and impedance Zz. 
(e) Now calculate the impedance at the solenoid terminals with the 

tube in place. 
(f) Calculate impedances, without and with the brass tube, when 

N = 1000, l = 200 millimeters, a = 20.0  millimeters, b = 0. 5 millimeter, 
f = 1000 hertz, ac = 5. 8 x 107 siemens/meter, ab = 1 . 6  x 107 siemens/ 
meter. Note how the presence of the tube increases R (more dissipation) 
and decreases L (Jess flux) . 

' � · 1 3 .  (25. 4. 5) Soldering gun 
A soldering gun consists of a step-down transformer that feeds a large 

current through a length of copper wire. One type dissipates 100 watts in 
a piece of copper wire (a = 5 .8  x 107 siemens/meter) having a cross 
section of 4 millimeters2 and a length of 100 millimeters. 

(a) Find V and I in the secondary. 
(b) Find the current in the primary if it is fed at 120 volts, assuming an 

efficiency of 100% .  

, See Prob. 17- 15  i n  Electromagnetism : Principles and Applications b y  the same authors 
. I I ,d  the same publisher. 
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Radio transmitter R 

Fig. 25·17. 

25-14. (25. 4. 7) Impedance matching with an LC circuit 
Figure 25-17 shows a radio transmitter connected to a resistance R that 

represents an antenna. Set the impedance ZL seen by the transmitter 
equal to RL + jXL. 

(a) Under what condition is XL = O? 
(b) Then what is the value of R / RL? 
(c) Calculate the values of C and L for R = 50 ohms and f = 

14 megahertz if R /RL must equal 12 .5 .  
(d) Now plot R1• and XL as  functions of  the frequency between 13 .5  

and 14 .5  megahertz. 
This LC circuit is inexpensive, compared to a transformer, but the 

impedance match applies only at the design frequency. 
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Ihis is the last chapter dealing specifically with magnetic fields. It 
concerns energy and macroscopic forces. We shall find several expres
'> Ions for the magnetic energy stored in a field , and then deduce the forces 
l' Xcrted on a current-carrying body situated in a magnetic field that 
( lriginates elsewhere. As in most of the material that we have studied 
l Intil now, we restrict ourselves to low frequencies and to currents that 
I csult from the motion of free charges. 
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26. 1  ENERGY STORAGE IN AN INDUCTIVE 
CIRCUIT. THE MAGNETIC ENERGY 'i£m 
EXPRESSED IN TERMS OF L AND I 

The circuit of Fig .  26-1 iIlustrates the storage of magnetic energy in 
inductive circuits. The wire is of uniform cross section sti and uniform 
conductivity a. All materials are nonferromagnetic, and we assume that 
Er = 1 for the wire. The circuit is rigid . 

( 1 )  The current is constant. Inside the wire the volume charge density 
is zero, at least in the absence of a v X B field, and 

J E =  I VV I  = - .  a (26-1 )  

I f  there are no  sharp bends, both E and J are uniform . The lines o f  E, 
inside, follow the wire , paraIlel to its axis. 

At the surface of the wire, E has both a normal and a tangential 
component. If the wire is situated in a vacuum, the free surface charge 
density is EoE" ,  where E" is the normal component of E just outside. If it 
lies in a dielectric, then the free surface charge density is D" = ErEoE" .  

At any point in  space E i s  proportional to  Va . Of  course, E also 
depends on the geometry of the circuit and on the neighboring objects. 

In principle , one could calculate V and E everywhere from the surface 
charge density all around the circuit , source included, and on the 
neighboring bodies. However ,  a is itself a function of E. 

If I is the length of t he wire , sti its cross section , and R its resistance 
1/ (asti) , then 

+ 

Fig. 26-1. Coil fed by a battery. 
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U 1I 
I I  vv I = IE = - = - = f R = Vo. a da 
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(26-2) 

Part of the power supplied by the source serves to establish the magnetic 
field , and the rest dissipates as heat. 

(2) Now set the source voltage Vo at zero and increase it slowly. Then 

aA E =  - VV - - . at 
rhe wire now lies in its own aA/ at field. 

(26-3) 

The relation J = aE still applies, and both J and E are uniform 
I hroughout the wire, as previously. This means that the surface charges 
distribute themselves so as to maintain a uniform E inside, despite the 
presence of the aA/ at term. 

Inside the wires that go from the source to the coil, A is weak and 
F = - VV. Inside the coil wire , we have the same E, but it comes partly 
I rom - VV, which points in the direction of J, and partly from -aA/ at, 
which points in the opposite direction because A points in the direction of 
J and increases .  

Now we have just seen that IE = fR. Integrating E inside the wire from 
I he positive to the negative terminal of the source, 

r ( - VV -��) . dl = fR, 

f- f- aA - VV · dl - - .  dl = fR. 
+ + at 

'lince the first integral equals Vo, 

f- aA d f- dA. Vo = fR + - . dl = fR + - A . dl = fR + - . 
+ at dt + dt 

We have used the fact that the line integral of A is equal 
I I  n kage (Sec . 19. 1 ) .  

At  any instant the power supplied by the source is 

" dA IVo = f-R + f - . dt 

(26-4) 

(26-5) 

(26-6) 

to the flux 

(26-7) 

Ihe first term on the right is the power dissipated as heat, and the second 
I, the  rate of increase of the magnetic energy. 
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Thus, if 't;m is the stored magnetic energy at a given instant, 

d'6m dA deLI) 1 df2 
- = f - = f -- = -L - .  

dt dt dt 2 dt 
(26-8) 

The inductance L is a constant because we have assumed that the circuit 
is rigid and that there are no ferromagnetic materials in the vicinity . 
Clearly , 'tm = 0 when 1 = 0. Then 

L/2 fA 
'tm =

T T '  (26-9) 

If we have two circuits a and b, then 

Example 

't;ma + 't;mb = �(/aAa + fbAb) 

= �[IaCLJa + Mh) + fb(Lblb + Mia) ] 
(26-10) 
(26- 1 1) 
(26- 12) 

The magnetic energy stored in a long solenoid follows from the 
value of the self-inductance that we found in the first example in 
Sec. 24. 2  

(26-13) 

26. 2  THE MAGNETIC ENERGY DENSITY 
'jg:n EXPRESSED IN TERMS OF J AND A 

We can rewrite the time derivative of 't;m as follows. Since A = Lf, 

(26-14 ) 

(26-1 5) 

where s4 is the cross-sectional area of the wire , C is the curve defined by 
the wire , and v is the volume of the wire . The volume v is finite . 

Note in passing that J .  (oAI  ot) dv is the work done in moving the 
conduction charges situated in the element of volume dv against the 
electric field - oAI ot during 1 second. 
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Now consider the identity 

d I I etA I aJ 
- J · A dv =  J · - dv +  - · A dv. 
dt v v dt v at 
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(26-16) 

The first integral on the right is equal to I dA/ dt, as we saw above. 
Similarly , the second integral is equal to A dI/ dt, which is the same as 
I dA/dt if the inductance is constant .  Therefore 

and 

d't;m 1 d I - = - - J · A dv 
dt 2 dt v 

(26-17) 

(26-18) 

where , again, v is the volume of the conductor. This equation applies 
(mly if the source is of finite size . 

If there are several circuits, then the integral runs over all of them and 
t he vector potential in one circuit is the sum of the A 's of all the circuits. 
One can add to A any quantity whose curl is zero without affecting this 
I n tegral (Prob. 26-4) . 

The magnetic energy density at a point can therefore be taken to be 

26 .3  THE MAGNETIC ENERGY DENSITY 't;" 
EXPRESSED IN TERMS OF H AND B 

(26- 19) 

1 0  express the magnetic energy in terms of H and B, we use Eq. 26-9 
. I nu apply it to the loop of Fig. 26-2. The loop lies in a homogeneous, 

C' 

H�. 26-2. Single-turn loop of wire C bearing a current I. The dotted line is a 
I vpical line of H. The open surface, of area .91., is bounded by C, and it is 
, ·vcrywhere orthogonal to H. 
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isotropic, linear, and stationary (HILS) magnetic medium. This excludes 
ferromagnetic media. From Ampere's circuital law, 

where C' is any line of H. 

1 = 1. H dl, Tc (26-20) 

Also , let .sIi be the area of any open surface bounded by the loop C and 
orthogonal to the lines of H and of B. Then 

A = <I> = LB . dd (26-21 )  
and 

(26-22) 

Now the lines of H and the set of open surfaces define a coordinate 
system in which dl . dd is an element of volume with dl and dd both 
parallel to H. Also, for each element dl along the chosen line of H, one 
integrates over all the corresponding surface . Since the field extends to 
infinity, this double integral is the volume integral of H . B over all space, 
and 

The magnetic energy density in nonferromagnetic media is thus 

H ·  B B2 {lH2 
'l;' - -- - - = --m 2 2{l 2 

(26-23) 

(26-24) 

The magnetic energy density varies as B2. Thus, after superposing several 
fields, the total field energy is not equal to the sum of the individual 
energies. See Eq. 26-12 .  

Compare this section with Sec. 6.2 .  

Example THE LONG SOLENOID 
Neglecting end effects , we find that the magnetic energy stored in 
the field of a long solenoid in air is 

(26-25) 

as in the example in Sec. 26. 1 .  
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*26 .4  THE SELF-INDUCTANCE OF A VOLUME 
DISTRIBUTION OF CURRENT 

We saw in Sec. 24.2  that the self-inductance of a circuit comprising 
infinitely thin wires is infinite . A real circuit comprises conductors of 
finite cross section and its self-inductance L, by definition, is proportional 
to the stored energy : 

rhus 

'Example 

1L/2 = � = _1_ I B2 dv 2 m 2 . 
lio oc 

(26-26) 

(26-27) 

THE SELF-INDUCTANCE OF A COAXIAL LINE 

Assume that the frequency is low enough to ensure that the 
currents spread uniformly throughout the cross sections of the 
conductors, and neglect end effects. 

We calculate successively the magnetic energies per unit length 
of the line in regions 1 ,  2, 3, 4 as in Fig. 26-3, and then we set the 
sum equal to L' /2 /2, where L' is the inductance per meter. Lines 
of B are circles centered on the axis. 

( 1 )  Region 1 .  From Ampere's circuital law, Sees. 19 . 5  and 20.6,  
at the radius p, 

(26-28) 

and the magnetic energy per unit length is 

Fig. 26-3. Coaxial line. 
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/ 1 la (/10IP)2 /10 2 �ml = - � 2np dp = -
16 

I .  
2/10 0 2na n 

(2) Region 2. Here 

/101 
B - -2 - 2np' 

(26-29) 

(26-30) 

(3) Region 3. We require the net current that flows within a 
circular path of radius p. This is 1 minus that part of the current in 
the outer conductor that flows between radii b and p.  Thus 

(26-31 )  

(26-32) 

(4) Region 4. From Ampere's circuital law. there is zero field in 
this region. 

Finally, the self-inductance per unit length of the coaxial line is 

The second term between the braces comes from �2 and is 
normally the most important. 

*26 .5  THE FORCE BETWEEN 
TWO CURRENT-CARRYING CIRCUITS 
EXPRESSED IN TERMS OF M, la , AND lb 

We already found an integral for the force between two current-carrying 
circuits in Sec. 22 .3 .  However, as we noted at the time, the integral is 
difficult to evaluate. 

Here we express the force in terms of the mutual inductance between 
the two circuits. Mutual inductance is just as difficult to calculate as the 
force, but it is easy to measure, much more so than the force itself. In the 
process, we shall find that whenever one changes the geometry of a 
circuit or of a pair of circuits, precisely one-half of the energy furnished 
by the source, exclusive of Joule and other losses, becomes magnetic 
energy, and the other half becomes mechanical work . 

We consider two circuits carrying currents fa and fb in the same 
direction, as in Fig .  26-4. The magnetic force is such that the loops tend 



B ,  

Fig. 26-4. Two parallel loops bearing currents la and Ib ' with typical lines of B 
" riginating in loop a. The element of force dF possesses a component in the 
d irection of a, and F is attractive. 
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to move toward each other. They are fixed in position by opposing 
mechanical forces. All materials are nonmagnetic. 

Now assume a small virtual translation (Sec. 6.6) of one circuit, 
without any rotation . Since there is conservation of energy, the energy 
expended by the sources is equal to the increase in magnetic energy plus 
t he mechanical work done. The displacement takes place slowly so as to 
; 1  void taking kinetic energy into account. 

To simplify the calculation, we assume that the currents are constant . 
l 'his assumption will not affect our result. We had a similar situation in 
electrostatics. See Prob. 6-12. 

Loop b moves a distance dr toward loop a. Only M changes and, from 
1 4 . 26-12 ,  the magnetic energy increases by 

(26-34) 

'\/0" being the flux originating in b and linking a, and similarly for Aab• 
S ince M is positive (Sec. 24. 1 .2) and increases, d�m is positive . 

Now consider the extra energy supplied by the sources. In loop b, the 
I l Ilking flux increases and the induced electromotance tends to generate a 
magnetic field that opposes this increase. Therefore the electromotance 
Induced in b tends to oppose lb . To keep that current constant , its source 
\upplies the extra voltage dAah /  dt and the extra energy 
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(26-35) 

By symmetry, d�sa is the same , and the extra energy supplied by the 
two sources is 

(26-36) 
which is exactly twice the increase in magnetic energy . The remainder has 
gone into mechanical work . In other words, the energy supplied by the 
sources divides equally between mechanical energy and magnetic energy. 
See Sec. 6.6 . l .  

I f  Fab is the force that coil a exerts on coil b ,  then the mechanical work 
done is 

(26-37) 

Since the quantity on the right is positive, Fab points toward coil a, like 
dr, which is correct. 

The x component of the force is 

(26-38) 

where dx is the x component of dr. This equation applies to any pair of 
circuits. 

This is an alternate expression for the force that we found in Sec . 22.3 .  
We can show that the two expressions are equal as  follows. Let circuit b 
move as a whole, without rotating, parallel to the x-axis. Then 

F = - I I � ( 110 f � dla • dlb) 
abx a b a 4 x :rr: a b r (26-39) 

where r is the distance from dla to dlb • The derivative with respect to x 
acts only on the l /r  term under the integral sign because the vectors dl 
are not affected by a translation of circuit b. Thus 

(26-40) 

and, more generally ,  

(26-41) 

as in Sec. 22.3 .  
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* 26 .6  THE FORCE BETWEEN TWO 
CURRENT-CARRYING CIRCUITS EXPRESSED 
IN TERMS OF THE MAGNETIC ENERGY 'iEm 

Since the term on the right in Eg. 21-37 is the increase in magnetic 
energy, we could also write that 

(26-42) 

remembering that the force pulls in the direction that increases the 
magnetic energy. Also , 

Example 

(26-43) 

THE FORCE BETWEEN 
TWO LONG COAXIAL SOLENOIDS 

Figure 26-5 shows two coaxial solenoids, one of which extends a 
distance I inside the other. The mutual inductance is positive. The 
net force is axial, and it is attractive, as can be seen from Fig. 
26-6. Remember that the force between two parallel currents 
flowing in the same direction is attractive .  

Fig. 26-5. Two coaxial solenoids of  approximately equal diameters. The force F 
I'> attractive when the currents flow in the direction shown. The solenoids have 
1 he same number of turns per meter N' .  

dJ 8 8 8 �  8? 8 8 8 � 
8 r-fif 8 8 8 0 V  
G �� G G G � � 

� G G G B  8� 8 G G 8 
Fig. 26-6. Section through part of the solenoids of Fig. 26-5. There is a force of 
d t t raction at the ends of the solenoids. 
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We cannot perform a rigorous calculation of the force because it 
clearly depends on the very end effect that we have disregarded 
until now. However, we can find an approximate expression by 
applying the formulas that we found above. 

We assume that the field of a solenoid stops abruptly at the end . 
Then 

M N'[$ba N'[$ab = -
[
-
b 

- = -
I
-
a 

- .  

For a cross-sectional area .sil, 

M = (N'l)(Il�N 'h.sil) = lloN,ed/, 

aM , F = lah at = lloN'-.sillalb · 

The force is attractive because M increases with l. 
Now let us calculate the force from a 'tfm/a[ :  

(26-44) 

(26-45) 

(26-46) 

1 1 1 
'tfm = -

2 
B2 dv = 

2
- [B�(la - I) + B�(h - I) + (Ba + Bbfl).sil Ilo 00 Ilo 

(26-47) 

(26-48) 

where Ba = lloN'la originates in solenoid a, and similarly for b. 
Then 

(26-49) 

Observe that the force would be zero if 'tfm were proportional to B. 

*26.7 MAGNETIC FORCES AND LINES OF B 
Lines of B are useful for visualizing magnetic forces between current
carrying wires. Figure 26-7(a) shows lines of B for two wires carrying 
equal currents flowing in the same direction. The lines of B that cross the 
midplane are "under tension ," and the force of attraction per unit area in 
the midplane is B2/ (2!J.o). Figure 26-7(b) shows lines of B for currents 
flowing in opposite directions. Now the lines of B "repel laterally," and 
the force of repulsion per unit area in the midplane is B2/ (2!J.()). 
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(a) (b) 

Fig. 26-7. (a) The B field of two parallel currents flowing in the same direction. 
The magnetic flux between two successive lines of B is constant. We have not 
,hown the lines near the wires because they are too close together . (b) The B 
field of two parallel currents flowing in opposite directions. 

These lines of B are identical to the equipotentials in Fig. 6-7 because, in a 
two-dimensional field, a line of B is a line of constant A (Prob. 18-12) , and both 
V and A vary as l over the distance from the wire . 

This is a general rule : lines of B are "under tension" and "repel 
laterally ," just like lines of E. See the next section.  

*26 . 8  MAGNETIC PRESSURE 

If the current flows through a conducting sheet, then it is appropriate to 
t hink in terms of magnetic pressure. Imagine a conducting sheet, in air ,  
carrying a amperes/meter and situated in a uniform tangential magnetic 
field B/2 originating in currents flowing elsewhere, as in Fig. 26-8(a) , 
with a normal to B. The force per unit area is aB/2. 

Now increase a until its field cancels the ambient field on one side and 
L10ubles it on the other, as in Fig. 26-8(b) . Then , from Prob. 19-3 , 
(t" = B / /.10, and the force per unit area, or the pressure, is 

B2 
p = - . 2/.10 

This applies to any current sheet with zero B on one side. 

(26-50) 

The pressure is equal to the energy density, as with electric fields (Sec. 
(1 . 5 ) .  This pressure pushes the current sheet away from the field. On the 
field side , the lines of B are parallel to the sheet and repel laterally. 
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tal  tb) 

Fig. 26-8. (a) A conducting sheet carries a current density of a amperes/meter of 
width and lies in a uniform magnetic field B /2 originating elsewhere. (b) The 
current density a ' is now such that the total B on the near side is twice what it 
was, while the total B on the far side is zero. 

Example THE MAGNETIC PRESSURE INSIDE 
A LONG SOLENOID 

Figure 26-9 shows an end view of a solenoid. We use the method 
of virtual work (Sec. 6.6) to show that the magnetic pressure is 
82/(2/10) ' Imagine that the current remains constant, while the 
magnetic pressure increases the radius from R to R + dR. Then, 
for a solenoid of length " the magnetic energy increases by 

82 d�m = - l2:JrR dR. 
2/10 

(26-51)  

Fig. 26-9. End view of a solenoid. The dots 
represent lines of B, normal to the paper. 
The arrows show how the magnetic 
pressure pushes the winding away from the 
field. 
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This is equal to the mechanical work performed by the magnetic 
pressure p over an area 2:rRI dR, and 

B2 
p = 2/lo 

. (26-52) 

' 26 .9  MAGNETIC FORCES WITHIN 
AN ISOLATED CIRCUIT 

Within a single isolated circuit one still has magnetic forces, because the 
l'urrent in one part flows in the magnetic field of the rest of the circuit. 
h)r example , if the circuit is a simple loop, then the magnetic force on 
t he wire tends to expand the loop. 

26 . 10 MAGNETIC TORQUE 

I l y  analogy with Sec . 26 . 5 ,  a circuit a that forms an angle f) with another 
circuit b exerts on b a torque 

(26-53) 

The torque tends to increase both the mutual inductance M and the 
magnetic energy '(;m' 

I .xample THE MAGNETIC TORQUE EXERTED ON A 
CURRENT LOOP 

A rectangular loop of wire carrying a current I lies in a uniform B 
in air, as in Fig. 26-10. We calculate the torque at the angle e. 

( 1 )  The simplest procedure here is to calculate the torque from 
the magnetic force I dl X B on the element dl of the wire , as in 
Sec. 22.2: 

T = 2a sin e BIb = BIsIl sin e, (26-54) 

where sIl is the area of the loop. The torque is in the direction of 
the curved arrow shown in the figure. 

(2) Now let us use Eq. 26-53 . Let Ia be the unknown current 
that provides the field B. Then 

BsIl cos e 
M = - --

Ia (26-55) 

We require a negative sign here because the flux BsIl cos e links 
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Fig. 26-10. Loop carrying a current I in a constant B. The 
magnetic torque tends to turn the loop in the direction of the 
arrow. 

the loop in the direction opposite to that of the flux of a current I 
flowing in the loop as in the figure. Then 

aM d . 
T = IaIb - = -I - (Bd cos e) = BId Sill e. 

ae de 
(26-56) 

The positive sign means that the torque is in the direction shown, 
as we found above. The torque tends to increase e and hence to 
increase M. 

26. 1 1  SUMMARY 

When a current I flows in a circuit of self-inductance L, the magnetic 
energy stored in the field can be expressed in various ways: 

(26-9), (26-23) 

where A is the magnetic flux linkage and where the integration runs over 
all space . Also, for a finite current distribution , 

'jg = � II . A  dv m 2 v 
' (26-18) 
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where v is the volume occupied by the current . 
Thus the energy density can be taken to be 

B2 
'l:' = �H ' B =-

211 
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(26-24) 

We define the self-inductance of a real circuit compnsmg currents 
distributed over a finite volume in terms of the magnetic energy stored in 
the field : 

(26-27) 

The x-component of the force exerted on a circuit b situated in the field 
of another circuit a is 

(26-38), (26-43) 

The force pulls in the direction that increases both M and the magnetic 
energy. 

Similarly, the torque is given by 

aM a'l:m 
T = I h - = - ·  a ae ae 

(26-53) 

If the current flowing through a conducting sheet situated in a magnetic 
field is such that the magnetic flux density is B on one side and zero on 
the other, then the magnetic pressure on the sheet is B2/ (2110)' The 
pressure tends to push the sheet away from the field. 

PROBLEMS 

26-1 .  (26. 1)  The energy stored in a magnetic circuit 
Show that the energy stored in a magnetic circuit is <f)2[Jlj2, where <f) is 

the magnetic flux and [Jl is the reluctance. 

26-2. (26. 1)  The energy theorem for linear passive circuits 
(a) This theorem follows from Tellegen's theorem (Sec. 8 .6). Suppose 

one has a passive circuit comprising resistances, self-inductances, and 
capacitances. One applies an alternating voltage � to an input port. 

Show that 

where the left-hand side is the input complex power, P is the power 
dissipated in the circuit, '(gmag.av is the average magnetic stored energy , and 
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�el.av is the average electric stored energy. This is the energy theorem. 
(b) It is shown in Prob. 25-4 that the star and the delta of Fig. 25-19 are 

equivalent. Now, if one applies an alternating voltage V (rms) between 
terminals B and C of the star, then V/* is real and equal to V2j2000. 
According to the energy theorem, the average energy stored in the 
capacitors of the delta must be equal to the average energy stored in the 
inductor, at any frequency. Show that this is correct . 

26-3. (26. 1 )  The average stored energies in capacitors and in inductors 
The average stored energies in capacitors and in inductors are CV2j2 and 

L/2j2, respectively, where V and / are rms values. 
Show that 

/2 
�c. "v 

= 
2w2C' 

V2 
�L.av = 2w2L ' 

26-4. (26. 2) The magnetic energy in terms of J and A 
We saw that 

where v '  is any volume that encloses all the conductors. 
Show that any A such that B = V X A is satisfactory here. 

26-5 . (26. 4) The inductance of a coaxial line is slightly frequency-dependent 
High-frequency currents do not penetrate a conductor as do low

frequency currents. This is the skin effect (Sec. 29 . 1 ) .  Does the self
inductance of a coaxial line increase or decrease with frequency? 

26-6. (26. 5) The electromagnetic levitation of high-speed tracked vehicles 
The suspension and the propulsion of tracked vehicles become major 

problems at speeds of several hundred kilometers per hour. Wheels are 
then impractical because vehicle vibration, track damage, and power loss 
become excessive. The tractive force also deteriorates with increasing 
speed. 

An air cushion provides a satisfactory suspension at high speeds, but it 
consumes a large amount of power. Propulsion then requires either a 
propeller or a linear electric motor, with the stator in the track. 

It is also possible to support a vehicle by means of magnetic forces , and 
several methods have been developed. In one of these, superconducting 
coils in the vehicle generate a magnetic field that extends down into the 
track, which is a sheet of aluminum. At rest and at low speeds, the vehicle 
uses wheels. As the speed increases, the eddy currents induced in the track 
by the traveling magnetic field exert a force of repulsion on the currents in 
the vehicle coils, and the vehicle flies about 10 centimeters above the track. 
There are, of course, problems of stability. Also, the suspension is not 
lossless because there are Joule losses in the track. 

Let us consider a simplified form of levitation. A pair of parallel and 
coaxial coils of radius R and N turns are separated by a distance D. The 
lower coil simulates the track . For D = O. lR, the mutual inductance is 
given by N2{2. 154 - 12. 04l(Dj R) - O. l ]}R microhenrys. 
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(a) Calculate the number of ampere-turns required in each coil to 
support a mass of 1 metric ton when R = 1 meter. 

(b) Draw a sketch showing the two coils and lines of B. Can you explain 
the force of repulsion qualitatively? 

26-7. (26. 7) The force between two parallel bus bars of finite cross section. 
Two parallel bus bars have equal circular cross sections and carry equal 

currents I. The currents are equally distributed over the cross sections. 
Show, without any calculation, that the force is the same as if the bus 

bars were thin wires. 

26-8. (26. 7) A superconducting power transmission line 
A superconducting dc power transmission line has been proposed that 

would carry 100 gigawatts of power at 200 kilovolts over 1000 kilometers. 
The conductors would have a diameter of 25 millimeters and be separated 
by a center-to-center distance of 50 millimeters. 

(a) Calculate the magnetic force per meter. See the previous problem. It 
is clearly preferable to use a coaxial line. 

(b) Calculate the stored energy in kilowatthours. The self-inductance per 
meter is ltlo/(4Jt)] [1  + 4 1n (D/R)].  

26-9. (26. 8) Large-scale energy storage in inductors and in capacitors 
Much work has been done on the large-scale storage of energy in 

inductors, for public utilities. One author proposes a huge, underground, 
cryogenized inductor that would operate at a field of 14 teslas. 

(a) Calculate the energy density in kilowatthours/meter3 . 
(b) Calculate the magnetic pressure in atmospheres. 
(c) It seems more reasonable to store energy in a capacitor, because a 

capacitor need not be cryogenized and because the force points inward, not 
outward as in an inductor. Calculate the energy density in kilowatthours/ 
meter3 if E, = 3 and the dielectric strength is 1 . 5  x 108 volts/meter. 

Gasoline can store over 100 kilowatthours/meter3 , and flywheels over 
200. 

26-10. (26. 9) The mechanical work performed by mechanical forces on an 
isolated, active, and deformable circuit 

We showed in Sec. 26.5 that, if one active circuit moves with respect to 
another. the mechanical work performed by the sources is equal to the 
increase in magnetic energy if the currents are maintained constant. 
Hence the force between two active circuits is given by the rate of 
increase of magnetic energy. 

Show that, similarly, if the geometry of an isolated active circuit 
changes, the energy supplied by the sources divides in the same way. 
Assume again that the current is constant. It follows that, on this 
assumption, the force on an element of an active circuit is equal to the 
rate of increase of magnetic energy. 

26- 1 1 .  (26. 9) The axial compression force on a solenoid 
(a) Show qualitatively, in two different ways, that the turns of a 

solenoid tend to squeeze together. 
(b) Calculate the axial compression force on a long solenoid. 
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26-12. (26. 9) Magnetic shutter 
Magnetic fields can perform mechanical tasks that require a high power 

level for a very short time. For example, magnetic pressure can crush a 
light aluminum tube that acts as a shutter to turn off a beam of light or of 
soft x-rays. The tube is placed inside a coil, parallel to the axis. When 
the coil is suddenly connected to a large capacitor, the change in flux 
induces a large current in the tube , which collapses under the magnetic 
pressure . 

Let us calculate the pressure. If the current I in the solenoid increases 
gradually from zero to some large value, the induced current is small and 
the magnetic pressure is negligible. Let us assume that dI/ dt in the coil is 
so large that the induced current in the tube maintains zero magnetic field 
inside it. Then there is a magnetic field B only in the annular region 
between the solenoid and the conducting tube. 

(a) Calculate the pressure on the tube in atmospheres at 1 tesla. 
(b) What would be the pressure if the conducting tube were parallel to 

the axis but off the axis? 

26-13 .  (26. 9) Flux compression 
Flux compression is one method of obtaining large magnetic fields. For 

example, one can insert a light conducting tube in the field Bn of a 
solenoid and then implode the tube by means of an annular explosive 
charge situated between the tube and the solenoid. Currents flow in the 
tube, and the magnetic pressure builds up until it is equal to the external 
gas pressure . The solenoid is fed by a constant-current source . 

(a) Show that, if the radius of the tube shrinks very rapidly, the B 
inside is about Bo(Rf,/ R2) at the instant when the radius is equal to R. For 
example, if Bn is 10 teslas and if Rn/ R = la, then B = Wi teslas. 

(b) Calculate the surface current density in the tube in amperes/meter. 
(c) Calculate the change in magnetic energy, the energy absorbed by 

the constant-current source feeding the solenoid, and the explosive 
energy required to compress the field. Assume that the tube IS 

200 millimeters long, Ro = 50 millimeters, and neglect end effects. 

26-14. (26. 10) The torque on a current-carrying coil 
(a) Show that a current-carrying coil tends to orient itself in a magnetic 

field in such a way that the total magnetic flux linking the coil is 
maximum. 

(b) Show that the torque on the coil is m X B, where m is the magnetic 
moment of the coil and B is the magnetic flux density when the current in 
the coil is zero. 

26-15 .  (26. 10) The torque on a cylindrical permanent magnet 
Show that the torque exerted on a small, cylindrical permanent magnet 

of dipole moment m situated in a magnetic field is m X B. See the 
preceding problem. 

26-16. (26. 10) High-gradient magnetic separation 
It is possible to separate magnetic particles in suspension in a fluid by 

passing the mixture through steel wool subjected to a strong magnetic 
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Fig. 26·11. 

field. The magnetic particles cling to the steel wires where the field 
gradient is large . Arrays of fine steel wires normal to B are also used. 

With a field of the order of several teslas supplied by superconducting 
coils, the separation occurs even with materials that are only slightly 
magnetic. The method is also applicable in air for removing magnetic 
particles, say in pulverized coal. 

Let us see how a small magnetic dipole behaves in a nonuniform B. 
The dipole first orients itself. Then, as we shall see , it tends to move in 
the direction in which the applied B increases. 

Figure 26-1 1  shows a small current loop of radius R that is already 
oriented in a field B that increases symmetrically about the positive 
direction of the z -axis. 

(a) Show, without any calculation, that the magnetic force points to 
the right. Note that this force tends to increase the linking flux. 

(b) Show that F = 2:rRIBp , where Bp is the component of B that is 
normal to the z·axis. 

(c) Now consider a small volume of thickness �z, as in the figure. Use 
the fact that the net outward flux of B is zero to find Bp and F. 

(d) Calculate the force from the rate of increase of magnetic energy. 
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This chapter concerns the four fundamental equations of electromagnet
ism that bear the name of James Clerk Maxwell ( 1831-1879) . He was the 
first to state them clearly and to recognize their importance , but it was 
Oliver Heaviside ( 1850-1925) who first expressed them in the form that 
we know today. These equations are so fundamental that we shall express 
them in various ways and then discuss their physical meaning. 

27. 1  MAXWELL'S EQUATIONS IN 
DIFFERENTIAL FORM 

Let us group Maxwell's four equations ; we discuss them at length below. 
We found them successively in Secs. 9 . 5 ,  23 .4, 20 .4, and 17.4: 

P (27-1) V · E = - ,  
Eo 

V · B :::: O, (27-3) 

aB V x E + - :::: O 
at 

' 

1 aE t V X B - - - :::: f.l J. c2 at 
0 

(27-2) 

(27-4) 

t If you have not studied Chap. 17 ,  you will have to take this equation for granted at this 
stage. You will find a proof in Sec. 28.6. 
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The above equations are general in that the media can be 
nonhomogeneous, nonlinear, and non isotropic. However, (1) they apply 
only to media that are stationary with respect to the coordinate axes,t 
and (2) the coordinate axes must not accelerate and must not rotate. 

These are the four fundamental equations of electromagnetism. They 
form a set of simultaneous partial differential equations relating certain 
time and space derivatives at a point to the charge and current densities 
at that point. They apply, whatever be the number or diversity of the 
sources. 

We have followed the usual custom of writing the field terms on the 
left and the source terms on the right. However, this is somewhat illusory 
because P and I are themselves functions of E and B. As usual, 
E is the electric field strength, in volts/meter; 
P = Pt + Pb is the total electric charge density, in coulombs/meter3; 
Pt is the free charge density ; 
Pb = - V . P is the bound charge density ; 
P is the electric polarization, in coulombs/meter; 
B is the magnetic flux density , in teslas ; 
I = It + ap/ at + V x M is the total current density, in amperes/meter2 ;+ 

It is the current density resulting from the motion of free charge; 
ap / at is the polarization current density in a dielectric; 
V X M is the equivalent current density in magnetized matter; 
M is the magnetization, in amperes/meter; 
c is the speed of light , about 300 megameters per second; 
Eo is the permittivity of free space, about 8.85 x 10-12 farad/meter. 

In isotropic, linear, and stationary media, 

It = aE, p = EOXeE, (27-5) 

where a is the conductivity , Xe is the electric susceptibility, and Xm is the 
magnetic susceptibility. Also, 

flr = 1 + Xm ' (27-6) 

t See Paul Penfield, Jr . ,  and Herman A. Haus, Electrodynamics of Moving Media, 
Research Monograph 40, M. I .T. Press. Cambridge, Mass. , 1967. 

i Until now we were concerned solely with free current densities, and we used I instead 
of If' to simplify the notation. 
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where Er is the relative permittivity and I-lr is the relative permeability. 
Inside a source , such as a battery or a Van de Graaff generator ,  electric 
charges are "pumped" by the locally generated electric field Es against 
the electric field E of other sources, and J = aCE + Es) . 

Writing out p and J in full, Maxwell's equations become 

aB V X E + - = O, at 
V · B = O, 

1 aE ( ap ) V X B - 2 - = l-lu Jr + - +  V X M  . c at at 

(27-7) 

(27-8) 

(27-9) 

(27-10) 

This Amperian formulation expresses the field in terms of the four vectors 
E, B, P, and M. 

With homogeneous, isotropic, linear, and stationary (HILS) media, 

p = Pr (Sec. 9 .9) (27-1 1) Er 
P =  (Er - 1)EoE (Sec. 9 .9) (27-12) 

M = (I-lr - 1) B (Sec. 20.7) (27-13) I-lrl-lo 
and 

V . E = Pr, (27-14) aB (27-15) V X E + - = O, E at 

(27-16) aE (27-17) V · B = O, V X B - EI-l - = I-lJr. at 

Recall that E = ErEO and I-l = I-lrI-lO. Er is frequency-dependent , and I-lr is 
hardly definable in ferromagnetic materials. The expressions for P and 
for M are not symmetrical , but P, E, and D point in the same direction, 
like M, H, and B, in isotropic and linear media. 

Observe that the above set of equations follows from Eqs. 27-1 to 27-4 
with the following substitutions : 

(27-18) 
(27-19) 
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This is a general rule for transforming an equation in terms of Eo, J.lo, p, J 
to another one in terms of E, J.l, Pf' Jf· 

The Minkowski formulation of Maxwell's equations is often useful. I t  
expresses the same relations, but in terms of the four vectors E, D, B, H: 

V · D = Pf' 

V · B = O, 

(27-20) 

(27-22) 

aB V X E + - = O, at 
aD V X H - - = .l·. at / 

(27-21) 

(27-23) 

In the following chapters we shall be mostly concerned with electric 
and magnetic fields that are sinusoidal functions of the time . Then, for 
isotropic, linear, and stationary media, not necessarily homogeneous, 

V ·  EE = Pf' 
V ·  J.lH =  0, 

(27-24) 

(27-26) 

V x E + jWJ.lH = 0, 

V x H - jWEE = Jf. 
(27-25) 

(27-27) 

It is worthwhile to discuss Maxwell's equations further, but first let us 
rewrite them in integral form. 

27 .2  MAXWELL'S EQUATIONS IN 
INTEGRAL FORM 

Integrating Eq. 27-1 over a finite volume v and then applying the 
divergence theorem, we find the integral form of Gauss's law (Sec. 9 .5) : 

f E ·  dd = J.... f P dv = Q , 
stl Eo v Eo (27-28) 

where .sd is the area of the surface bounding the volume v and Q is the 
total charge enclosed within v. See Fig. 27-1 .  

Similarly, Eq. 27-3 says that the net outward flux of B through any 
closed surface is zero, as in Fig. 27-2: 

L B · dd = O. (27-29) 

Equation 27-2 is the differential form of the Faraday induction law for 
time-dependent magnetic fields. Integrating over an open surface of area 
.sd bounded by a curve C gives the integral form, as in Sec. 23 .4: 

1 E .  dl = -!!: f B ·  dd = _ dA, re dt .c4 dt (27-30) 
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Fig. 27-1. Lines of E emerging from a volume containing a net charge Q. The 
outward flux of E is equal to Q / Eo. 

where A is the linking flux. See Fig .  27-3 . The electromotance induced 
around a closed curve C is equal to minus the time derivative of the flux 
linkage. The positive directions for A and around C satisfy the right-hand 
screw convention . 

Finally , Eq. 27-4 is Ampere's circuital law in integral form: 

Fig. 27-2. Lines of B passing through a closed surface . The net outward flux of B 
is equal to zero. 
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) j. 
Fig. 27·3. If the magnetic flux linking C increases, it induces an electromotance 
around C in the direction of the arrow. The electromotance points in the same 
direction if B points upward and decreases. 

(27-31 )  

We found two less general forms of this law in Sees. 19 .5  and 20.6 .  The 
closed curve C bounds a surface of area .sil through which flows a current 
of density J + f'.o8E/ 8t. See Fig. 27·4. 

Fig. 27·4. The line integral of B . dl around C is positive if the integration runs in 
the direction of the arrows with a current density J + Eo aE / at pointing 
downward. 
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27 .3  FURTHER COMMENTS ON 
MAXWELL'S EQUATIONS 

(1)  Maxwell's equations 27-1 to 27-4 are linear. This means that they do 
not contain products of two or more of the variables or of their 
derivatives. It follows that if the field E I , Bl satisfies Maxwell's equations 
when P = Pl and I = II , and if the field E2 , /h, corresponds similarly to 
P = P2 and I = I2 , then the total field is El + E2 , Bl + /h when 
P = P I + P2 and I = II + I2 . This is the principle of superposition (Secs. 
3 .3 and 18 .2 . 1 ) .  In other words , each source of P and I acts independ
ently of all the others . 

In linear media, P and M are proportional , respectively , to E and B, 
and Eqs. 27-7 to 27-10 are also linear. The principle of superposition 
applies. 

However, in nonlinear media, P and M are more or less complicated 
functions of E and B. Equations 27-7 to 27-10 are then nonlinear and the 
principle of superposition does not apply to Pf and If. The principle of 
superposition continues to apply to P and I. 

All materials become nonlinear at very high field strengths. 
(2) We deduced Gauss's law for electric fields 

V · E = ..e , or J E ·  dd = Q , (27-32) 
Eo sl Eo 

from Coulomb's law for stationary electric charges situated in a vacuum 
in Sec. 3 .7 .  In Sec. 9 .5  we found that the same relation applies to charges 
lying ' inside matter , if P and Q include both free and bound charges. 
Nonetheless, Gauss's law is more fundamental than Coulomb's law 
because it applies even to moving charges (Sec . 17. 1 ) ,  while Coulomb's 
law is strictly valid only for stationary charges (Secs. 3 . 1  and 16.5) .  

(3) One of Maxwell's equations states that 

V ' B = O, or L B · dd = O, (27-33) 

where sI1 is the area of any closed surface . We deduced this relation in 
Sec. 18 .3 from the law of Biot-Savart for the B field of a time
independent current distribution. This relation is, in fact, general (Sec. 
17.2) , but on one condition: the density of magnetic monopoles (Sec. 
18. 1) must be zero. Since magnetic monopoles have never been observed 
to date, we may assume that the above equations are valid for any 
E, B field and for any current distribution, even if these are time
dependent. 
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(4) We found Faraday's law 

aB V X E = - at ' or 1, E . dl = - � J B ·  dSJI., Jc dt S'l 
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(27-34) 

in Sec. 17 .3 ,  and we discussed it in Sec. 23 .4. These equations are equally 
general. Here the closed curve C must be fixed in the coordinate system 
with respect to which both E and B are measured. However, the open 
surface bounded by C may move. 

(5) In Sec. 20.5 we found that, for static fields, 

(27-35) 

This equation is not general, for the following reason. Take the 
divergence of both sides. Then the divergence of the left-hand side is zero 
because the divergence of a curl is identically equal to zero. However, 
the divergence of the right-hand side is not necessarily zero: 

(27-36) 

Here we used first the conservation of free electric charge (Sec. 4 .2) and 
then Eq. 27-20. 

It therefore occurred to Maxwell that the correct relation must be 

as above. 

aD V X H = Jf + -, at (27-37) 

(6) Observe that the line integral of B . dl is related to the current 
density J plus EoaE/at in Eq. 27-31 .  This is remarkable because the 
integral for B (Sec. 20 .3) does not involve EoaE / at. t 

(7) The displacement current density aD / at of Sec. 9 . 10 is the sum of 
two terms: 

aD a aE ap - = - (EoE + P) = Eo - + -'  at at at at (27-38) 

In a material of conductivity a and relative permittivity E, subjected to an 
alternating electric field ,  

t The magnetic field associated with the displacement current i n  a parallel-plate capacitor 
has been observed. See D .  F. Bartlett and P. R. Corle, Physical Review Letters, vol. 55, 
p.  59 ( 1 985) .  
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Jf = oEm exp jwt, 

I aD/ at l = WErEO . 
Jf 0 

(27-39) 

(27-40) 

In a good conductor, and at frequencies lower than roughly 1 gigahertz, 
0 = 107 siemens/meter, Er = 1 (Sec. 9.9), the above ratio is of the order 
of f / 1017 at a frequency f, and the displacement current is negligible 
compared to the conduction current. At higher frequencies both Er and 0 
vary erratically with frequency because of atomic and molecular 
resonances. 

27 .4 THE LAW OF CONSERVATION OF CHARGE 

In Sec. 4 .2 we saw that free charges are conserved. At that time we were 
using the symbol J for the current density of free charges instead of Jf. 

Let us calculate the divergence of J as defined in Sec. 27. 1 .  We will 
need the value of this divergence in the next section . First, 

the divergence of a curl being equal to zero. Thus 

v . J = _ apf _ apb = _ a(pf + Pb) = _ ap . at at at at 

(27-41) 

(27-42) 

This is a more general form of the law of conservation of charge of Sec. 
4.2. 

27 . 5  MAXWELL'S EQUATIONS ARE REDUNDANT 

Maxwell's four equations are redundant . We saw in Secs. 17.3 and 17.4 
that the equation for V X E follows from the one for V ·  B, and the 
equation for V X B from the one for V ·  E. These are , respectively, the 
first and second pairs. 

The two equations of the first pair are also related as fol lows . If we 
take the divergence of Eq. 27-2 and remember that the divergence of a 
curl is zero , we find that 

aB V · - = O  at or (27-43) 
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So V ·  B is a constant at every point in space. Then we can set V ·  B = 0 
everywhere and for all time if we assume that, for each point in space, 
V . B is zero at some time, in the past, at present ,  or in the future. With 
this assumption ,  Eq. 27-3 follows from Eq. 27-2. 

Similarly ,  taking the divergence of Eq. 27-4 and applying the law of 
conservation of charge, we find 

aE ap E V · - = - V · J = -o at at ' 
a a ( P ) - ( V · E) = - - , at at Eo 

p V · E = - + C. Eo 

(27-44) 

(27-45) 

The constant of integration C can be a function of the coordinates . 
If we now assume that, at every point in space, at some time, V ·  E and 

p are simultaneously equal to zero, then C is zero and we have Eq. 27-1 .  
So  there are really only two independent equations . 

27 .6  DUALITY 

Imagine a field E, B that satisfies Maxwell's equations with Pt = 0, Jt = 0 
in a given region .  The medium is homogeneous, isotropic, linear, and 
stationary (HILS) . Now imagine a different field 

E' = -KB = -KiJR, 
H' = +KD = +KEE, 

(27-46) 
(27-47) 

where the constant K has the dimensions of a velocity and is independent 
of x, y, Z, t. This other field also satisfies Maxwell's equations, as you can 
check by substitution into Eqs . 27-20 to 27-23 . 

Figure 27-5 illustrates this duality property of electromagnetic fields . 
One field is said to be the dual, or the dual field, of the other. Therefore, 
if one field can exist, then its dual can also exist. 

Example THE FIELDS OF ELECTRIC AND 
MAGNETIC DIPOLES 

In Sec. 5 . 1  we found that in the field of an electric dipole of 
moment p 

E = -
4 

P 3 (2 cos e ,. + sin e iJ ). nEar (27-48) 

Later, in the fourth example in Sec. 18.4, we showed that in the 
field of a magnetic dipole of moment m 
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Fig. 27-5. Pair of dual fields. Lines of E are solid, and lines of H dashed. 

or 

�om , 
B = -3 (2 cos e r + sin e 8 ), 

4nr 

m , 
H = -, (2 cos e r + sin e 8 ). 

4nr 

(27-49) 

(27-50) 

We have set Cr = 1, �r = 1. If the field of the electric dipole is the 
unprimed field , and that of the magnetic dipole the primed field , 
then K =  m/p. 

27.7 LORENTZ'S RECIPROCITY THEOREM 

Consider two fields Ea , Ba, and Eb ,  Bb in a linear and isotropic medium. 
Because of the principle of superposition, these two fields can either exist 
separately or be superimposed without disturbing each other , giving a 
third field Ea + Eb , Ba + Bb· 

We now use the vector identity 

V ·  (Ea X Bb - Eb X Ba) = Bb . ( V  X Ea) - Ea · ( V  X Bb)  
- Ba ·  ( V X Eb) + Eb · ( V X Ba) . (27-51) 

Then, from the Maxwell equations for the curls of E and B, 

(27-52) 

If the two fields are harmonic functions of the time and if they are of the 
same frequency, the a/at operators can be replaced by jw, and the time 
derivatives cancel . Substituting the value of the total current density J, 
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(27-53) 

Since, by hypothesis the medium is linear and isotropic, P is EOXEE and 
the above time derivatives cancel. Finally , if the point considered is not 
inside a source , Ohm's law applies, Jf = aE, and the Jf terms cancel. We 
are then left with the V x M terms. If the medium is nonmagnetic, then 
M is zero and 

(27-54) 

If the medium is magnetic, we can perform a similar calculation by 
using H's instead of B's and 

(27-55) 

In summary, therefore, if two fields a and b are sinusoidal and of 
the same frequency, if also the medium is linear and isotropic, and if the 
point considered is not inside a source , then Eq. 27-54 applies. If the 
medium is magnetic, then we have Eq. 27-55. 

Applying the divergence theorem yields 

(27-56) 

where s1. is the area of any closed surface, with the above restrictions. 
This result is known as Lorentz 's reciprocity theorem. It is paradoxical 
hecause it establishes a relation between two unrelated electromagnetic 
f ields . 

!','xamples (1)  If the a field is purely electric and the b field purely magnetic, 
then 

V ·  (E. x Ho) = 0, (27-57) 

subject only to the above limitations. This surprising statement 
becomes obvious after expanding the divergence: 

(27-58) 

(27-59) 
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This last quantity is identically equal to zero because, by 
hypothesis,  Ba and Eb are both zero , Jib = aEb = 0, and Db = 
EEb = 0, 

(2) The field of a small permanent magnet is that of a magnetic 
dipole, as in the last example in Sec, 18 ,4 ,  If the magnet carries an 
electric charge Q, it also has an electric field 

and 

(27-60) 

r {J f/J 
f" .  (E" X Hb) = f" .  Ear 0 0 = f" .  (EarHb8f/J ) (27-61)  

Hbr Hb8 0 ( Q f.1om , ' ) = f" .  -- - sm 8 t/J  = 0, 
4nEor2 4nr' 

(27-62) 

27 .8  THE WAVE EQUATIONS FOR E AND FOR B 
Taking the curl of Eq, 27-2 and remembering that 

V x V X E =  - VZE + V( V · E) ,  

then, from Eq .  27-4, 
a a ( aE) VZE - V( V · E) = -;- V X B = - Ilol + Eollo - . �t at at 

(27-63) 

(27-64) 

Substituting now the value of the divergence of E from Eq. 27-1  and 
rearranging, 

2 a2E Vp aJ V E - Eollo --;-z = - + Ilo - , �t Eo at (27-65) 

This is the nonhomogeneous wave equation for E. The source terms are 
on the right. 

Outside the sources, 

(27-66) 

This is the usual wave equation. The speed of propagation ,  which is the 
speed of light, is 

1 (27-67) c = ( ) 112 . Eollo 
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Similarly, taking the curl of Eq. 27-4 and substituting Eqs 27-2 and 
27-3 , we find that 

(27-68) 

which is the nonhomogeneous wave equation for B. The source term is 
again on the right . 

Outside the sources, 
cPB 

f'2B - Eof.1o -
2 

= O. (27-69) at 

According to the rule given in Sec. 27-1 ,  the wave equations for a 
HILS medium are as follows: 

f'2E _ Ef.1 a
2E = f'Pt + f.1 aJt 

at2 E at ' 

a2B 
f'2B - Ef.1 at2 = - f.1f' x Jt. 

(27-70) 

(27-71 )  

We therefore have a wave equation for the field E,  and a separate 
wave equation for B. Within the wave, however, E and B are inextricably 
related through Maxwell's equations. In other words, purely electric, or 
purely magnetic, waves are impossible. The fact remains that, in some 
waves, the energy density can be either mostly magnetic or mostly 
electric. 

If a is constant, 

(27-72) 

(27-73) 

27 .9 SUMMARY 

We expressed Maxwell's equations in several different forms. See the 
hack cover. 

All the quantities that appear there are defined in Sec. 27. l .  
The displacement current density is 

an aE ap - = E - + - . at a at at (27-38) 
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The second term on the right is the polarization current density. The first 
term can exist even in a vacuum. 

The law of conservation of charge, in its general form, takes into 
account both free and bound charges: 

ap V · J = - 
at ' 

where p and J are defined in Sec. 27 . 1 .  

(27-42) 

The equations for the curl of E and for the divergence of B are 
redundant since one follows from the other. They are occasionally called 
the first pair. The other two are similarly related and form the second 
pair. 

For every field E, H there can exist a dual field E' , H' such that 

E' = -KB = -KpJI, H' = +KD = +KEE. (27-46), (27-47) 
This is the duality property of electromagnetic fields. 

The Lorentz reciprocity theorem states that, for any two fields Ea, Ha 
and Eb, Hb that are sinusoidal and of the same frequency, in linear and 
isotropic media away from sources, 

(27-55) 

The nonhomogeneous wave equations for E and for B are as follows: 

(27-65) 

(27-71 )  

Outside the sources, the terms on the right-hand side are zero. The speed 
of light is thus 

1 c = ( ) 112 ' Eoflo 

In a HILS medium, if a is constant, 

2 a2E aE VPt V E - Efl at2 - aWai = -;- ,  

2 a2B aE V B - Efl at2 - afl 
at = o. 

(27-67) 

(27-72) 

(27-73) 
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PROBLEMS 

27-1 .  (27. 1 )  Superconductivity 
A superconductor offers zero resistance to the motion of superconducting 

charge carriers. These are pairs of electrons that move as a unit. 
(a) If there are N such carriers per cubic meter of mass m '  and charge 

e ' ,  show that 
m ' dJ 

E = -Ne '2 dt ' 

This is the first London equation. Note that E is zero only if J is constant. 
(b) Set K = m '  /(Ne '2) .  Show that in an alternating field 

(c) Show that 

The equation 

1 j 
a =-- = - -jwK wK' 

V X  (K aJj = _ aB o 
at) at 

V x KJ = -B 

is the second London equation. It does not follow mathematically from the 
first. 

(d) Show that under steady-state conditions 

In one dimension, this means that 

or that 

where (K//JO) 1 I2 is the depth of penetration of the field. 
(e) Calculate the value of the depth of penetration, setting m' equal to 

twice the mass of an electron, e ' = 2e, and N = 1029• The depth of 
penetration is ,  in fact, a few times larger. 

(f) Much beyond the depth of penetration , E = 0, J = 0, B = O. 
Show that just outside a superconductor B is tangential to the surface and 

equal in magnitude to the surface current density. 

27-2. (27. 1 )  Experiments on models 
A problem that cannot be solved on paper can often be solved in the 

laboratory. However, there are instances where a full-scale experiment 
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would be too costly. One such problem is that of the design of an MHD 
generator (Sec. 22. 1) .  

In such cases i t  is sometimes useful to perform experiments on a model of 
convenient size. One then has the real system, for which the variables are 
x, y, Z, t, E, B, E" /1" 0, R, e, L, etc. , and the model, whose variables 
are x ' ,  y ' ,  z ' , etc. The ratios x/x ' ,  y /y ' ,  z /z ' ,  etc. are the scale [actors. 
Not all these factors can be chosen arbitrarily because both the unprimed 
and the primed variables must satisfy Maxwell's equations. The number of 
arbitrary scale factors is equal to 4, the number of fundamental units 
(meter, kilogram, second ,  ampere). With mechanical systems there are 
only three arbitrary scale factors. 

Let us set 

x y z 
- = - = - = 1 
x '  y '  z '  

, - = r 
t '  

, 
E 
E' 

= e, 
H 
H, = h. 

The other scale factors follow from Maxwell's equations and from other 
relations. 

(a) Use Maxwell's equations to show that 

( o o) E, rh 
11 ----; = -1 ' E, e 

( O O .) 0 h III - = - .  
0 ' el 

(b) Show that 

. Y' (
1
) Y" = eh, 

(c) Show that 

(i) :
' 

= er/, 

(d) Show that 

. [ 1 
(1

) 
f

=
-;;' 

(iii) f, = hi, 

( O O .) e h III - =  r -e '  E ' 

( ) 
Q hi ( O O .) P rh 

ii 
Q

' = r, III -;; = [2' 

(e) Show that, if L is a length , then 

[/1oL2 
[ '/1 'O'L,2 

1 . 

(f) One author states that 

Is he right? 

v 
(v) 

V ' = el. 

L er 
(iv) 

L' 
= h' 

In practice, these relations are simplified by the exclusion of  ferromag
netic materials because of their nonlinearity. Then /1,//1; = 1 ,  er = Ih, and 
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there are only three independent scale factors . Then a/a' = r/e and 
awL2 = a'w'L ,2, where L is a length. 

If the fields are in a vacuum, E)E; = 1 and rh = el. Then e = h and r = 1 .  
Note that if E)E; = 1 , /1)/1; = 1 ,  and a/a, = 1 ,  then 

rh er h - = - = - = 1 
el lh el 

and e = h, r = 1 ,  I = 1 .  Then the model is the same size as the original! If 
the model is to be a different size, then either En or a, or both, must be 
different. This condition is often impossible to satisfy. 

At low frequencies one can disregard the displacement current, and 
hence attribute any value to the ratio E)E;, or to rh/el. 

27-3. (27.2)  Parallel-plate capacitor fed at one end by a time-dependent source 
Figure 27-6 shows a parallel-plate capacitor connected at one end to a 

source whose voltage increases slowly and linearly with time: dVo/dt = k. 
Edge effects are negligible: a »  s, b »  s.  

(a) Find the current I as a function of x. 
(b) Find B inside in two different ways. Find A inside. 
(c) Find B and A outside. The capacitor plates are thin. 
(d) Draw a large cross section of the capacitor in the midplane parallel to 

the xz-plane, showing I and the vectors A, B, V X B, E, aE/at near both 
ends. Use arrows of different sizes to indicate qualitatively how these 
vectors vary with x and with z. 

27-4. (27. 1 ) A transformation that leaves Maxwell's equations invariant 
(a) Show that Maxwell's equations for free space are invariant under the 

transformation 

E' = aE + bcB, B '  = - (�)E + aB, 

where a and b are constants and c is the speed of light. 
(b) Under what condition are the energy density EoE2/2 + B2/(2/1o) and 

the Poynting vector E X H invariant? 

+ I . 
... 

I �<�------------ a ----------� 

Fig. 27·6. 
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27-5. (27. 3 )  The skin effect 
As we shall see in Sec. 29. 1 ,  a high-frequency field does not penetrate 

significantly into the body of a good conductor. Also, both E and B inside 
are approximately tangent to the surface. Let the z-axis be normal to the 
surface, pointing outward, with E in the direction of the x-axis and B in the 
direction of the y-axis. Set a/ ax = 0, a/ ay = O. 

(a) Show that, inside, aE/az = - aB/at. 
(b) Show that, just outside the conductor, B is tangent, or nearly so . 
(c) Let the current density near the surface be a amperes/meter . 
Show that, just outside the conductor, B = 110a X Z 
(d) Does this last result depend on how the current varies with depth 

inside the conductor? 

27-6. (27. 3 )  The magnetic field of a leaky capacitor 
A charged capacitor whose electrodes are parallel and circular lies in a 

large volume of dielectric that is slightly conducting. The capacitor 
discharges. 

( a) Calculate the value of the ratio if / (a D / at) at any point in the 
dielectric in terms of the resistance and the capacitance . 

(b) Show that this ratio is equal to - 1  at the surface of an electrode. 
(c) Show that B is zero everywhere in the dielectric. This means that the 

magnetic field of the conduction and polarization (not displacement) 
currents in the fringing field exactly cancels the magnetic field of the 
conduction and polarization currents in the region between the plates. 

(d) Show that B is also zero for electrodes of any shape. 
If the dielectric occupies only part of the field of a capacitor, say the 

region between the plates of a parallel-plate capacitor, then the value of the 
ratio calculated under (a) applies. However, at the surface of an electrode, 
this ratio is not equal to - 1 because charge migrates from the outer 
surface of an electrode to the inner surface , where it leaks out. Then , in the 
dielectric, IJf l > l aD/atl,  Jf - aD/at points in the direction of Jf and thus 
of E, and there is an azimuthal magnetic field. 

27-7. (2Z 3)  Magnetic monopoles 
If monopoles exist, then Maxwell's equations require two more terms, to 

take into account magnetic charges and magnetic currents. It is the custom 
to write the equations in the following form: 

p aB ( aE ) 
V ' E = - , V X E = - - - J*,  V ' B = p *,  V X B = l1o Eo - + J ,  

� � � 

where p *  is the magnetic charge density. expressed in webers/meter3 , and 
J* is the magnetic current density, in webers/second-meter2• 

(a) Show that 
ap* 

V · J* = - - .  
at 

This is the equation of conservation for magnetic monopoles. 
(b) Show that, by analogy with electric fields, near a point magnetic 

charge Q* 



PROBLEMS 

Q * B = -- r 
4nr2 , 
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(c) Calculate the energy acquired by a magnetic monopole that acceler
ates over a distance of 1000 kilometers in the earth's magnetic field (=10-5 
tesla). 

(d) Magnetic monopoles go through a loop of copper wire. 
Show that the induced electromotance is equal to minus the magnetic 

current, with the right-hand screw convention. This is one method of 
detecting magnetic monopoles. 

27-8. (27. 3 )  The continuous-creation theory and Maxwell's equations 
Imagine an expanding spherically symmetric universe in which there is 

continuous creation of charge at the rate of q coulombs/meter3-second. 
Creation of electric charge occurs through the creation of hydrogen atoms 
carrying a slight excess charge ye as in Prob. 3-15. 

The rate of mass creation Q is proportional to q: Q = [ml(ye)]q, where 
m is the mass of the proton, the universe being mostly hydrogen . 

(a) By symmetry, the vector potential can only be radial. 
Show that under steady-state conditions the current density J is 

everywhere zero , according to Maxwell's equations. 
Lyttleton and Bondi (see Prob. 3-15) suggested that, if continuous 

creation does exist, then Maxwell's equations must be modified as follows: 

1 aE [ 1 ] V X B = 1l T +  _ _ _  - A  
,- 0<'  c2 at [2 ' v . E = !!.. - [.! v] 

[2 
, Eo 

where the new terms are enclosed in brackets. The quantities V and A are 
the usual scalar and vector potentials: 

aA 
E = - VV - 

at ' 
B =  V X A. 

The other two equations of Maxwell for V X E and V ·  B remain un
changed. Lyttleton and Bondi suggested that the constant [, which has the 
dimensions of a length, would be of the order of the radius of the universe. 
The new terms would therefore be negligible in all but cosmological 
problems. 

(b) If these modified Maxwell equations are correct, are V and A 
measurable, in principle? Remember that, with the above equations for E 
and B in terms of V and A, only the rates of change of V and A determine 
E and B. 

(c) Write out the equation for the conservation of the total charge (Sec. 
27.4) .  

(d) Would the Lorentz condition (Secs. 17 .9  and 37. 1) still be  valid? 
(e) Now set A = A '  r, where A '  is a constant, and assume V to be 

constant. Show that B = 0, E = 0, J = (q 13)r, p = Eo V /12• 
Assuming that the velocity of the outward flow of matter is the same as 

that of the charge . namely J 1 p, it follows that the radial velocity is 
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proportional to r, which is consistent with the linear velocity-distance 
relation observed by astronomers: v = r/ T, where T = 3 X 1 017 seconds is 
the Hubble constant, 

(f) Show that p = qT /3. 
(g) Now the space-charge density p is TJye/m, where TJ, the mass density 

of the universe, is about 10-26 kilogram/meter3. 
Show that, if this theory is correct, then Q = 1 / (2 x 1016) hydrogen 

atom/meter3-second. 

27-9. (27. 3 )  Another transformation that leaves Maxwell's equations invariant 
(a) Show that Maxwell's equations for free space are invariant under the 

transformation 

E' = E cos e + cB sin e, 
E . 

B '  = - - sm e + B  cos e. c 

The transformation E '  = - KB, H' = KD of Sec. 27.7 and the transforma
tion E '  = -E, B '  = -B are special cases corresponding to e = n/2 and 
e = n, respectively . 

(b) Show that the energy density £OE2/2 + B2/(2/-l0) and the Poynting 
vector E X H are also invariant under this transformation. 

27-10. (27. 3 )  The magnetic field of a point charge that moves at a constant 
velocity 
Figure 27-7 shows a point charge Q that travels along the x-axis at a 

velocity ''Vi. Its position at time t is ('Vt, 0, 0). 
(a) Find B at a point P(X, Y, O), not at the origin ,  at the instant that 

the charge passes through the origin. The particle travels in a vacuum, 
and v2 « c2, where c is the speed of light. 

(b) If you have studied Chap. 16 ,  compare your result with that of Sec. 
16 .5 .4 .  

y 

p (X, Y, 0) Y - - - - - - - - - - - - -� 
; /  \ 

VI I 
Q 

;/ \ 
1/ \ 

/ I \ 
/ I \ 

/// \ 
\ I \ I \ I \ C j  

\ / \.--/ 

.t 

Fig. 27-7. 
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(c) Sketch the value of � f D ·  d.<A 
dt .,g 

, 
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where .st1 is the area of the spherical segment of radius Y, as a function of 
'lit. When the charge is just to the left of 'Vt = X, the flux of D through .st1 
points to the right and is + Q /2. Immediately afterward, the flux points to 
the left and is - Q /2, so there is a discontinuity in this curve. 

(d) The integral of H . dl around the circle shown in the figure is equal 
to 2n YB / /-to. Calculate the integral of this quantity over time from minus 
infinity to plus infinity. Set X = 0 to simplify the calculation. Explain your 
result. 

27- 1 1 .  (27. 9) The Watson theory of continuous charge creation 
Problems 3-15 and 27-8 sketch the Lyttleton theory, according to which 

hydrogen atoms are continuously created in the universe, each atom 
bearing a slight positive charge. W .  H. Watson had proposed a similar 
theory several years before! Watson postulated a scalar potential N such 
that 

aN 
V · D  = Pr + to/-to - ,  at 

aD 
V X H = ]r + - - VN. 

at 

(a) Find the nonhomogeneous wave equation for N from the equation 
for the nonconservation of charge. Set the rate of charge creation equal to 
q coulombs/meter3-second. 

(b) Find the nonhomogeneous wave equations for E and for H. 

t See L .  G.  Chambers, Journal of Mathematical Physics, vol. 4 ,  p.  1373 (1963). 
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We now go on to the study of electromagnetic waves. This chapter 
concerns the propagation of uniform plane waves in unbounded media, 
first a general medium, then free space, then nonconductors, and then 
conductors. Good conductors and ionized gases follow in the next 
chapter. Later we shall study reflection and refraction in Chaps. 30 to 32, 
guided waves in Chaps. 33 to 36, and finally the process of radiation in 
Chaps. 37 to 39. 
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If you are not familiar with wave propagation you would be well 
advised to read App. C now. 

28 . 1  THE ELECTROMAGNETIC SPECTRUM 

Maxwell 's equations impose no limit on the frequency of electromagnetic 
waves. The known spectrum extends continuously from the long radio 
waves to the very high-energy gamma rays of cosmic radiation, as in Fig. 
28- 1 .  In the former, the frequencies are of the order of 100 hertz and the 
wavelengths about 3 megameters ; in the latter, the frequencies are of the 
order of 1024 hertz and the wavelengths less than 1 femtometer. 

The known spectrum thus covers a range of 22 orders of magnitude. 
Radio, heat waves, light, x-rays ,  and gamma rays are all electromagnetic, 
although the sources and the detectors, as well as the modes of 
interaction with matter, vary widely as the frequency changes by orders 
of magnitude. 

Many experiments demonstrate the fundamental identity of all these 
waves. In particular, they are all transverse, and they all travel at the 
speed c in free space, except in special circumstances. For example, 
simultaneous radio and optical observations on stars show that the 
velocity of propagation is the same, within experimental error, for 
wavelengths differing by more than 6 orders of magnitude. 

We use H rather than B in discussing electromagnetic waves, in spite of 
the fact that until now we have used H only for magnetic materials. 
There are two reasons for using H, instead of B, in dealing with 
electromagnetic waves: one is that E X H is a power density, and the 
other is that E/ H is an impedance. These two concepts have great 
practical value. 

28 .2  UNIFORM PLANE ELECTROMAGNETIC 
WAVES IN A GENERAL MEDIUM 

A wave front is a surface of uniform phase. The wave fronts of a plane 
wave are planar. A wave is uniform if a wave front is a surface of uniform 
phase and uniform amplitude. We shall not be concerned with nonuni
form waves until Chap. 3 1 .  

Uniform plane electromagnetic waves in  unbounded media possess 
several general properties that apply whether the wave travels in free 
space or in matter. To avoid needless repetition, we start with a general 
medium E" J-l" a that is homogeneous, isotropic, linear, and stationary 
(HILS) .  
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Fig. 28-1. The spectrum of electromagnetic waves. The abbreviations elf, vf, vlf, . . .  mean , respectively , extremely low 
frequency, voice frequency, very low frequency, low frequency, medium frequency, high frequency, very high frequency, 
ultrahigh frequency, super high frequency, and extremely high frequency. The limits indicated by the shaded regions are 
approximate. The energy hf, where h is Planck's constant (6.63 X 10 )4 joule-second) and f is the frequency, is that of a photon 
or quantum of radiation. 

.. 
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We assume a sinusoidal wave traveling in the positive direction of the 
z -axis. We also assume that the E vectors are all parallel to a given 
direction. In other words , we assume that the wave is linearly polarized. 
If the plane wave is not linearly polarized, then it is the sum of linearly 
polarized waves. t The plane of polarization is parallel to E. 

In a linearly polarized plane wave, E and H are of the form 

E = Em expj(wt - kz) ,  H = Hm expj(wt - kz)+ (28-1 )  

where Em and Hm are vectors that are independent of  the time and of  the 
coordinates. If there is no attenuation, the wave number is real: 

(28-2) 

where v is the phase velocity, .Ii. is the wavelength, and A (pronounced 
"lambda bar") is the radian length. You can easily show by substitution 
that Eqs. 28-1 are solutions of Eqs. 27-66 and 27-69. 

28 .2 . 1 The Relative Orientations of E, H, and k 
For this particular field , 

a . - = JW at ' 

We set PI = O. We also set 

II = aE, 

(28-3) 

(28-4) 

on the assumption that v X B is negligible compared to E, where v is the 
velocity of a conduction electron. 

t For example. one can add two linearly polarized waves E1 and E2, with E1 
perpendicular to E2, that differ in phase. Then, at a given point, the maxima of E1 and of 
E2 do not occur at the same time, and their sum E describes an ellipse about the z-axis. We 
then have an elliptically polarized wave. If E1 and E2 have equal amplitudes but are :rr/2 
radians out of phase, the ellipse becomes a circle and the wave is circularly polarized. The 
polarization is right- or left-handed according to whether the vectors E and H rotate 
clockwise or counterclockwise for an observer looking toward the source. 

t We shall use this particular notation for a wave traveling in the positive direction of the 
z -axis because it is the most common. Some authors use the opposite sign in the exponent 
and write exp i(kz - wt), usually with i instead of j for the square root of - 1 . This 
expression has the advantage of reducing to exp ikz after the exp (-iwt) factor is 
suppressed. With that convention, one must substitute - i for j in all phasor calculations. 
For example, the impedance of an inductor becomes R - iwL, instead of R + jwL. 
Electrical engineers use exp (jwl - yz), where y. the propagation constant, is equal to jk. 
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Then Maxwell's equations 27-24 to 27-27 reduce to 

and then to 

-jkz · E = 0, -jkz X E = -jwIlH, 
-jkz . H = 0, -jkz X H = aE + jWEE 

z · E = O, 

z ' H = O, 

k E =  - . z X H, 
WE + fa 

k � H = -z X E. 
WIl 

(28-5) 
(28-6) 

(28-7) 

(28-8) 

It follows that E and H are transverse and orthogonal. Figure 28-2 shows 
the relative orientations of E, H, and k = ki. Observe that E X H points 
in the direction of propagation. 

28 .2 .2  The Characteristic Impedance Z of a Medium 

The ratio E / H is the characteristic impedance Z of the medium of 
propagation: 

Z = E = k WIl 
H WE - ja k ' 

28.2 .3  The Wave Number k 
The value of e follows from the above equation : 

e = W2EIl - jwall = W2EIl ( 1 - j :J, 
= w2EolloErllr( 1 - j :J. 

The a terms account for Joule losses and attenuation . 
28. 2.4 The Wave Equations 

(28-9) 

(28-10) 

(28-1 1 ) 

We found the nonhomogenous wave equations for E and B in Sec. 
27.9: 

(28-12) 

(28-13) 

We now apply the rule of Sec. 27. 1  and Eq . 28-4 to obtain the 
equivalent equations for a medium 10, Il, a. We again set PI = 0. Then 
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( b )  

Fig. 28-2. The E and H vectors for a plane electromagnetic wave traveling in free 
space in the positive direction along the z-axis. (a) The fields E and H as 
functions of z at a particular moment. The two vectors are orthogonal and in 
phase. (b) Lines of E (arrowheads) , as seen when looking down on the xz-plane. 
The dots represent lines of H coming out of the paper, and the crosses lines going 
into the paper. The vector E X H points everywhere in the direction of 
propagation. 

,PE oJ aE V2E - £11 - = 11 _
1 = l1a -at2 at at ' 

a2B aB V2B - £11 - = - l1aV X E = l1a-. aP at 

It is the custom to write these wave equations in the form 

(28-14) 

(28-15) 
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or, 

2 [J2E aE V E - Efl at2 - flOat = 0, 

2 a2B aB V B - Efl at2 - flOat = 0, 

Then, from Sec. 28.2 . 1 ,  

( _k2 + W2Efl -jWOfl)E = 0, 

(28-16) 

(28-17) 

(28-1 8) 

(28-19) 

and similarly for H. The expression enclosed in parentheses is equal to 
zero, from Eq. 28-10 .  

28 .3  UNIFORM PLANE WAVES IN FREE SPACE 

In free space, Er = 1, flr = 1, 0 = 0, there is no attenuation, and from Eq. 
28-19, 

k = !  Ao 
= W (Eoflo) 112. 

From Eq. 28-2 the speed of light is 

W 1 c = -k = ( )1 /2 = 2. 99792458 X 108 meters/second.  Eoflo 

(28-20) 

(28-21 )  

(28-22) 

This equation is remarkable. It links three basic constants of electro
magnetism: the speed of light c, the permittivity of free space Eo that 
appears in the expression for the Coulomb force, and the permeability of 
free space flo from the magnetic force law. 

Since flo is , by definition, exactly equal to 4n x 10-7, the value of Eo 
follows from the value of c :  

1 Eo = --2 = 8.854187817 X 10- 12 farad/meter. floC 

The characteristic impedance of the vacuum is 

20 = E = � = wflo = _1_ = floC = (flO) 1
/2 

H WEo k EoC Eo 

(28-23) 

(28-24) 
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= 3 .767303 X 102 = 377 ohms. (28-25) 

Thus, since B = f.loH in free space, 

or E = Bc. (28-26) 

The E and H vectors in free space are in phase because the characteristic 
impedance of free space is real. 

The electric and magnetic energy densities t are equal: 

(28-27) 

At any instant the total energy density fluctuates with z as in Fig. 28-3, 
and its time-averaged value at any point is 

(28-28) 

Abandoning the phasor notation for a moment, 

E = Em cos (wt - kz) ,  H = Hm cos (wt - kz) .  (29-29) 

The magnitude of the Poynting vector is 

(28-30) 

�------- A ------__ ���I 

Fig. 28-3. The energy density £:oE2, or /-IoH2, as a function of z ,  at t = 0 , for a 
plane wave travelling along the z-axis in free space. 

t We have shown that the electric and magnetic energy densities are EoE2/2 and /l-oH2/2, 
respectively , for slowly varying phenomena. We have not shown that these expressions 
apply to any field. They are, in fact, in agreement with experiments on the energy flux in 
electromagnetic waves. 
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We shall see in Sec. 28.6 that the Poynting vector, when integrated over a 
surface, yields the power flow through that surface. Power flows in the 
direction of Y. 

Returning to phasors, the time-averaged Poynting vector is (Sec. 2.4) 
y. = 1 Re (E X H*) av Z (28-31 ) 

and, for a uniform plane wave in free space , 

Yay = ! Re (EH* )i 

- 1 IE f � - EZ � _ E�s � - zCEo m Z - CEo rmsZ - � Z 

watts/meterz. 

(28-32) 

(28-33) 

(28-34) 

This is the time-averaged total energy density EoE;ms > multiplied by the 
speed of light c. 

Example THE E AND B FIELDS IN A LASER BEAM 

Most lasers operate at powers of the order of milliwatts. However, 
there exist a few lasers that are vastly more powerful. One of 
these supplies a pulsed beam of 27 terawatts (27 ,000 gigawatts!) of 
peak power over a circular area 0 . 1  millimeter in radius. Then 

27 X 1012 
9' = = 9 X 1020 watts/meter2 

TC x (10-4) 2 , 

E,ms = (377 x 9 x 1020) 112 = 6 X 101 1  volts/meter. 

(28-35) 

(28-36) 

This is an enormous field : 60 volts over the diameter of an atom 
(=10- 10 meter)! Air breaks down at fields of about 3 x 106 
volts/meter. Also, 

Erms 3 B,ms = - = 2 x  10 teslas. 
c 

(28-37) 

or about 2000 times the field between the pole pieces of a 
powerful electromagnet. 

28. 4  UNIFORM PLANE WAVES IN 
NONCONDUCTORS 

The situation here is the same as in free space , with E and 11 replacing Eo 
and 110' The phase velocity is now 
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1 c c 
v = --- = = -

(Ef-l) 112 (Erf-lr)1I2 n ' 

where n is the index of refraction : 
n = (Erf-lr )112. 
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(28-38) 

(28-39) 

The phase velocity v is less than in free space, since both Er and f-lr are 
larger than unity. In nonmagnetic media, 

(28-40) 

As we saw in Sec. 10. 1 .2, Er is a function of the frequency, so n is also 
frequency-dependent . As a rule, tables of n apply to optical frequencies 
(=1015 hertz) , whereas tables of Er apply at much lower frequencies, at 
best up to about 1010 hertz. Pairs of values drawn from such tables do not 
therefore satisfy the above equation . 

The characteristic impedance of the medium is 

E (f-l) 1I2 (f-lr) 112 Z = - = - = 377 -
H E Er 

ohms. 

The electric and magnetic energy densities are again equal : 

and the time-averaged energy density is 

(28-41) 

(28-42) 

(28-43) 

The Poynting vector E X H points again in the direction of propaga
tion, and 

Yay = ! Re (EH*)z = (�) 112 E;msZ (28-44) 

y. = (Erlf-lr)1I2E�s A 
av 377 Z watts/meter2 

1 E2 A E2 A = - E nnsZ = VE rmsZ. 
Ef-l 

(28-45) 

(28-46) 

The time-averaged Poynting vector is again equal to the phase velocity 
multiplied by the time-averaged energy density. 
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Example 

PLANE ELECTROMAGNETIC WAVES 1 

THE E AND B FIELDS OF A 
LASER BEAM IN GLASS 

There is no point in referring here to the laser beam of Sec. 
28.3  because such a beam would instantly vaporize glass. Say we 
have a La-milliwatt beam with a diameter of 1 .0 millimeter in 
glass whose index of refraction is 1 . 5 .  Then 

(28-47) 

_ [ (�) 1I2 ] 1/2 _ [ (  4n x 10-7 ) 1/2 3] 1 12 
E,ms - E 9' - 1 . 52 x 8. 85 x lO- 12 x 1 . 3 x 10 

= 5.7 X 102 volts/meter, 

= (1 . 52 x 8. 85 X 10-12 x 4n x 1O-7t2 x 5 .7  X 102 

= 2. 9  X 10-6 tesla. 

(28-48) 

(28-49) 

(28-50) 

(28-51 )  

28 . 5  UNIFORM PLANE WAVES IN CONDUCTORS 

We start at the point where we left off in Sec . 28.2.4 .  

28 . 5 . 1  The Complex Wave Number k = f3 - jex 
In Sec. 28.2 .3 we found that in a conducting medium 

(28-52) 

so k is complex. It is the custom to set 

k = /3 - ja and then E = Em exp (- az ) exp j(wt - /3z) , (28-53) 

where both a and /3 are positive. 
The quantity 1/ a is the attenuation distance or the skin depth 6 over 

which the amplitude decreases by a factor of e. The real part /3 of k is the 
inverse of J.:: 

(28-54) 

(28-55) 
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and the phase velocity is 
W 

v =
73

' 

Let us find (1' and f3 in terms of En /1n 0, and Ao. First we set 

qj) = � = I oE I = I�I = 377 OAo 
WE E aE/at aD/at Er ' 
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(28-56) 

(28-57) 

This is the magnitude of the conduction current density, divided by the 
magnitude of the displacement current density. As a rule , qj) (for 
dissipation") , is written tan I, as in Sec. 10 . 1 . 1 :  

qj) = tan I, (28-58) 

where I is here the loss angle of the medium, but we use qj) for 
conciseness . 

The permittivity E that appears above is the real part E;Eo (Sec. 
10 . 1 . 1) .  One can account for conductivity either by means of a complex 
permittivity (E; - jEnEo or by means of a real permittivity and a 
conductivity 0, where 0 = WE; E(l > again as in Sec. 10 . 1 . 1 .  Thus 

(28-59) 

This quantity, like E; and E�, is always positive. 
If qj) « 1, the medium is a good dielectric; if qj) » 1, the medium is a 

good conductor. For common types of good conductor, 0 = 107 (0 = 
5. 8 X 107 for copper) and Er = 1 (Sec. 4.3 .6) . You will remember from 
Sec. 4.3 .6 that E / 0 is the relaxation time of a medium. 

Thus 

and 

(1' = 
:0 ( E;r) 112 [ (1 + qj)2)112 _ 1 ] 112, 

f3 
= L (E;r) 1/2[( 1 + qj)2)112 + 1] 112, 

(E /1 ) 112 ( (1') k = r 
A
� ( 1 + qj)2)114 exp -j arctan 73 . 

(28-60) 

(28-61 )  

(28-62) 

(28-63) 
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The argument of the exponential function is correct because f3 is positive 
(Sec. 2 . 1 ). 

In a low-loss dielectric q;; is small, and 

( flr) liZ ac flo , 
Er 2 

W C v = -f3 
= 
( ) l/Z • Erflr 

(28-64) 

(28-65) 

In such media the conductivity hardly affects the phase velocity, but it 
gives rise to an attenuation that is independent of the frequency. 

In a good conductor q;; » 1 and 

( aflW) liZ k = -
2
- (1 - j), 

( aflw) 1!Z a = f3 =  -
2 

. 

The index of refraction of a good conductor 

is a large quantity. It is 1 . 1  X 108 for copper at 1 megahertz. 

28 . 5 .2 The Characteristic Impedance Z of a Conductor 

The characteristic impedance of a conducting medium is complex: 

E k Wfl Z =-=  =-
H wE -ja k 

(28-66) 

(28-67) 

(28-68) 

(28-69) 

(28-70) 

= 
(!!:.) liZ exp j arctan (a / f3) = 377(flr) 

liZ exp j arctan (a / f3) ohms (28-71 ) 
E (1 + q;;Z) 1I4 Er (1 + q;;Z) 1I4 

as we saw in Sec. 28.2.2. This means that E and H are not in phase : 

E Wfl - =--
H f3 -ja ' 

where a and f3 are both positive. So E leads H by the angle 

(28-72) 
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45° 

Fig. 28-4. The phase of E with respect to H as a function of q; in a wave traveling 
through a conducting medium. 

a () = arctan Ii'  
Figure 28-4 shows () as a function of qj) .  

Therefore, 

with 

E = Em exp ( - az ) exp j(wt - f3z ) , 
H = Hm exp (- az) exp j(wt - {3z - () , 

(J.Lr) 1/2 1 
= 377 Er ( 1  + qj)2)1/4 ohms. 

(28-73) 

(28-74) 
(28-75) 

(28-76) 

(28-77) 

From Eq. 28-8, E and H are orthogonal in a linearly polarized wave. If 
the wave is not linearly polarized, then the vectors E and H are not 
necessarily orthogonal. 

28 .5 . 3  The Energy Densities 

The time-averaged electric and magnetic energy densities are in the ratio 

'It; EE�J2 1 
'It;" = IlH�s/2 = ( 1  + qj) 2) 112 • (28-78) 

There is less electric energy than magnetic energy because the conduc
tivity both decreases E and adds a conduction current to the displacement 
current , which increases H. 
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The time-averaged total energy density is 

!( EE;ms + f.lH�s) exp (-2az )  = !( EE;ms)[l  + (1 + �2) 112] exp ( -2az). 
(28-79) 

28 . 6  THE POYNTING THEOREM 

We referred to the Poynting vector 

Y = E X H  (28-80) 
in previous sections , but we said very little about it. We only stated that it 
is equal to the power density in an electromagnetic wave, and that it 
points in the direction of propagation . 

The Poynting vector is of great theoretical and practical interest . Its 
significance follows from the Poynting theorem that we now prove. 

First, we have the vector identity 

v 0 (E x H) = H 0 ( V  x E) - E o  ( V  x H). 

In a HILS medium, Eqs. 27-20 to 27-23 apply ,  and then 

V 0 (E X H) = -H 0 f.l 
aH - E o (E 

aE 
+ Jt) at at 

= _i ( EE2 
+ f.lH

2) - E  o J . at 2 2 t 

(28-81 ) 

(28-82) 

(28-83) 

We now change the signs, integrate over a volume v of finite extent and 
of surface area st, and finally apply the divergence theorem on the left. 
This yields the Poynting theorem : 

(28-84) 

The first integral on the right gives the increase in the electric and 
magnetic energy densities inside the volume v, per unit time. The second 
gives that part of the field energy that dissipates as heat, again per unit 
time. Then the term on the left, with its negative sign, must represent the 
rate at which electromagnetic energy flows into the volume v. 

Then the integral 

(28-85) 

is the total power flowing out of a closed surface of area st. 
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The Poynting theorem therefore simply states that there is conserva
t ion of energy in electromagnetic fields. It is a proof of the validity of Eq. 
27-23 , and hence of Eq. 27-4. 

For a uniform, plane, and linearly polarized wave in conducting 
material, the time-averaged magnitude of the Poynting vector is 

Yay = ! Re { [Em exp (- az)  exp j(wt - {3z) 
X Hm exp (- az) exp j( - wt + {3z + 8)] }  

= !EmHm cos 8 exp (-2az) , 

where 8 is defined as in Sec. 28.5 .2  and 

(28-86) 
(28-87) 

(28-88) 

We found the ratio Em/Hm in the previous section. If we eliminate Hm, 
then 

(28-89) 

(28-90) 

You can easily show that 

Yay = (time-averaged energy density) x (phase velocity) (28-91 )  

28 .7  SUMMARY 

[n a uniform plane wave the wave fronts, which are surfaces of uniform 
phase, are also surfaces of uniform amplitude. 

Linearly polarized uniform plane electromagnetic waves traveling either 
in free space or in a HILS nonconductor or conductor possess the 
following properties. 

( 1 )  The vectors E and H are transverse and orthogonal. 
(2) The Poynting vector E X H points in the direction of propagation. 

(3) The magnitude of the Poynting vector, averaged over time, gives 
the power flow per square meter in the wave: 

Yay = ! Re (E X H*). (28-31 )  
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(4) The power density is equal to the energy density multiplied by the 
phase velocity. 

(5) The ratio E/ H is equal to the characteristic impedance Z of a 
medium .  

In  free space, 
1 

c = ( ) 112 = 2.99792458 X 108 meters/second, 
Eof.1o 

In nonconductors, 

20 =  377 ohms, 

watts/meter2• 

c c v = = -
(Erf.1r) l i2 n ' 

where n is the index of refraction. Also, 

ohms. 

In conductors there is attenuation and k = f3 - ja, where 

a = L ( E�r) 112[ ( 1  + Si)2) 112 - 1 ] 112, 

f3 = L ( E�rr2
[(1 + Si)2)112 + 1 ] 112, 

Si) =!!- , WE 

Wf.1 Z =
k ' 

(28-22) 

(28-25) 

(28-34) 

(28-38) 

(28-41 )  

(28-61 )  

(28-62) 

(28-57) 

(28-70) 

The electric and magnetic energy densities are equal in free space and in 
nonconductors. In conductors the magnetic energy density is larger than 
the electric energy density. 

The Poynting theorem is a statement of the conservation of energy in 
an electromagnetic field. 

PROBLEMS 

28-1 . (28. 2. 1) A general theorem for electromagnetic fields in free space 
(a) Show that, for any electromagnetic field in a vacuum 
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where the dots above E and B indicate partial differentiation with respect 
to time. 

This equation has the form of a conservation law. The spatial density of 
the conserved quantity appears between parentheses on the right. This is 
expressed in volts squared per cubic meter. The flux density of this 
conserved quantity is the quantity between parentheses on the left. 

(b) Show that the flux vanishes in the field of a linearly polarized wave. 
(c) Show that , in the field of a circularly polarized wave, the flux does 

not vanish , that it is proportional to the frequency, and that it contrary to 
the direction of propagation if the E and B vectors rotate clockwise for an 
observer who looks at the source, and in the direction of propagation if E 
and B rotate in the opposite direction. 

28-2. (28. 4) The phase and group indices of refraction 
The phase index of refraction, often called the phase index, is c/vp, 

where vp is the phase velocity. The group index is similarly c/vg, where 
vK = 1 /(d{>/dw) is the group velocity (Sec. 29.2.6).  

Show that m = n + w dn/dw. 

28-3. (28. 5) The skin depth as a function of frequency in low-conductivity 
materials 

(a) Plot on a single graph the log-log curves of the skin depth as a 
function of the frequency from f ::  1 to f = 105, for 0 equal to 10-2 , 10-4, 
10-6 and for E, = 1 and E, = 10. Set J.l, = l .  The skin depth will vary from 
about 10 to 106 meters. 

(b) Show that, in nonmagnetic good conductors for which 0 � 50WE, 
b = 503/(fo)1/2. 

(c) Show that, in nonmagnetic poor conductors for which 0 ""  O. lWE, 
b = 5 . 3  x 10 'E; 2/0. 

28-4. (28. 5. 1 ) The optical properties of metals 
At optical frequencies (f = 1015 hertz) and above, the values of 0, E, and 

J.l bear no relation to the values measured at lower frequencies. For metals, 
both {> and it are of the order of 3/1.0, within approximately a factor of 10 
either way, and {> *" it. For aluminum at Ao = 650 nanometers, (>1.o = l .3  
and it1.o = 7. 1 1 .  

(a) Calculate A and b. 
(b) Calculate A and b from Sec. 28.5 . 1 and Table 29- 1 .  

�8-5. (28. 5. 2) A, b, and Z in poor conductors 
Show that , in a medium that is only slightly conducting (0J « 1 ), 
(a) A = (1 - 0J2/8)k:,�o 
(b) b = 21 121.9' �o/ 0J 
(c) Z = ( 1 - 0J2/4) exp j[arctan (0J/2)] Z0'�o 

28-6. (28. 5. 2) Alternate expressions for the characteristic impedance of a 
conducting medium 

Show that the characteristic impedance E / H of a conducting medium is 
also given by these two other l:xprl:ssions: 
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z = f3 + 
jcx = 

(�) l!2
. (02 + W2E2) 1I2 0 + jWE 

28-7. (28. 5. 2) The characteristic impedance of ultra-low-loss polyethylene 
The ultra-low-loss polyethylene that serves as insulator in submarine 

coaxial cables has a loss angle of 50 microradians and a relative permittivity 
of 2 .26. Calculate its characteristic impedance at 45 megahertz. 

28-8. (28. 6) The Poynting vector in the field of a resistive wire carrying a 
current 

A long, straight wire of radius a and resistance R '  ohms/meter carries a 
current /. 

(a) Calculate the Poynting vector at the surface , and explain. 
(b) Calculate the Poynting vector both outside and inside the wire. 

Explain. 

28-9. (28. 6) The Poynting vector in a capacitor 
A thin, air-insulated parallel-plate capacitor has circular plates of radius 

R, separated by a distance s. A constant current I charges the plates 
through thin wires along the axis of symmetry. 

(a) Find the value of E between the plates as a function of the time. 
Assume a uniform E. Show the direction of E on a figure. 

(b) The magnetic field is the sum of two terms, H". , related to the 
current in the wire, and Hp, related to the current in the plates. The latter 
current deposits charges on the inside surfaces of the plates. 

Find Hw, Hp, and H. Use cylindrical coordinates with the z-axis along 
the wire and in the direction of the current . To calculate Hp, apply 
Ampere's circuital law to each plate. You should find that the magnetic 
fields tend to infinity as p � O. This is simply because we have assumed 
infinitely thin wires and plates. Show the directions of Hw, Hp , and H on 
your figure. 

(c) Do E and H satisfy Maxwell's equations? You should find that one of 
our assumptions is incorrect 

(d) Find E X H. 
(e) Find the electric and magnetic energy densities inside a radius p. 
You should find that the magnetic energy density is negligible if 

p2 / t2 « c2. This condition applies because we have assumed that the 
capacitor charges up slowly. If it charged very quickly, then there would be 
a wave of E and H in the capacitor, E would not be uniform, and the above 
calculation would be invalid . 

(f) Now relate the Poynting vector at p to the electric energy inside p. 
(g) Draw a sketch showing E, H, and E X  H vectors at various points 

inside and around the capacitor. 
28-10. (28. 6) The Poynting vector in a solenoid 

A long solenoid of radius R and N' turns per meter carries a current 1. 
(a) The current increases. Calculate Y = E X  H. (See example in Sec. 

19 . 1 . )  
Sketch a cross section o f  the solenoid , showing the direction o f  the 

current and of S. Explain .  
(b) Repeat with a decreasing current. 
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Fig. 28-5. 

28- 1 1 .  (28. 6)  Energy and power in a proton beam 
Figure 28-5 shows a highly simplified diagram of a proton accelerator. 

A gas discharge within the source S ionizes hydrogen gas to produce 
protons. Some of the protons emerge through a hole and are focused into 
a beam B of radius Rl inside a conducting tube of radius R2• The source 
is at a potential V, and the target is grounded. 

To avoid needless complications, we assume that the charge density in 
the beam is uniform. We also assume that the velocity of the protons is 
much less than c :  v2 « c2• 

Calculate, in terms of the current I and the velocity v :  
(a) the electric energy per meter ��; 
(b) the magnetic energy per meter �;"; 
(c) the energy flux associated with the Poynting vector Pp; 
(d) the kinetic power Pb or the flux of kinetic energy, disregarding Pp. 
The existence of this Poynting vector is interesting. Because of the 

radial E, the voltage inside the beam is slightly positive. So the protons 
are not accelerated to the full voltage V, and the kinetic energy in the 
beam is slightly lower than VI. Most of the power flows down the tube as 
kinetic energy, and the rest flows as electromagnetic energy. The total 
power at any point along the tube and on the target is VI. 

(e) Find the numerical values of these quantities for a l .()()
milliampere, 1 . 00-MeV (megaelectronvolt) proton beam, with Rl = 1 . 00 
millimeter and R2 = 50.00 millimeters. 

28-12.  (28. 6) The solar wind 
The solar wind is formed of highly ionized, and hence highly conduct

ing, hydrogen that evaporates from the surface of the sun. In the plane of 
the earth's orbit, the magnetic field of the sun is approximately radial, 
pointing outward in certain regions and inward in others. Since the sun 
rotates (period of 27 days) , while the plasma has a radial velocity, the 
lines of B are Archimedes spirals. This is the garden-hose effect. At the 
earth, the lines of B form an angle of about 45° with the sun-earth 
direction. 

At the orbit of the earth the solar wind has a density of about 107 
proton masses per cubic meter and a velocity of about 4 x 105 
meters/second. The magnetic field of the sun is about 5 x 10-9 tesla. 

(a) Show that, in a neutral (p = 0) plasma of conductivity a and 
velocity v, Maxwell's equations become 
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V · E = O, 

PLANE ELECTROMAGNETIC W A YES I 

aB 
V X E = - 

at ' V · B = O, 

v x B = ,u,{ a(E + v X B) + Eo ��]. 
In a medium of infinite conductivity a, E = -v X B. This is a satisfactory 
approximation for the solar wind. 

(b) Show that the component of the plasma velocity v that is normal to 
B is given by V.L = [B X (v X B))I B2. 

(c) Show that the Poynting vector is given by {f' = B2V.L I/J.o , or about 6 
microwatts/meter2 • This is about 4 x 10-9 times the Poynting vector of 
solar radiation, which is about 1 .4 kilowatts/meter2 • The Poynting vector 
of the solar wind is normal to the local B. 

(d) Show that the kinetic , magnetic, and electric energy densities of the 
solar wind are related as follows: ';g� » g;,, » ';g�. 

28-13 .  (28. 6 )  The Poynting vector in an induction motor 
In an induction motor, the stator generates a magnetic field that is 

perpendicular to, and that rotates about, the axis of symmetry (Prob. 
18-6) . The rotor is a cylinder of laminated iron (Prob . 25-7) ,  with copper 
bars parallel to the axis and set in grooves in the cylindrical surface . 
Copper rings at each end of the rotor connect all the copper bars. The 
rotor is not connected to the source of electric current that feeds the 
motor. 

As we shall see , the rotor tends to follow the rotating magnetic field . 
Figure 28-6 shows the principle of operation .  To simplify the analysis, we 
suppose that the rotor is stationary and that a rotating electromagnet, 
represented here by its poles N and S, provides the rotating magnetic 
field. 

(a) Draw a larger figure with wide air gaps, showing the direction of 
the induced currents in the bars and the direction of E in the air gaps. 

(b) The current in the rotor generates a magnetic field. Add arrows 
showing the direction of that H, inside the rotor and in the air gaps. 

(c) Now show Poynting vectors E X  H in the air gaps. The field feeds 
power into the rotor. 

(d) Now draw another figure showing the currents in the bars and a 
line of B for the sum of the two magnetic fields. 

Fig. 28-6. 
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(e) Show the direction of the magnetic forces on the bars. 

28- 14. (28. 6) The Poynting vector in a transformer 
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Figure 28-7 shows, in simplified form, a cross section of a transformer 
secondary. The field B inside the core C, and the leakage field HI outside. 
both result from the currents in the windings and from the equivalent 
currents in the core. The secondary winding is W. Assume that B and HI 
increase. 

(a) Draw a larger figure and show, at one point between C and W, 
vectors A,  aA/at, and E = - aA/at, disregarding the current in W. Show 
a vector E at one point outside W. 

(b) Assume that the impedance of the secondary is a pure resistance R. 
Show the direction of the current 1 in W. 

(c) Show the direction of its field H at points between C and W and 
outside W. 

(d) Show vectors E X H. 
(e) How would the directions of the E X H vectors be affected if B and 

HI decreased? 
(f) What is the time-averaged value of a vector E X H/? 
(g) Now let us calculate the power flow into the secondary. Assume 

that the secondary is a long solenoid of N turns and of length L. 
Disregard HI and set ct> = ct>m exp jwt in the core. Integrate the Poynting 
vector over a cylindrical surface situated between the core and the 
winding, and show that the power flowing into the winding is 
(Nwct>rm,)"/ R = V;m,/ R, where V is the voltage induced in  the secondary 
winding. 
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In Chap. 28 we deduced the main characteristics of a uniform plane 
electromagnetic wave traveling through a medium En flo a. We now 
apply this knowledge to two simple media , namely good conductors and 
low-density plasmas. 

The propagation of electromagnetic waves in good conductors is 
peculiar in that the amplitude of the wave decreases by a factor of e in 
one radian length A = A/2:rc. The attenuation is so large that the wave is 
hardly discernible .  

We study plasmas of low density so as t o  be able t o  disregard energy 
losses arising from collisions. 
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29 . 1  UNIFORM PLANE ELECTROMAGNETIC 
WAVES IN GOOD CONDUCTORS. 
THE SKIN EFFECT 

I\ecall from Sec. 28 . 5 . 1  that, in a linearly polarized, uniform plane wave 
I l ropagating in a conductor in the positive direction of the z-axis , 

E = Em exp ( - lYz) exp j( wt - f3z). (29-1 )  
We define a good conductor as a material such that , i n  the expressions 

, , )r lY and f3 given in Sec . 28 .5 . 1 ,  

(29-2) 
. his condition is satisfied within 1 % if 

(29-3) 

. ,r if the conduction current density is at least 50 times larger than the 
l isplacement current density. But note here that a and E are functions of 

' I , especially at optical and x-ray frequencies . So '!iJ does not decrease 
ndefinitely as 1 //, as the above equation appears to indicate . 

In good conductors the wave equation 28-16 reduces tot 

2 aE V E - Ila- = 0 at ' 

.md Eq. 28-10 for the wave number to 

k2 = -jwall· 
rhus 

(29-4) 

(29-5) 

. (Wall) 112 
. 1 - j k = f3 - ]lY = -2- (l - ]) = T ' 

c c Ao . n = - = - = Aok = - (I - ]) 
v WA {j 

1 1 (Wall) 112 
f3 = - = lY = - =  -A {j 2 ' 

(29-6) 

(29-7) 

where n is the index of refraction , A = A/2:rc, as usual, and where {j is the 
attenuation distance , defined in Sec. 28 . 5 . 1  as the distance over which the 
amplitude decreases by a factor of e. 

t An equation of the ,aml' form applies to heat conduction. See Prob. 29-4. 
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From Eq. 28-70, the characteristic impedance of a good conductor is 

(29-8) 

and E leads H by n/4 radian . Compare with nonconductors in which E 
and H are in phase (Sec. 28.4) . The difference comes from the fact that 
the current that is associated with H in good conductors is the conduction 
current, which is in phase with E, and not the displacement current of 
nonconductors, which leads E by 90°. 

Therefore 

(29-9) 

(29-10) 

The vectors E and H are transverse and orthogonal , say E is parallel to 
the x -axis and H to the y-axis. In terms of cosine functions, 

E = Em exp ( - �) cos ( wt - �) ,  (29- 1 1) 

(29-12) 

(29-13) 

Figure 29- 1  shows E / Em and H / Hm as functions of z / A at t = O. 
The amplitude of the wave decreases by a factor of (l/e)2n = 2 x 10-3 

in one wavelength , and the Poynting vector by (l /e)4n = 3 x 10-6• This is 
the skin effect. 

The attenuation distance D in conductors is termed the skin depth, or 
the depth of penetration. The skin depth decreases if the conductivity , the 
relative permeability , or the frequency increases. Good conductors are 
therefore opaque to light , except in the form of extremely thin films. It 
does not follow, however ,  that substances that are nonconducting at low 
frequencies are transparent at optical frequencies. 

Table 29-1 shows the skin depth D for various conductors at four 
typical frequencies. The attenuation in iron is much larger than in silver, 
despite the fact that iron is a relatively poor conductor. 

The phase velocity 



Fig. 29-1 .  The ratios E/Em and H/Hm at t = 0 as functions of z/1. for an 
e l ectromagnetic wave propagating in a good conductor. 

Vp = * = wA = (�:f2 
[" proportional to the square root of the frequency. 
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(29-14) 

In good conductors the group velocity (App. C) is twice as large as the 
phase velocity: 

1 
Vg == df3 ldw = 2vp , (29-15) 

t I  a and {.L are not frequency-dependent. 
The ratio of the time-averaged electric to the time-averaged magnetic 

, ' I lergy densities is 

(29-16) 

lile energy is thus essentially all magnetic. This results from the large 
\ \ I nductivity a, which causes E Ilt to be small , The electric field strength 
I "  weak, but the current density and hence H are relatively large, 

From Eqs, 29- 1 1  and 29-13 ,  the time-averaged value of the Poynting 
I L:ctor is 

1 ( a )1/2 ( 2Z) 
Yav = !  Re (E x H*) = 2: 2w{.L exp - {;  E;"z. (29-17) 
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Table 29-1 Skin depths (j for conductors 

CONDUCTOR a 

Aluminum 
Brass (65 .8 Cu, 34.2 Zn) 
Chromium 

3 .54 X 107 
1 . 59 X 107 
3 .8  X 107 

5 . 80 X 107 
4 .50 X 107 

1 .0 X 105 

1 .00 
1 .00 
1 .00 
1 .00 
1 . 00 
1 .00 

0.0846 
0. 126 
0.08 16  
0 .0661 
0.0750 
1 . 59 
0.011 
0.0028 
0.014 
2 .3  x 1 02 
0.0642 
0. 1 71 
0 . 1 17 

Copper 
Gold 
Graphite 
Soft iron 
Mumetal 
Nickel 
Sea water 
Silver 
Tin 
Zinc 

1 .0 X 107 
1 . 6  X 106 
1 . 3  X 107 

5 
6 . 15 x 107 
8 .70 X 106 
1 .86 X 107 

2 X 102t 
2 X 104t 
1 X 102t 

1 . 00 
1 .00 
1 . 00 
1 .00 

t At B = 0. 002 tesla. 

Example 

Example 

PROPAGATION IN COPPER AT 1 MEGAHERTZ 

Copper has a conductivity of 5 .80 x 107 siemens/meter. Then , at 1 
megahertz, 

and 

qlJ = 
5 . 80 X 107 12 = 1012 

2n x 106 x 8.85 x 10 

( 2 ) 112 
(j - A -- -

2n x 106 x 5 . 8  X 107 x 4n x 10-7 

= 66 micrometers. 

(29-18) 

(29- 19) 

The wavelength is about 0.4 millimeter in copper, while it is 300 
meters in air. The phase velocity is correspondingly low: 

tip = roA = 415 meters/second , (29-20) 

which is about 10 times less than the velocity of sound in copper 
(3 .6 kilometers/second) . 

The characteristic impedance is 

_ I� I _ (2n x 106 x 4n x 10-7) 112 _ -4 IZ I -
H 

-
5 .8  x 10" - 3 .7 x 10 ohm, (29-21) 

versus 377 ohms in free space (Sec. 28. 3) .  

JOULE LOSSES IN GOOD CONDUCTORS 

Let us compare the power lost by the wave and that gained by the 
medium through louIe losses. We consider a thin slice inside a 
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b 

60 HERTZ 1 KILOHERTZ 1 MEGAHERTZ 3 GIGAHERTZ 
mm mm JAm JAm 

10.9 2.67 84.6 1 . 54 
16 .3 3 .99 126 2 .30 
10.5 2.58 81 .6  1 .49 
8.53 2 .09 66. 1  1 .21  
9 .69 2 .37 75 .0 1 . 37 

2 . 1 x l02 50 1 .6 X 103 29 
1 0.4 10 0.2 
0 .4 0.09 3 0.05 
2 0.4 10 0.3 

3 X 104 7 X 103 2 X 105 4 X 103, 
8 .29 2.03 64.2 1 . 17 

22 .0 5 .40 171 3 .62 
15 . 1  3 .69 117 2. 13 

, At this frequency . £, = 35. � = 1 ,  and sea water is not a good conductor. 

conductor, perpendicular to the direction of propagation , as in 
Fig. 29-2. If the amplitude of E on the left-hand face is Em,  then 
on the right it is Em exp ( - ,1z / (j) and, within the slice, the 
time-averaged Poynting vector decreases by 

1 ( a ) 112 [ ( 2,1Z)] Mfav = 2: 2wf.,l 
E;" 1 - exp - T . 

x 

E 

Fig. 29·2. Element of volume normal to the direction of 
propagation in a good conductor. 

(29-22) 
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The power PL lost by the wave is ab times this. If 2Llz / (j « 1, 

(29-23) 

This is just the power dissipated per unit volume by Joule losses 
(Sec. 4.3.7). 

29.2  PLANE ELECTROMAGNETIC WAVES 
IN PLASMAS 

A plasma is an ionized gas. As a rule , plasmas contain free electrons and 
positive ions . Since the ions are more massive than the electrons , the 
current is carried almost exclusively by the electrons. We therefore 
disregard ionic currents. 

We assume that the gas pressure is low. This will permit us to ignore 
collisions between the free electrons and the gas molecules, and hence to 
ignore energy losses. Then the gas offers no resistance to the motion of 
free electrons and acts somewhat like a superconductor .  Also , we may set 
Er = 1 .  

Finally , we disregard thermal agitation. I n  effect , we set the tempera
ture equal to zero . 

29.2 . 1 The Conductivity of a Plasma 

For a fixed observer .  a free electron situated in an electromagnetic wave 
is subjected to a Lorentz force -e(E + v X B), and the electron current 
density in a plasma is 

Jf = a(E + v X B). (29-24) 

We can disregard the v X B term in this equation for the following 
reason. As we shall see below, the ratio E I H for a wave in a plasma is 
always larger than in free space, where EIH = (flo/ EO)1/2 (Sec. 28 .3) . So , 
in a plasma, E I H > (flul Eo) 112 and E I B > c. Also , we may safely assume 
that the velocity v of a free electron will be less than c by many orders of 
magnitude. So we may set 

Jf = -Nev = aE, Nev a = - -
E ' (29-25) 

where N is the number of free electrons per cubic meter, e is the 
magnitude of the electronic charge, and a is the conductivity. 
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We now require the velocity v of a free electron of mass m subjected to 
an alternating electric field. Since 

then 

dv m dt = mjwv = -eErn exp jwt, 

e v = j - Em exp jwt. wm 

(29-26) 

(29-27) 

The velocity leads the field by 90°. Substituting this value of v in the 
dbove expression for the conductivity givest 

jNe2 4. 48 X 1O-9jN a = --- = -wm f siemens/meter. (29-28) 

The average power dissipation per cubic meter is 

P' = � Re (E . Jf )  = � Re (aEE*) = 0, (29-29) 

in accordance with our assumption of zero losses. 

I:'xample THE IMPEDANCE OF A UNIT CUBE OF PLASMA 

First, imagine a cube of some resistive material such as carbon, 
with copper electrodes deposited on opposite faces. If the cube 
has a volume of 1 cubic meter, then the resistance between 
opposite faces is 

I 1 
R ' = - = 

do o' (29-30) 

Thus the conductivity of a medium is the conductance G '  = 1/ R ' ,  
or , more generally, the admittance Y' , o r  l/Z' ,  between opposite 
faces of a unit cube. 

With a plasma, 

Z' = � = jW (!!!"'-) = jwL' , 
o Ne2 (29-31 )  

where L ' is the  "inductance" of  1 cubic meter of  plasma. This 
quantity is expressed in henry-meters and is independent of the 
frequency. 

j This expression is meaningless at zero frequency where the conduction electrons would 
take an infinite time to reach an infinite velocity. Equations 29-25 , however, apply to steady 
l iclds, as long as Iv X BI « E 
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29 .2 .2  The Conduction and Displacement Current Densities 
and the Plasma Angular Frequency wp 

In a plasma, 

m .  . �2 
J = - + aE = JwEoE + aE = JwEoE - -- E  at wm ( Ne2 ) = jWEoE 1 - -2-- . W Eom 

(29-32) 

(29-33) 

The displacement current density an / at leads E by 90° , while the 
conduction current density aE lags by 90°. The term between parentheses 
is the equivalent relative permittivity of the plasma because , in a 
dielectric, 

(29-34) 

The equivalent relative permittivity can be either positive or negative . 
Rewriting Eq. 29-33, 

an ( W2) - + aE = J'WE E 1 - --...l!. at 0 w2 ' (29-35) 

where the second term between the parentheses is the ratio of conduction 
current density to displa<::ement current density, and where 

is the plasma angular frequency. More simply, 

f, = wp = 8. 98N1/2 = 9N1/2 p 2n 

Also , from the value of a that we found above, 

ja 
WEO 

(29-36) 

hertz. (29-37) 

(29-38) 

Figure 29-3 shows aE, aD/at, and their sum as functions of w/wp . 
In the plasma of a gas discharge, N varies widely but is typically of the 

order of 1018 electrons per cubic meter, and t, is about 10 gigahertz. In 
the ionosphere, N is of the order of 101 1  electrons per cubic meter, and t, 
about 3 megahertz. See below. 
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() ��--�----�����-------r------+-----� 

Fig. 29-3. The current densities aD /at, aE, and their sum,  as functions of w/wp 
I I I  a plasma. 

Lxample PLASMA-FILLED PARALLEL-PLATE CAPACITOR 

If the capacitor plates have an area d and are separated by a 
distance s, then, upon application of a voltage 'V, 

( . d) ( d/S ) 1 =  ]wC + a - 'V = jWC + -. - 'V. 
S ]wL' 

(29-39) 

The presence of the plasma therefore has the same effect as if one 
had an inductance sL' / d connected in parallel with the capacitor. 

The net current is zero for 

(29-40) 

In actual fact , the plasma would not be uniform and N would be 
smaller near the electrodes than in the body of the plasma. 
Moreover, we have ignored edge effects. So this example is not 
realistic. 

29 .2 . 3  The Wave Number k 
RecaJl from Sec . 28 .2 .3  that, in a conductor, the wave number k is given 
hy 

(29-41)  

Ihcn ,  from Eg. 29-3R and se t t ing E, = 1 .  f.l r  = 1 ,  
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2 1 ( W�) k = ;\6 1 - w2 . (29-42) 

The wave number is either real or imaginary in a lossless plasma. 

29 .2 .4 Propagation at ! > t, 
At high frequencies such that W > wP' or f > fp , k is real . Then there is 
zero attenuation, as we assumed at the beginning. 

The E and H vectors for a uniform, plane , linearly polarized wave are 
transverse and orthogonal , as in any homogeneous and isotropic medium. 

Also, from the general expression for the characteristic impedance 
E/H that we found in Sec. 28.2 .2 for any linearly polarized uniform plane 
wave , 

Z = E 
= WfJ, = 

( fJ,olEo ) 112 
= 377 > 377 ohms (29-43) H k 1 - W�/W

2 (1 - W�/(
2) 1/2 . 

The wavelength A. = 2n / k is longer than in free space , and the phase 
velocity is larger than c :  

c v = ----,-----,,� p ( 1 - w�/ ( 2) 1I2 

c c 
= ( 1  - 80. 6N /f2) 112 = ( 1  - 81N /f2) 1/2 

as in Fig. 29-4 . 

(29-44) 

meters/second, 

(29-45) 

The phase velocity increases with increasing electron density. Waves 
therefore tend to bend away from more highly ionized regions, just as 
light tends to bend away from low-density air in a mirage. 

This requires some discussion because , according to relativity, a signal 
cannot travel at a velocity greater than c. 

The phase velocity is the velocity of propagation of a given phase , and 
not the velocity of propagation of a signal. The reason is that a wave can 
transmit a signal only if it is modulated, in amplitude , in frequency, or 
otherwise . Now any modulation, and hence any signal, involves fre
quencies other than the carrier frequency. The phase velocity in an 
ionized gas being frequency-dependent, the various frequency com
ponents of a signal travel at different velocities. The net result is that the 
envelope of the wave , which carries the signal, travels at a velocity that is 
different from those of the various components of the wave , and this 
signal velocity is less than c. 
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Fig. 29-4. The phase and group velocities vp and Vg of an electromagnetic wave in 
it plasma. 

We may set the signal velocity equal to the group velocity (App. C) . 
Then 

(29-46) 

figure 29-4 shows the group velocity as a function of the ratio w/wp . 

29 .2 .5  The Field at ! = 1, 

If the frequency of the applied field is equal to the plasma frequency fp , 
t hen k = 0, b � ()() in Eqs. 29-1 1  and 29- 13 for E and H, and 

E = Em cos wt, H = Hm cos ( wt - �) . (29-47) 

There is no wave , and aD/at + aE is zero . 

29. 2 .6  The Field at ! <1, 

At  low frequencies, k i s  imaginary. Setting k = -jk ' gives 

E = Em exp (-k '  z) exp jwt, H = Hm exp ( -k '  z) exp jwt. (29-48) 

There is no wave , and (he field decreases exponentially with z. 
The average Poynting vector is clearly zero because there is zero power 

!low. We can also prove this formally as fol lows. From Eq . 29-43 , 
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(29-49) 

Then 
1 (jW!10H";,,) , 9'av = z Re k ' exp (-2k z) = 0. (29-50) 

An electromagnetic wave therefore travels through a low-density 
plasma without attenuation at f > k At lower frequencies there is no 
propagation . 

Example 

Example 

THE TELECOMMUNICATION BLACKOUT UPON 
THE REENTRY OF A SPACE SHUTTLE 
In the course of one reentry there was complete radio blackout at 
a certain moment at all frequencies up to 10 gigahertz. Then fp was 
10 gigahertz and the electron density was therefore about 1018 
electrons per cubic meter. 

THE IONOSPHERE 
In the upper atmosphere, at altitudes ranging from about 50 to 
several thousand kilometers, the free electron density is sufficient 
to interfere with the propagation of radio waves. The main source 
of the ionization is the ultraviolet radiation of the sun. On the 
whole , the electron density increases with altitude up to about 300 
kilometers, but it shows four ledges where the electron density 
increases more slowly. These ledges are commonly called layers. 
Beyond about 300 kilometers the electron density decreases 
slowly. The existence of these layers is ascribable to the fact that 
both the spectrum of the solar radiation and the chemical 
composition of the atmosphere change with altitude. 

Both the heights and the ionization densities of the layers 
change with latitude, longitude, hour of the day, season , and 
sunspot cycle. At the lower altitudes, part of the conductivity 
comes from the presence of positive ions. 

The free electron density varies from about 108 to 1012 per cubic 
meter. The degree of ionization increases rapidly with altitude , 
but it remains low, about 0 . 1  % for the highest layer. For N = 1010, 
the plasma frequency is about 1 megahertz. 

Up to about 300 kilometers the electron density and the phase 
velocity increase with height. Amplitude-modulated radio waves 
(535 kilohertz to 1 .605 megahertz) and the lower-frequency short 
waves (6 to 26 megahertz) bend back toward the earth in the same 
way that light waves bend in a mirage. However, frequency
modulated (88 to 108 megahertz) and television (54 to 890 
megahertz) waves bend slightly in going through the ionosphere, 
and they escape . 
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Our assumption that there are no collisions between the 
electrons and the gas atoms or molecules is not satisfactory in the 
lower regions of the ionosphere, where the pressure is highest, at 
frequencies of the order of 1 megahertz or lower. 

The earth's magnetic field renders the plasma doubly refracting, 
and there are two distinct phase velocities, depending on whether 
the E vector of the wave is parallel or perpendicular to the B of 
the earth . 

29 . 3  SUMMARY 

We define a good conductor as a medium for which 

I hen 

1 - j k = f3 - j(Y == � , 

11 = � = (2W)
1I2 

P f3 af.l ' 

Ao n = -;s ( 1  - j), 

\lost of the field energy is in magnetic form . 

(29-3) 

(29-6) 

(29-7) 

(29-14), (29- 15) 

The conductivity of a low-density , and hence lossless, plasma is 

Ne2 4. 8 X 1O-9jN a = -- = - ----'---jwm f siemens/meter, (29-28) 

where N is the number of electrons per cubic meter and m is the mass of 1 he electron. Also, 

where 

aD ( W2) 
- + aE = jWEoE 1 - -1 ' at W 

W = (Ne2 ) 1 /2 
P Eam 

" the plasma angular frequency. 

(29-35) 

(29-36) 
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In a lossless plasma, 

2 1 ( W�) k = A� 1 -
w

2 . (29-42) 

If W > wP ' k is real , there is no attenuation , and the phase velocity is 
larger than c. The phase velocity increases with increasing electron 
density. If W < wP ' there is no wave and the field attenuates 
exponentially. 

PROBLEMS 

29- 1 .  (29. 1 )  Good conductors 
Show that for a good conductor 

(a) 0 /1'0 «  1 ,  

29-2. (29. 1 )  The damped transmitted wave 
Draw curves for E, similar to those of Fig. 29-1 , for wt = 0 to 2Jl' at 

intervals of Jl' / 4. 

29-3 . (29. 1 )  Designing bus bars 
You are asked to design copper bus bars that can carry 5000 amperes at 

60 hertz over a distance of 5 meters. The total length of bus is 10 meters. 
The power dissipation in the line should not exceed 1 kilowatt. Suggest a 
plausible cross section . 

29-4. (29. 1 )  Heat propagation 
It is interesting to draw a parallel between the flow of heat in a thermally 

conducting medium and the propagation of an electric or magnetic field in 
an electrically conducting medium. 

Let <l> be the heat flux density in watts per square meter and <l> = -). IT, 
where )' is the thermal conductivity in watts per meter-kelvin and T is the 
temperature in kelvins. Then ,  for conservation of energy, 

aT 
v . <l> = -pc - + Q 

at ' 

where p is the mass density in kilograms/ meter3, c is the specific heat in 
joules/kilogram-kelvin ,  and Q is the heat produced within the medium in 
watts/ meter3• 

For Q = 0, 

2 pe aT 
V T - Y 8i = O. 

This equation is identical in form to that for an electromagnetic wave in a 
good conductor, with pc /). corresponding to /1a. Its solution for heat flow 
in one dimension is similar: 



Table 29-2 

PROPERTY COPPER 

a 5.8 X 107 
c 385 
p 8.9 X 103 
A 41 .8  
/1, 1 

IRON 

1 . 0  X 107 
460 
7.9 X 103 

6.27 
100 

_ (�)1/2 
o'h - . 

wpc 
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Compare the velocities of propagation of T and of B in copper and in iron . 
See Table 29-2. 

" )-5. (29. 1 )  The surface impedance of a conductor 
By definition , the surface impedance of a conductor is the ratio E,/ H, at 

the surface , the subscript t indicating a tangential component. It is shown in 
Prob. 19-4 that H, is numerically equal to the current per unit width in the 
conductor. 

(a) Show that the surface impedance of a good conductor is ( W/1) 112 
(1 + j) 2a 

or 
1 + j 
aD ' 

where a is the conductivity and 0 is the skin depth. The quantity 1 / aD is 
the surface resistance. The surface impedance and the surface resistance are 
expressed in ohms/square. See Prob. 4-9. For example,  the surface 
resistance of copper at 3 gigahertz is 14.4 miliohms/square. 

(b) Show that, if the tangential magnetic field is H" then the power 
dissipated per square meter in the conductor is given by H�Tm.l( aD). This 
means that the power dissipated is the same as if the surface current (of 
density numerically equal to H,) were distributed uniformly over a thickness 
o of the conductor. 

'1)-6. (29. 1 )  Induction heating. 
Induction heating consists in excltmg eddy currents in a conductor by 

exposing it to an alternating magnetic field. The method serves for melting,  
in an induction furnace, for heating before a forging operation , or for 
hardening. An induction furnace comprises a crucible surrounded by a coil. 
The largest furnaces have capacities of tens of tons and powers up to a few 
megawatts. Once the load has melted, magnetic forces within the liquid 
provide stirring. 

The coil is usually a single layer of water-cooled copper pipe that 
surrounds the object to be heated. If the object is ferromagnetic, a small 
part of the heating comes from hysteresis losses. 

Induction heating has the advantage of convenience and of not con
taminating the metal with comhustion gases. Also, by choosing the 
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frequency correctly, it is possible to apply a heat treatment down to a 
known depth. For example , plowshares require a hard, heat-treated skin 
that resists abrasion and a soft core that resists breakage. 

Metals can also be heat treated with a laser beam, but usually to a depth 
of only a fraction of a millimeter 

Here is a simple example of induction heating. A steel rod of circular 
cross section lies inside a solenoid that applies an axial and tangential 
magnetic field H,. We showed in Prob. 19-4 that the net surface current 
density is equal to H,. A wave penetrates normally to the conductor, and 
the power dissipation in the conductor is the same as if the current were 
distributed uniformly over a thickness equal to the skin depth. See the 
preceding problem . 

The solenoid has 100 turns per meter and carries a current of 600 
amperes rms at 100 kilohertz. 

Calculate the skin depth and the power P' dissipated in the iron per 
square meter. Set a = 107 and /1, = 100. Neglect end effects, and neglect the 
fact that the relative permeability decreases to unity when the steel 
becomes red-hot. 

29-7. (29. 2) Wave propagation in a plasma 
Show that . in a plasma. vB « E, or E / B » v. where v is the velocity of 

an electron. 

29-8. (29. 2.5) Plasmas compared to metallic conductors 
(a) Find the value of '!I! , as defined in Sec. 29 . 1 ,  for a low-density 

plasma. 
(b) Show that the value of e that we found for a conductor in Sec. 

28.2.3 agrees with that of Sec. 29 .2.5 . 
The values of (l' and of fJ that we found in Sec. 28. 5. 1 are not valid, 

however, for imaginary values of '!I!. 

29-9. (29. 2. 4 )  The phase and group velocities in a plasma 
Two uniform plane electromagnetic waves of equal amplitudes propagate 

in the ionosphere where the free electron density is N per cubic meter. One 
wave has a circular frequency WI and a corresponding wavelength AI ; the 
other has a slightly different circular frequency W 2 and a wavelength A2' 

(a) At a given time t there exist values of z for which the two waves are 
in phase and other values of z for which they are opposite in phase. What is 
the distance between the maxima? 

(b) What is their velocity? This is the group velocity vg• 
(c) Show that, in the limit, Vg = l / (dk/dw). 
(d) Calculate the phase velocities and the group velocity for fl = 5.3 

megahertz, h = 5.4 megahertz, and N = 5 X 1010 electrons/meter3• 
(e) Calculate the distance and the number of waves between two 

minima.  

29-10. (29. 2. 4 )  The w-fJ diagram for a low-density ionized gas 
The w-fJ diagram is a curve of w as a function of fJ. The ratio w / fJ is 

equal to the phase velocity, while the slope dw/dfJ is equal to the group 
velocity. 
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Draw the w-{3 diagram for a low-density ionized gas with f" = 3 
megahertz for frequencies ranging from 3 to 30 megahertz. 

29- 1 1 .  (29.2. 4) Pulsars and satellites 
Pulsars are stars that have suffered gravitational collapse, or neutron 

stars, and that rotate rapidly while emitting a narrow beam of radiation. 
The pulse lengths, at the earth ,  are of the order of 1 millisecond, and the 
periods of the order of 1 second. Neutron stars consist mostly of neutrons 
with some electrons and some ions. Their masses are of the order of that 
of the sun , but their radii are only of the order of 10 kilometers. 

Within a few months after the discovery of pulsars, distance estimates 
were obtained in the following manner . It was observed that the arrival 
time of a pulse depends on the frequency of observation, the arrival time 
being later at lower frequencies. This delay is attributed to dispersion in 
the interstellar medium , which is ionized hydrogen with an electron 
density N of about 1O-'/meter3• 

(a) Show that, if w2 » w!, a plot of the time delay I1t as a function of 
l/(P) - 1 /[(f + 111)2] is a straight line whose slope is a measure of the 
distance to the pulsar. 

(b) In the case of pulsar CP 0328, arrival times measured at 151 , 408, 
and 610 megahertz gave the following results: between 610 and 408 
megahertz, the delay was 0.367 second; between 408 and 1 5 1  megahertz, 
the delay was 4 . 18  seconds. 

Find the distance to CP 0328 in parsecs where 1 parsec is 3 .086 x 10'6 
meters. It is the distance from which the radius of the earth's orbit, 
1 .495 x 101 1 meters, subtends an angle of I ' .  

The fact that such plots give straight lines passing through the origin 
indicates that the assumption that w2 » w! is correct. The delay therefore 
occurs over large distances in interstellar space, and not inside the pulsar 
itself. 

Similar methods are used to reduce satellite ranging errors due to the 
ionosphere. 

29-12 .  (29. 2. 4 )  The energy densities, the Poynting vector, and the group 
velocity in a plasma 

An electromagnetic wave travels in a low-density plasma. The electric 
field strength is Em cos wt. 

(a) Calculate the sum of the electric, magnetic, and kinetic energy 
densities. 

(b) Calculate the Poynting vector. 
(c) Calculate the group velocity. 
(d) Find the relations between these quantities. 
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Chapters 28 and 29 concerned the propagation of electromagnetic waves 
in unbounded media. We now investigate the behavior of a wave 
encountering a discontinuity, as in Fig. 30-1 .  The media will be the same 
as those of Chaps. 28 and 29, namely dielectrics, good conductors , and 
ionized gases . As previously, we define dielectrics as nonconductors, 
whether magnetic or not. 

In this first chapter out of three on reflection and refraction, we make 
several simplifying assumptions: 

(1) The media extend to infinity on either side of the interface. This 
avoids mUltiple reflections. 
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Fig. 30-1.  An electromagnetic wave incident on the interface between media 1 
and 2 gives both a reflected and a transmitted wave. The vectors k are normal to 
t he ir respective wave fronts and point in the direction of propagation. The angles 
( I , .  (JR'  (JT are , respectively, the angles of incidence , reflection, and refraction. 

( 2) The media are homogeneous, isotropic, linear, stationary (HILS) 
;md lossless. 
( 3) The interface is infinitely thin. In other words, the reflection is 
\pecular. 
( �) The incident wave is plane and uniform. 

An electromagnetic wave incident on an interface usually gives rise to 
hoth a reflected and a transmitted wave. This type of phenomenon is 
c·ommon. For example , a sound wave incident upon a wall gives both a 
, eflected wave that comes back into the room and another that proceeds 
I I1 to the wall .  A wave propagating along a transmission line is partly 
reflected and partly transmitted at a discontinuity. Waves on strings show 
the same type of behavior, as shown in App. C. 

jO . l  REFLECTION AND REFRACTION 

Medium 1 carries the incident and reflected waves. Medium 2 carries the 
r efracted wave. For simplicity, we assume in Secs. 30-1 and 30-2 that the 
r ncident wave is linearly polarized. Then, in the incident wave, 

(30-1 )  

where the vector wave numher k,  i s  real and points in  the direction of 
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propagation of the incident wave. The magnitude of kl is n 1 ko .  or n l/l.o, 
n l  being the index of refraction of medium 1 and Au the radian length of a 
wave of the same frequency in a vacuum. For convenience, we set the 
origin of r in the interface, as in Fig . 30- 1 , and we take Elm to be real .  

This equation defines a plane wave for al l values of t and r, and thus a 
wave that extends throughout all time and space. However, it applies 
only in medium 1 .  

Since the incident wave i s  plane, all the incident rays are parallel . By 
hypothesis, the interface i s  plane . Now the laws of  reflection and of 
refraction must be the same at all points on the interface. It follows that 
the reflected rays are parallel to each other. Similarly ,  the refracted rays 
are parallel to each other. Further , since a wave front is by definition 
perpendicular to a ray, we can expect the reflected and transmitted waves 
to be of the form 

(30-2) 

(30-3) 
What do we know about kR and kT? From the wave equation 27-72 

applied to medium 1 ,  with a = O. PI = O.  

(30-4) 
where 

(30-5) 

A similar string of equations applies to k2 . Also. 
kt + kh + k}z = k�. (30-6) 

The wave numbers kl and k2 are real , but kR and kT are vectors that can 
be complex. 

The tangential component of E is continuous at the interface. This 
means that the tangential component of El + ER in medium 1 ,  at the 
interface , is equal to the tangential component of ET in medium 2 ,  at the 
interface. The same applies to H. These continuity conditions will permit 
us to find all the unknowns in Eqs. 30-2 and 30-3 . 

Some relation must exist between El, ER , ET at the interface for all t 
and for all points rinl on the interface . Such a relation is possible only if 
the three vectors are identical functions of t and rint. Then 

(30-7) 
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All three waves are of the same frequency. This is obvious because the 
waves are all superpositions of the wave emitted by the source and of 
those waves emitted by the electrons executing forced vibrations in media 
1 and 2. Recall from mechanics that forced vibrations are of the same 
frequency as the applied force. 

Also, from the above equations for the E's, 

(30-8) 

Then the k 's are oriented in such a way that their components parallel to 
the interface are equal. In particular, if kJy = 0 as in Fig. 30-1 , then 

kTy = 0, (30-9) 

and kl> kR ' kT are coplar.ar. The plane containing these three vectors is 
(ailed the plane of incidence. The x components of the k's are thus all 
equal : 

(30-10) 

where e J is the angle of incidence shown in Fig. 30- 1 .  
I t  i s  now easy to  find kR : 

(30- 1 1 ) 

(30-12) 

We choose the negative sign because the reflected wave travels away 
i rom the interface . It follows that, if kJ is real , as we assumed at the 
heginning (there is zero attenuation in medium 1 ) ,  then kR is also real , 
t he reflected wave is uniform, and 

(30-13) 

[ne angle of reflection is equal to the angle of incidence. 
Therefore the incident, reflected, and transmitted rays are coplanar, 

; tnd the angle of reflection is equal to the angle of incidence . These are 
t he laws of reflection . 

.10 . 2  SNELL'S LAW 

Now return to Eq. 30-10. It says that 

(30-14) 
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Then 
k2 - k2 k2 - k2 k2 ' 2 () _ k2( 2 2 '  2 () ) Tz - 2 - Tx - 2 - 1 SIn 1 - 0 11 2 - n l  SIn I '  (30- 15) 

If the term in parentheses is negative , then there is total reflection. We 
disregard this possibility until Chap. 31 . Otherwise, kTz is real , kT is real , 
and the transmitted wave is plane and uniform. If 8T is the angle of 
refraction as in the figure , 

(30- 16) 

From Eqs. 30-14 and 30-16, 

or (30- 1 7) 

When an electromagnetic wave crosses an interface , there is conserva
tion of the quantity 11 sin 8. This is Snell 's law. 

Therefore ,  choosing axes as in Fig. 30- 1 , we find that 

EI == Elm exp j[ wt - k l (x sin 81 - Z cos (1) ] .  

ER = ERm exp j[  wt - k1(x sin 81 + Z cos (1)] ,  

ET = ETm exp j[wt - k2(x sin 8 T  - Z cos 8T)]. 

(30-18) 
(30-19) 
(30-20) 

The laws of reflection and Snell's law are general . They apply to any 
two homogeneous, isotropic, linear, and stationary (HILS) media, 
whether conducting or not , with either real or complex k 's ,  provided that 
one allows complex angles as in the next chapter. 

30.3  FRESNEL'S EQUATIONS 

We now require relations between Elm . ERm • and ETm that will ensure 
continuity of the tangential components of E and H at the interface . r 

In this chapter kl• kR ' kT are all real . Thus all three waves are plane 
and uniform, and hence transverse (Sec. 28.2 . 1) .  The E vector of the 
incident wave can point in any direction perpendicular to kl . 

Then the conditions of continuity at the interface require that 

(30-21) 

t We could also apply the continuity of the normal components of D and of B. But then 
our results would be applicable to reflection from the surface of a conductor only on the 
condition of taking into account the surface charge density. which would be another 
unknown. 
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' Y  

Fig. 30-2. The incident, reflected, and transmitted waves for an incident wave 
I "  l larized with its E field normal to the plane of incidence. The arrows show the 
, l l rcctions in which the vectors are taken to be positive at the interface. The 
\ l'ctors E X H point everywhere in the direction of propagation. 

'. ince the relation 
k x E  H = --
WI1 

(30-22) 

(30-23) 

" I  Sec . 28 . 2 . 1  applies to all three waves, we first find ER and ET and then 
• Ieduce HR and HT. 

I t  will be convenient to divide the discussion into two parts. We 
• •  I nsider successively incident waves polarized with their E vectors 
I l urmal and then parallel to the plane of incidence. Any uniform plane 
I l ic ident wave is the sum of two such components. 

We now define our sign conventions . See Figs . 30-2 and 30-3. Observe 
1 1 1at  the two figures agree at normal incidence. We utilize the continuity 
, I i Ey and Hx in Fig. 30-2 , and the continuity of Ex and H)' in Fig. 30-3. 
I h i s  will yield relations that apply again to any pair of HILS media and 

I . ,  any angle of incidence . 

\ ( ) . 3 . 1  E Normal to the Plane of Incidence 

I he E and H vectors of the incident wave point as in Fig. 30-2. The 
I l ledia being isotropic , the E vectors of the other two waves are also 
I I ! ) rmal to the plane of incidence. This is because the electrons in both 
l I Iedia oscillate in the direction normal to the plane of incidence and 
l eradiate waves polarized with E normal to the plane of incidence. 
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, y 

Fig. 30-3. This figure is similar to Fig. 30-2, except that now the E fields are all 
parallel to the plane of incidence . 

If the E vectors point in the directions shown, at the interface , then the 
H vectors point as shown , to orient the Poynting vectors E X  H (Sec. 
28.6) in the proper directions .  

The continuity of  the tangential component of  E a t  the interface 
requires that 

(30-24) 

at any given point on the interface . Similarly, for continuity of the 
tangential component of H, 

or, from Sec. 28.4, 

(E/m - ERm) cos ()/ ETm cos ()T 
21 Zz 

where 2 is the characteristic impedance of a medium 

2 = 
E 

= Wf1 = 
Wf1 = Wf1 Cf1 

H k nko n(w/c) n 

n being the index of refraction. 
Solving, 

Zz cos ()/ - 21 cos ()T 
Zz cos ()/ + 21 cos ()T ' 

2Zz cos ()/ 

(30-25) 

(30-26) 

(30-27) 

(30-28) 

(30-29) 
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Ihe subscript ..l indicates that the E vectors are perpendicular to the 
plane of incidence. t These are two of Fresnel's equations. 

�O . 3 . 2  E Parallel to the Plane of Incidence 

I 'he E's are now all in the plane of incidence, as in Fig. 30-3, and 

(30-30) 
, Jr 

(30-3 1 )  

, \ ]so, 
(30-32) 

Ihen (ERm) Zz cos (h - 21 cos 81 Elm I I 
= Zz cos 8T + 21 cos 81 ' (30-33) 

(ETm) 2Zz cos 81 Elm I I 
= 
Zz cos 8T + 21 cos 81 • (30-34) 

I his is the second pair of Fresnel's equations. 
At normal incidence 81 = 8R = 8T = 0, the plane of incidence is 

1 1 11defined, and the two pairs of Fresnel's equations are identical :  ERm Zz - 21 (30-35) Elm Zz + 21 ' ETm 2Zz (30-36) Elm Zz + 21 
lO .4 REFLECTION AND REFRACTION AT THE 

INTERFACE BETWEEN TWO NONMAGNETIC 
NONCONDUCTORS 

We continue to disregard total reflection . For nonmagnetic non
l Ol1ductors, 

; ll1d 
(ndnz) cos 81 - cos 8T 
(ndnz) cos 81 + cos 8T ' 

I We use the subscripts � and II . hut somc authors use s and p, 

(30-37) 

(30-38) 
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I y  (a )  'Y  

Alf 
Glass 
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I� 
It "'ir " l  Glass " j 

Glass n ,  Air " , Tt Tt 

(c) 

I iI(. 30-4. (a) The relative phases, at the interface, of the E's in the reflected and 
I I  , 1 Ilsmitted waves for n] < n2 and for nj > n2, with Elm normal to the plane of 
1 l l l ldence. On the left , the reflected wave is n radians out of phase with respect to 
' I l l' incident wave , The transmitted wave is in phase , in both instances. (b) 
( rests" of the field E at some particular time . The crests are one wavelength 

1 1 ' , 1  rt and travel in the directions of the arrows. Note the phase shift of n upon 
I I  Iketion from a glass surface. Note also the interference pattern that results 
1 1 " 111 the superposition of the incident and reflected waves. ( c) The E vectors at a 
,' 1 \  l'n instant in the incident, reflected, and transmitted waves at normal incidence 
" I I  ; 1  glass-air interface . On the right, ETm is larger than Elm' However, 
, " I ] ,ervation of energy still applies. 

(30-39) 

I l i lserve that the second ratio is always real and positive. This means 
1 1 ! . l t ,  at the interface, the transmitted wave is always in phase with the 
I l l l ' I<.Ient wave, 

J 'he first ratio can , however ,  be either positive or negative, depending 
' 1 1 1  the value of n d n 2 '  If n 1 /n2 < 1, then 8T < 8[ and cos 8[ < cos 8T 
\\ hneas if n 1 /n2 > 1, then 8T > 8[ and cos 8[ > cos 8T. The reflected 
\\ , I ve is thus either IT radians out of phase with the incident wave at the 
I l l t e rface if n l  < n2 , or in phase if n1 > n2 .  

hgure 30-4 illustrates the E vectors for both types of reflection. Figure 
Ii i ') shows the above ratios for n 1 / n2 = 1 / 1 . 5 .  This corresponds to a light 

\\ , I ve incident in air on a glass whose index of refraction is 1 .5 .  
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1 .0 

0.8 

0.6 (Tm) 
0.4 Elm J. 

0 . 2  

0.0 
30° 60° 90° 

- 0. 2 01 
- 0.4 (Rm) 
- 0.6 

Elm J. 

- 0.8 

- 1 .0 

Fig. 30-5. Reflection and refraction when nl/n2 = 1 / 1 . 5, for example, when light 
falls on a glass of n = 1. 5. The E field is normal to the plane of incidence. 

For an incident wave polarized with its E vector parallel to the plane of 
incidence, 

See Fig. 30-6. 

1 . 0  

(ERm) -cos (h + (ndn2) cos 0T Elm II 
= cos 01 + (ndn2) cos 0T ' (ETm) 2(nl/n2) cos 01 Elm II = cos 01 + (n l/n2) cos 0T . 

0.8 t-------_� 
0.6 

(ETm) Elm II 
0.4 

0.2 

30° 

- 0. 2  L--------
- (\ 4 

(30-40) 

(30-41 )  

Fig. 30-6. Reflection and refraction when nl/n2 = 1 / 1. 5, a s  i n  Fig. 30-5, but with 
E parallel to the plane of incidence. 
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The second ratio is always positive. Then ETm and Elm are in phase at 
the interface , as in Fig. 30-3, which we used to arrive at this result . 

However, the ratio for E Rm can be either positive or negative , which 
I ndicates that ERm can point either as in Fig .  30-3 or in the opposite 
direction. The tangential components of Elm and of ERm can thus be 
l'ither in phase or n radians out of phase. They are in phase if 

(l[ if 
sin flr cos flr - sin fh cos fh > 0, 

sin 2flr - sin 2()1 > 0, 
sin (()T - ()l) cos (()T + ()l) > o. 

I "his inequality requires that either 

and 

( l[ 

and 

(30-42) 

(30-43) 

(30-44) 

(30-45) 

(30-46) 

(30-47) 

Ihe phase of the reflected wave when E is parallel to the plane of 
I l lcidence does not therefore depend only on the ratio ndn2; it depends 
( m  both ()l and ()T. The ratio ERm/ ETm can be either positive or negative, 
hoth for n2 > nl and for n2 < n l .  Figure 30-6 shows the above ratios for 
II I /n2 = 1 /1 . 5 .  

30.5 THE BREWSTER ANGLE 

We have seen that, when E is parallel to the plane of incidence, ERm is 
l' i ther in phase or n radians out of phase with the incident wave, 
depending on whether sin (()T - ()l) cos (()T + ()l) is greater or less than 
lero. It follows that there is no reflected wave when this expression is 
l·qual to zero, that is , when ()l = ()T = 0 or when ()l + ()T = n/2. The first 
( ondition is incorrect. It arises from the fact that we have multiplied the 
I l lequality 

(30-48) 

hy sin ()l, which is equal to zero at ()/ = o. 
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I y 

Fig. 30-7. If the angle of incidence is equal to the Brewster angle and if E lies in 
the plane of incidence , there is no reflected wave. The position of the missing 
reflected ray is at 90° to the transmitted ray. 

Thus for 

(30-49) 

there is no reflected wave when the incident wave is polarized with its E 
vector parallel to the plane of incidence. This is remarkable because the 
wave then goes through an interface without reflection. See Fig .  30-7. 

This angle of incidence is the Brewster angle. It is also called the 
polarizing angle, since an unpolarized wave incident on an interface at 
this angle is reflected as a polarized wave with its E vector normal to the 
plane of incidence. t 

At the Brewster angle, 

n l sin 8T sin (n12 - 8IB) 
- = -.-- = . = cot 8IB . n2 sm 8IB sm 8IB (30-50) 

For light incident in air on a glass whose index of refraction is 1 .5 ,  
8IB = 56. 3°. 

t The Brewster angle is often explained incorrectly as follows. For this particular angle of 
incidence, the missing reflected ray is at 90° to the transmitted ray. It is argued that the 
electrons excited in medium 2 do not radiate in their direction of oscillation (Sec. 38.2) and 
hence cannot give rise to a reflected ray in medium 1 .  This explanation is incorrect, since 
there is a Brewster angle even when medium 2 is a vacuum.  Also, with magnetic media, 
there can exist a Brewster angle when Elm is perpendicular to the plane of incidence. 
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The Brewster angle is commonly used to measure the index of 
refraction of a substance by reflecting a ray of light from its surface. The 
measurement can be accurate to five significant figures. 

A plane wave incident on a plate of glass at the Brewster angle meets 
the second interface also at its Brewster angle . So there is no reflection, 
e i ther at the first or at the second interface. 

f:'xample MEASURING THE RELATIVE PERMITTIVITY 
OF THE MOON'S SURFACE 
AT RADIO FREQUENCIES 

The nature of the moon's surface can be inferred , to some extent, 
from the value of its relative permittivity Er = n2 (Sec. 28.4) at 
radio frequencies. The Brewster angle can serve to measure this 
quantity in the following way. 

If a radio wave originating from a satellite in lunar orbit 
illuminates the moon , the reflection observed at the earth is 
similar to the reflection of sunlight from the surface of a lake: 
most of the light comes from the regions that happen to be 
correctly oriented for specular reflection. The surface of the moon 
thus glistens over an area of the order of 100 kilometers in 
diameter, the area depending on the height of the satellite above 
the surface of the moon and on the roughness of the surface. 

If the detector on the earth receives both the reflected wave and 
a direct wave from the satellite , it is possible to discriminate 
between the two by using the fact that the Doppler effect makes 
the two radio frequencies slightly different. A plot of the intensity 
of the reflected wave as a function of the angle of incidence when 
the E vector lies in the plane of incidence shows zero reflection at 
the Brewster angle. 

In one such measurement, performed at a frequency of 
140 megahertz, the Brewster angle was 60 ± lO in  the mare 
northwest of Hanstein .  This gives an Er of 3.0 ± 0.2.  

It is possible to perform similar measurements at other points 
on the surface of the moon because of the relative motions of the 
three bodies involved , namely the satellite, the moon, and the 
earth. 

\0.6 THE COEFFICIENTS OF REFLECTION R AND 
OF TRANSMISSION T 

I he coefficients of reflection and of transmission concern the flow of 
l 'nergy across the interface. The average energy flux per unit area in a 
wave is equal to the average value of the Poynting vector ,  as in Eq . 
. 'X-3 1 . We exclude total reflection as well as reflection from conducting 
1 I 1cdia.  Setting /1r = 1 ,  we find that 
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(30-51 )  

(30-52) 

(30-53) 

where fil is normal to a wave front of the incident wave : 

(30-54) 

and similarly for fiR and fiT. 
The coefficients of reflection R and of transmission T are the ratios of 

the average energy fluxes per unit time and per unit area at the interface: 

(30-55) 

where fi is the unit vector normal to the interface ; 

(30-56) 

1 .0 t-----__ 

0 .8  

0.6 

0.4 

0.2 

o.o l::=:::::t:==r=::r:==L-L_LJ_L� 
0" 60" 

Fig. 30-8. The coefficients of reflection R 1. and of transmission T1. as functions of 
the angle of incidence 8[ for n ,/n2 = 1 /1 .5. 
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1 .0 

0 . 8  

0.6 

0.4 

0.2 

0 .0 
0' 30' 

(J, 

Fig. 30-9. The coefficients of reflection R I I and of transmission 111 as functions of 
I he angle of incidence £3[ for n,/n2 = 1 / 1 . 5 . Note the Brewster angle at 56.3°. 

Then, from Fresnel's equations for nonconductors, 

[ (ndn2) cos (h - cos (Jr]2 R 1- = (nl/n2) cos (J/ + cos (JT ' 

4(ndn2) cos (J/ cos (JT T1- = ,,-:---'--:-''------=-----=----=-= 
[(nl/n2) cos (J/ + cos (JTf ' 

_ [ - COS (J/ + (ndn2) cos (JT]2 R II - cos (J/ + (n dn2) cos (JT ' 
4(ndn2) cos (J/ cos (JT T. =---'----'-----'--------::: II [cos (J/ + (n1 /n2) cos (JTf '  

(30-57) 

(30-58) 

(30-59) 

(30-60) 

In both instances, R + T = 1 ,  as expected from the conservation of 
l:nergy. At the Brewster angle defined above, R "  = 0 and II, = 1, again as 
l:xpected .  See Figs. 30-8 to 30-10. 

'30.7 REFLECTION BY AN IONIZED GAS 

We saw in Sec. 29.2 .4 that , in a low-density ionized gas, the phase 
velocity is larger than in free space and the index of refraction n is less 
I han unity: 

(30-61) 
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1 / 1 / 1 / 2 

Fig. 30-10. The coefficients of reflection R and of transmission T at normal 
incidence , as functions of the ratio n l in , .  

where c is the speed of light, vp i s  the phase velocity, wp is the plasma 
angular frequency, W is the angular frequency, N is the number of free 
electrons per cubic meter , and f is the frequency. 

If the ionized gas could have a definite boundary and a uniform free 
electron density, then reflection and refraction at its surface would be 
simple: the gas would act as a dielectric with n less than unity . In 
practice , neither assumption is valid and reflection occurs gradually, as in 
a mirage. 

We could calculate the path of a ray as in Prob . 30-1 . However ,  Snell's 
law (Sec. 30.2) provides the main features of the reflection . 

We select coordinates as in Fig. 30- 1 1  and assume that the index of 
refraction n varies slowly with z, but not with the other two coordinates. 
To be more specific, we assume that n varies by a negligible amount over 
one wavelength . Then a given ray gradually bends down to an angle (J, at 
a point where the index of refraction is n. 

We can calculate (J in the following way . When refraction occurs at the 
interface between any two media n l  and n2, the quantity n sin (J is 
conserved in going from one side of the interface to the other. This is 
Snell's law. If n varies gradually with z but not with x and y, then we can 
imagine the medium to be stratified in thin layers , and the value of 
n sin (J remains the same all along the ray . Thus 

(30-62) 
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Fig. 30-11. Reflection from an ionized gas in which the electron density increases 
with increasing z, or upward . 

If n 1 = 1 ,  then 

n sin (J = sin (J/. (30-63) 

Differentiating with respect to the distance I measured along a ray , we 
find that 

d(J 
dl 

1 dn - - - tan (J. n dl (30-64) 

If the ray penetrates into an ionized region where the ion density 
increases with z, the index of refraction n decreases with I and the 
derivative dn/ dl is negative. so the angle (J increases with distance, as in 
Fig. 30- 1 1 .  After some distance, if N becomes sufficiently large , (J 
becomes equal to 90°, the tangent of (J becomes infinite , and dn/dl 
becomes zero. After this, tan (J becomes negative , whereas the derivative 
dn/dl becomes positive , and (J keeps increasing until the ray escapes back 
from the ionized region at an angle equal to the angle of incidence (J/. 

At the top of the trajectory 

sin (J = 1 ,  (30-65) 

This is the index of refraction required for reflection when the angle of 
incidence is (J/. 
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30. 8  SUMMARY 

At the plane interface between two homogeneous, isotropic, linear, 
stationary (HILS) and lossless media, ( 1 )  the incident, reflected, and 
transmitted waves all have the same frequency , (2) the three vector wave 
numbers k/> kR ' kT are coplanar, and (3) the angle of reflection is equal 
to the angle of incidence. These are the laws of reflection. 

Snell's law states that 

(30-17) 

where n l  is the index of refraction of the first medium and n2 is that of 
the second. 

Fresnel's equations are as follows: 

(ndn2) cos fh - cos fJr 
(n l !n2) cos fh + cos 8T ' (ETm) 2(ndn2) cos 81 

Elm 1- = (ndn2) cos 81 + cos 8T ' (ERm) -cos 81 + (ndn2) cos 8T 
Elm II = cos 81 + (ndn2) cos 8T ' (ETm) 2(ndn2) cos 81 
Elm I I = cos 81 + (ndn2) cos 8T • 

At the Brewster angle of incidence 81B, 

(30-38) 

(30-39) 

(30-40) 

(30-41)  

(30-50) 

and there is no reflected wave if E lies in the plane of incidence . 
The coefficients of reflection R and of transmission T are the ratios of 

the average energy fluxes per unit time and per unit area at the interface: 

[ (ndn2) cos 81 - cos 8T]2 R1- = 
(ndn2) cos 81 + cos 8T ' 
4(ndn2) cos 81 cos 8T T1-

= 
--'--=---=-----"--� [(ndn2) cos 81 + cos 8T]2 ' 

RII = [ - COS 81 + (ndn2) cos 8T]2 
cos 81 + (ndn2) cos 8T ' 

(30-57) 

(30-58) 

(30-59) 
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T, = 4(ndn2) cos (]/ cos (]T 
I I  [cos (]/ + (ndn2) cos (]T]2 · (30-60) 

Reflection from an ionized gas occurs gradually as in a mirage. 

PROBLEMS 

Ill-I. (30. 2) The ray equation 
A wave travels in a stratified medium whose index of refraction is a 

function only of the coordinate y. 
(a) Show that the angle () between a ray and the y-axis obeys the 

following law: 
d(} 1 dn - = - - - sin () 
dl n dy 

, 

where the distance I is measured along the ray . 
(b) You can now verify the ray equation 

iz (ni) = Vn, 

where i is a unit vector tangent to the ray at a point where the index of 
refraction is n. 

10-2. (30. 3) Reflection and refraction at the surface of a dense medium 
Write down Fresnel's equations for the case where !Jrl = 1, !Jr2 = 1 ,  

n2 » n I .  You will find a surprising result: i f  the E vector of the incident 
wave is parallel to the plane of incidence, the amplitude of the reflected 
wave is independent of the angle of incidence ! 

For what range of (}l are your formulas valid? 

1()-3. (30. 3) Fresnel's equations expressed in terms of (}l and (}T alone 
(a) First show that 

sin ((}l - (}T) cos ((}l + (}T) = sin (}l cos (}l - sin (}T cos (}T' 

sin ((}l + (}T) cos ((}l - (}T) = sin (}l cos (}l + sin (}T cos (}T. 

(b) Show that, for nonmagnetic nonconductors, 

(i) (ERm) Elm .1 

sin ((}l - (}T) 
sin ((}l + (}T) ' 

(ii) (ETm) Elm .1 

\0-4. (30. 3) Measuring an index of refraction 
Set 

2 cos () I sin (}T 
sin ((}l + (}T) 

, 
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Show that, with a laser beam incident at 45° in air on a medium of index of 
refraction n,  

n2 = (1 - p)(1 - s)
. 

( 1  + p )(1 + s) 

Here, s is negative, from Fig . 30-5. The ratio p is also negative, from Fig. 
30-6. 

In practice , instruments measure a beam power. So p is equal to minus 
the square root of the reflected to incident powers with parallel polariza
tion, and similarly for s. 

30-5. (30. 5) The Brewster angle 
Calculate the Brewster angles for the following cases: 
(a) light incident on a glass whose index of refraction is 1 .6 ,  
(b) light emerging from the same type of glass, 
(c) a radio frequency wave incident on water (n = 9 at radio fre

quencies) .  

30-6. (30. 5) The Brewster angle and the ratio n2/ n ,  
(a) Show that, if n2 > n t ,  then (JIB > 45°. 
(b) Show that , if n2 < n" then (JlB < 45°. 

30-7. (30. 5) The Brewster angle 
(a) Show that Brewster's angle is also given by 

. , 1 
sm" (JIB = 2/ , . 

1 + n, ni  

I t  follows that there exists a Brewster angle only i f  the ratio n,/n2 i s  real. 
(b) Show that sin BIB = cos (JT' 

30-8. (30. 5) Brewster windows for lasers 
The mirrors of some gas lasers are outside the glass tube that contains the 

discharge. Then the tube is sealed at both ends with windows set at the 
Brewster angle. 

Show that there is no reflection from such a window as long as the E 
vector of the incident wave lies in the plane of incidence. 

30-9. (30. 5) The value of R� at the faces of a dielectric plate set at the Brewster 
angle 

A beam of light in a medium of index of refraction n, falls on a plate of 
dielectric n2 at the Brewster angle. 

(a) Show that , at the first interface, 

2 ( 1 - n�/ni) 2 
R� = cos 2(JlB = 2/ 2 . 

1 + n2 n ,  

(b) Show that R� has the Same numerical value at the second interface . 
(c) Find the value of R�  for glass whose n is 1 .5 .  in air. 

30-10. (30. 5) A "pile of plates" polarizer with pellicles 
A pellicle is a very thin film of cellulose nitrate that is stretched taut 

over a flat ring. The cellulose nitrate is transparent and can serve as a 
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support for various types of coating. The film is so thin that multiple 
reflections inside it do not give rise to ghost images. 

Now it has long been known that a series of parallel glass plates set at 
Brewster's angle filters out waves polarized with E normal to the plane of 
incidence. See the two preceding problems. The same can be done with 
pellicles in less space and without the inconvenience of ghost images. 
Also , pellicles are virtually loss less and can thus polarize high-power laser 
beams. 

(a) Find (R/T)� for a pellicle set at Brewster's angle. Take both 
interfaces into account, but disregard multiple reflections. 

(b) Calculate this ratio for a pellicle whose n is 1 .5 in air. 
(c) Find a general expression for the ratio (R/T)� for N interfaces. 
This result is grossly wrong because we have neglected multiple 

reflections inside the pellicles. In actual fact, the ratio is approximately 
equal to NR. With 40 interfaces, the above result is too large by 2 orders 
of magnitude! 

.�O- l 1 .  (30. 5) The Brewster angle for magnetic media 
A wave is incident in air on a nonconducting magnetic medium such as 

ferrite. 
(a) Show that the ratio (ERm/Etm) 1 1 is zero for 

There is a Brewster angle only if E, > /1,. 
(b) Show that (ERm/Etm)� is zero when 

Now there is a Brewster angle, but only if /1, > E,. 
�O-12 .  (30. 6) The condition that makes R = T at normal incidence 

Find the ratio n,/n2 that makes R = T = 0. 5 at normal incidence. 

lO-13 .  (30. 6) E, H, R, and T at normal incidence on a water surface 
A 60-watt light bulb is situated in air 1 meter above a water surface . 
(a) Calculate the root mean square (rms) values of E and H for the 

incident, reflected, and refracted rays at the surface of the water directly 
under the bulb . Assume that all the power is dissipated as electromag
netic radiation .  The index of refraction of water is 1 .33. 

(b) Calculate the coefficients of reflection and transmission. 

,0- 14. (30. 6) Antireflection coatings for photographic lenses and solar cells 
There are instances where the reflection coefficient of a dielectric must 

be close to zero. The best known examples are photographic lenses and 
solar cells. 

Clearly, the way to eliminate the reflected wave is by interference. 
Coating the dielectric with a thin film of another type of dielectric 
provides two reflected waves that can cancel. The situation is, however, 
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Fig. 30-U. 

complicated by the presence of multiple reflections in the film. Also, the 
degree of cancellation varies with the angle of incidence and with the 
wave length. 

(a) Show that there is no reflected wave at normal incidence in air 
(n [  = 1) when the dielectric of index of refraction n3 is coated with a 
quarter-wavelength film of a dielectric n2 = n\/2. Take multiple reflections 
into account, and use the notation of Fig. 30-12. 

(b) Calculate and sum the amplitudes of the first four reftected waves 
when n3 = 4, to four significant figures. 

(c) A silicon solar cell has an index of refraction of 3 .9  at 
600 nanometers. Calculate the reflection coefficient for normal incidence 
at that wavelength. 

(d) Calculate the thickness and the index of refraction of a coating that 
would eliminate reflection at normal incidence at that wavelength. 

At the interface between air and glass, R = 0.04. In complex optical 
systems with many interfaces, the loss is important. Moreover, stray 
reflections reduce contrast in the image. Good-quality lenses are coated 
with magnesium fluoride (n = 1 . 38 at 550 nanometers). This reduces R to 
0.015 , on average, over the visible spectrum. 

30-15. (30. 6) A simple and accurate method for measuring an index of 
refraction 

Possibly the most practical and most accurate way of measuring an 
index of refraction is to measure the ratio R�/RII for a beam incident on 
the material in air at 45°. 

(a) Show that, if e[ = 45°, 

It follows that 

1 - sin 2eT 
R� = 

1 + sin 2er' 
( 1 - sin 2eT) 2 

R = I I 1 + sin 2eT 

R �  1 + sin 2eT 
RII 1 - sin 2eT • 
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This ratio is much larger than unity. For example, with aT = 30° 
(n = 1 . 414), it is equal to 13.93.  

(b) Show that 

where 

f - . 28 
_ Rl./R I/ - 1  

- SIn T - . RJ../R I/ + 1 

The signs before the square roots are positive . 

10-16. (30. 7) Ducting in the ionosphere 
Under certain circumstances, the index of refraction of the ionosphere 

varies with altitude in such a way that a ray that starts out horizontally 
follows a path at a constant altitude above the earth's surface. The 
ionosphere then acts as a duct, and the phenomenon is called dueling. Of 
course, the required condition applies only over a certain distance. When 
the ray emerges from this region, it is deflected either upward or 
downward. Radar signals occasionally travel over large distances in this 
way. 

(a) How must the index of refraction vary with altitude? 
(b) How must the plasma frequency vary with altitude? 
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In Chap. 30 we established the laws of reflection and of refraction as well 
as Fresnel's equations. The laws concern the relative orientations of the 
vector wave numbers kj, kR' and kT' while Fresnel's equations concern 
the relative amplitudes and phases of the incident, reflected, and 
transmitted waves. We excluded total reflection as well as reflection by a 
conducting medium. 

This chapter concerns total reflection , and the next one reflection by a 
conductor. The laws and equations that we found in Chap. 30 also apply 
to those cases , even though the wave number kT of the transmitted wave 
is then complex. 

Total reflection occurs at large angles of incidence, when the incident 
wave lies in a medium whose index of refraction is larger than that of the 
second medium. More precisely , total reflection occurs when 

t All the material in this chapter is essential only if you wish to study optical wave guides 
in Chaps. 35 and 36. 
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. f) nj .  f) 1 Sm T = - SIO I > . n2 
(31-1) 

Then the coefficient of reflection is equal to unity. 
Total reflection is fascinating because of the unusual features of the 

transmitted wave . Also, optical waveguides (Chaps. 35 and 36) use the 
fact that total reflection is lossless. The analysis of those waveguides rests 
on some of the key results found here. 

But first we must study briefly nonuniform plane waves and complex 
angles. 

3 1 . 1  NONUNIFORM PLANE WAVES 

In a plane wave the equiphase surfaces are plane. In a uniform plane 
wave, the amplitude is uniform throughout any given plane equiphase 
surface . The waves that we have referred to until now are of this type. 

In a nonuniform plane wave the equiphase surfaces are again plane. 
However, the amplitude over a given equiphase surface is not uniform. 
Indeed, propagation occurs in one direction, and the amplitude of the 
wave decreases exponentially in another direction. In Fig. 31-5, for 
example, the transmitted wave travels from left to right, but its amplitude 
decreases exponentially downward. 

With nonuniform plane waves we can still write that 

E = Em exp j(wt - k ·  r) , 

H =  Hm exp j(wt - k ·  r) , 

(31-2) 
(31-3) 

where the amplitudes Em and Hm may be complex. However, the wave 
vector then has the form 

k = P - ja, (3 1-4) 

where the two real vectors a and P point in different directions. Then 

E = Em exp (- a ·  r) exp j(wt - p .  r) , 

H =  Hm exp (- a ·  r) expj(wt - p .  r) . 

(31-5) 
(31-6) 

These equations define a wave that propagates in the positive direction 
of the vector p at the phase velocity 

w v = -
f3 (31-7) 
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and whose wavelength is 

A = 2n 
f3 ' hence 1 

f3 = " . (31-8) 

The amplitude of the wave decreases exponentially in the pOSitive 
direction of (1', and the attenuation distance b, over which the amplitude 
decreases by the factor of e, is given by 

(31-9) 

Equiphase surfaces are perpendicular to p, and equal-amplitude 
surfaces are perpendicular to a. In the transmitted wave of Fig. 3 1-5, P 
points to the right, and a points downward. 

If we substitute the above expression for E in the general wave 
equation 28-14, we find that 

2a . p = w a{l, 

(31-10) 
(31 - 1 1) 

where E, {l, a, and w are all real and positive. These last two equations 
are interesting. 

(1)  The first one shows that f3 > (1' .  Then 

A < b. (3 1-12) 

(2) According to the second one, p . a � O. Thus the angle f) between 
the direction of propagation and the direction of attenuation is at most 
90°. 

(3) In conductors, a =1= O. Then a =1= O. In good conductors f32 - (1'2 « 

2a . p. 

(4) In nonconductors a = 0 and f) is equal to 90°. The attenuation of a 
nonuniform plane wave in a dielectric can occur only in a direction 
perpendicular to the propagation . 

Nonuniform plane waves are not transverse. If E is transverse, then H 
is not, and inversely. See Prob. 31 - 1 .  

3 1 . 1 . 1  Complex Angles 

The magnitude of an angle A, expressed in radians, is equal to the pure 
number a / R, where a is the length of the arc of a circle of radius R whose 
center is at the apex. 
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By extension , A can be any complex number. If we apply Eq. 2-7, 

exp jA = cosA + j si.n A, (31-13) 
then 

. exp jA - exp (-jA) sm A = 2j , exp jA + exp (-jA) cos A = 2 . (31-14) 

Clearly, sin A can now be any complex number. The same applies to 
cos A. As with real angles, 

sin2 A + cos2 A = 1 .  (31-15) 

We have generalized the concept of angle so as to render it more 
useful. But we now have an abstract quantity that does not lend itself to a 
simple geometric interpretation . 

Remember that exp 2nj is equal to unity. You can easily check that 

sin (A + 2n) = sin A,  cos (A + 2n) = cos A.  (31-16) 

We select that value of A whose real part lies between 0 and 2n. 

3 1 .2 TOTAL REFLECTION 

As we saw in Eq. 3 1-1 , total reflection leads to a value of sin 8T that is 
real and larger than unity. Then 8T is complex. Snell's law and Fresnel's 
equations still apply. 

The critical angle of incidence, for which 8T ::::: 90°, is given by 

. 8 n2 SIn Ie = - .  nl (31-17) 

For a glass whose index of refraction nl is equal to 1 .5 , and with n2 = 1 ,  
the critic.al angle i s  41 .8° .  

At angles 81 >  810 sin 8T is larger than unity and 8T is complex. Then 
the wave is totally reflected as in Fig. 31- 1 .  This phenomenon is 
independent of the orientation of the E vector in the incident wave. 
There nonetheless exists a transmitted wave. Medium 2 acts like a pure 
inductance fed by a source of alternating voltage: the average power flow 
is zero, with power flowing alternately one way and then the other. 

Total reflection has many uses, mostly based on the fact that the 
coefficient of reflection (Sec . 30.6) is then equal to unity if the interface is 
clean. (See Chaps. 35 and 36 on optical wave guides. )  One relatively 
little-known application is internal-reflection spectroscopy, in which one 
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Fig. 31·1. For angles of incidence al larger than the critical angle ale > the 
interface acts as a perfect mirror. This is total reflection .  

observes the spectrum of the reflected wave when the second medium is 
weakly absorbing. The method is convenient for investigating the second 
medium, for materials that do not lend themselves to conventional 
transmission or reflection spectroscopy . 

Set 

Then 

()T = a + jb. 

. expj(a + jb ) - exp (-j) (a + jb )  sm () T  = 2j 
exp ja exp ( -b ) - exp ( -ja) exp b 

2j 
Since this quantity is real, a must be equal to n/2 and 

So 

Then 

. exp b + exp ( -b)  b �n ()T = 2 = wili . 

exp j(a + jb )  + exp (-j)(a + jb) cos ()T = 2 
j[exp (-b) - exp b ]  . ,  = 2 = -] smh b. 

(31 - 18) 

(31- 19) 

(31-20) 

(31-21) 

(3 1-22) 
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Also , 
(31-23) 

We have chosen a negative sign before j to agree with Eq. 31-22. 
For example, if n\ = 1 . 5  and n2 = 1 . 0, then the critical angle of 

incidence is 41 .8°. If now 8/ = 60°, then sin 8T = 1 . 299, b = 0.755, 
8T = (n/2) + 0.755j, and cos 8T = -0.829j. 

The incident, reflected, and transmitted waves are of the same form as 
in Sec . 30.2: E/ = E/m expj[wt - k \ (x sin 8/ - Z cos 8/)] , ER = ERm expj[wt - k \ (x sin 8/ + Z cos 8/) ] ,  ET = ETm exp j [  wt - k2(x sin 8T - Z cos 8T)] . 

3 1 .2 . 1  The Reflected Wave 

(31-24) 

(3 1-25) 

(31-26) 

Applying Fresnel's equations for dielectrics given in Sec. 30.4, we find 
that (ERm) _ (ndn2) cos 8/ + j(sin2 8T - 1)112 _ .m. (31-27) - ( / ) .( . 2 1) 112 - exp J'¥ 1- ,  E/m 1- n \  n2 cos 8/ - ] SIn 8T -
where 

(sin2 8T - 1) 112 cI> 1- = 2 arctan ( / )  II n \  n2 cos u/ (31-28) 

This is the phase of the reflected wave with respect to the incident wave, 
;It any point on the interface . The reflected wave leads the incident wave 
for this polarization. See Fig. 3 1-2. 

Observe that the incident and reflected waves are of the same 
amplitude: total reflection is lossless. 

The phase shift is different when E is parallel to the plane of incidence . 
( See Prob . 31 -6 . )  Total reflection of a wave that is polarized in an 
; Irbitrary direction yields a reflected wave that is elliptically polarized. 

For the above example , cI> 1- = 95.7°. 

3 1 .2 .2  The Transmitted Wave 

The vector wave number for the transmitted wave is 

kT = fJT - jaT = k2(sin 8Tx - cos 8Tz) 
= k2(sin RTx + j sinh bz). 

(31-29) 
(31-30) 
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Fig. 31-2. The phases <I> 1. and <1> 11 of the reflected wave with respect to the 
incident wave at a point on the interface, for total reflection when the E of the 
incident wave is normal and parallel to the plane of incidence . The ratio n1/n2 is 
equal to 1 .50. 

The first term inside the parenthesis shows that the wave travels in the 
positive direction of the x-axis . The second term provides attenuation in 
the negative direction of the z-axis if b is positive. If b were negative , the 
wave amplitude would grow exponentially with depth inside the second 
medium, which is absurd. 

is 
The attenuation distance in the direction perpendicular to the interface 

1 Ao Ao 
{)z = k2 sinh b = n2 sinh b 2nn2 sinh b 2n sinh b (31-31) 

For the above example , Oz = A2/5 .21 .  Then the wave amplitude decreases 
by a factor of e over a distance of about A2/5. The transmitted wave 
barely penetrates into the second medium. The amplitude decreases by a 
factor of 183 over a distance equal to A2 ! See Fig. 31-3 . 

Applying again Fresnel's equations from Sec. 30.4, 

2 cos (}J . <I> 1-= [cos2 (}J + (n2Inl)2(sin2 (}T - 1)] 112 exp J 2" 

2 cos () J • <I> 1-
= [ 1  - (n2In l )2pl2 exp J 2" '  

(31-32) 

(31-33) 

(31-34) 

Figure 3 1-4 shows how this ratio varies in amplitude and in phase with 
the angle of incidence (}J. Its magnitude is equal to 1 .34 for the above 
case. 
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Fig. 31-3. The ratio 0/1.2 ' where {) is the depth of penetration for the transmitted 
wave and 1.2 is the wavelength in medium 2 divided by 2n, as a function of the 
angle of incidence ()/. 

Figure 31-5 shows "crests" of E for the three waves in one specific 
case. 

Let us calculate HT. Since the transmitted wave is not unifonn, HT is 
not transverse (Prob. 31-1) .  Then Fig. 30-2 is of no use to calculate HT. 
The vector E is normal to the plane of incidence. From Secs. 28.2. 1 and 
28 .2.2, and with axes chosen as in Fig. 31-1 , 

1 .0 

O.O ��-L __ �� __ � ____ � ____ L-__ � ____ � __ � 
0.0 0.5 1 .0 1 .5 2.0 

f.'ig. 31-4. The ratio (ETm/ E/m),- = !; + j1j, plotted in the complex plane for 
various angles of incidence (}/ larger than the critical angle, and for nl/nZ = 1 . 50. 
('he amplitude of the transmitted wave is largest at the critical angle. The 
t ransmitted wave leads the incident wave by the angle cpo 



586 

- -
Air 

Fig. 31·5. "Crests" of E for the incident, reflected ,  and transmitted waves for 
n, = 3.0, n2 = 1 . 0, ()[ = 75". 

Then 

Since 

then 

(sin fJTx - cos fJT z) X ETy 
Zz 

(cos fJT X + sin fJT z)ET 
Zz 

H _ ETm Tm - Zz ' 

precisely as when fJT is real and HT transverse. Also, 

H2 H2 - H2 ( 2 fJ . 2 fJ ) - H2 Tmx + Tmz - Tm cos T + sm T - Tm' 

(31-35) 

(31-36) 

(31-37) 

(31-38) 

(31-39) 

(31-40) 

If Ej is parallel to the plane of incidence , the formalism is again the 
same as when fJT is real . 

Since sin fJT is real and positive while cos fJT is imaginary and negative, 
the x component of HT lags the z component by :rr/2. The HT vector 
rotates at the angular velocity co, as in Fig . 31-6. 
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Fig. 31-6. The H vector of the transmitted wave rotates in the direction shown. 
l'he transmitted wave travels to the left, and the rotation is the reverse of that of 
,t wheel rolling on the interface. 

There exists a power flow parallel to the interface in the posItIve 
Jirection of the x-axis .  The flux is a function of fJ/> as in Fig. 31-7 ,  for E 
normal to the plane of incidence: for n2 = 1 ,  

All this applies to  an incident wave of infinite extent, but  what happens 
I f  the incident wave has a finite cross section? Our analysis cannot 
provide an answer to this question . What happens is this: an incident ray 
penetrates into medium 2 and returns to medium 1 a bit farther along the 
r-axis . This is the Goos-Haenchen shift. t 

t See Helmut K. V. Lotsch, Optik, vol. 32, pp. 1 16, 1 89, 299, 553 (1970 and 197 1 ) .  There 
exists an analogous phenomenon in acoustics. See H. L. Bertoni and T. Tamir, Applied 
Physics , vol. 2 ,  p. 1 57 (1973) . 
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Fig. 31·'. The time-averaged Poynting vector parallel to the interface in medium 
2 is proportional to cos (}I sin 2(}1 for total reflection . The vector E is normal to 
the plane of incidence. We have set n1 = 1 . 50 and n2 = 1 . 00. 

Example LIGHT EMISSION FROM A 
CATHODE RAY TUBE 

In a cathode ray tube the electron beam generates light in a 
fluorescent coating deposited on the back of the tube face. A 
given point in the fluorescent material radiates in all directions, 
but a thin layer of aluminum , as in Fig. 3 1 -8, doubles the light 
output. Even then, most of the light stays trapped inside the glass 
by total reflection and travels back to the gun end of the tube. 

What fraction F of the light comes out through the tube face? 
This is easy to calculate if we assume that inside the cone of angle 

Fig. 31·8. Section through the face of a cathode ray tube. 
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Example 

(}Ic all the light crosses the glass-air interface. This is not a bad 
approximation because the coefficient of transmission is close to 
unity, except near the critical angle. Then F is the solid angle 
corresponding to (}Io divided by 27r (not 47r, because of the 
mirror) . Since the cone defines a solid angle equal to the area of 
the spherical segment, shown as a dashed line in the figure , 
divided by R2, 

F = � lelc _27r_R_s_in
--;:-

(}_R_d_(} 
Z 1 - cos (}lc . 

27r 0 R 
(31-42) 

For a glass whose index of refraction is 1 . 5 ,  (}lc = 4l .8° and 
F = 0.255. The fraction F is, in fact , even smaller because of our 
approximation . 

THE CRITICAL ANGLE AND 
THE BREWSTER ANGLE 

The critical angle (Sec. 31 .2) is somewhat larger than the Brewster 
angle (Sec. 30.5) .  For example, again for light propagating inside 
a glass with an index of refraction n1 of 1 .5 ,  the wave is totally 
transmitted into the air at a glass-air interface when the angle of 
incidence is the Brewster angle, 33. r, and it is totally reflected 
back into the glass beyond the critical angle of 41 .8°. 

Figure 31-9 shows these two angles as functions of the ratio 
nJn2• For large values of n1/n2, that is, for light incident in a 

Total reflection 
60' 

o �--------� ____ � __ � __ �� __ ��� I 

n, 

Fig. 31-9. The critical angle and the Brewster angle as functions of 
the ratio n,/nz. The incident wave is linearly polarized with the E 
vector parallel to the plane of incidence for the Brewster angle 
curve. 
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relatively "dense" medium, Ble is nearly equal to BIB. For media 
with more similar indices of refraction , the Brewster angle 
approaches 4SO whereas the critical angle approaches 90°. 

For a wave polarized with its E vector parallel to the plane of 
incidence, the amplitude of the reflected wave changes rapidly 
when the angle of incidence lies between the Brewster angle and 
the critical angle. This peculiar behavior of the reflected and 
transmitted waves could be useful for measuring small angular 
displacements. 

3 1 .3  SUMMARY 

In a nonuniform plane wave, propagation occurs 10 the direction 
perpendicular to the equiphase planes, and the amplitude decreases 
exponentially in a different direction . Then the vector wave number is of 
the form 

k = fJ - ja, (31-4) 

where a and fJ point in different directions , with 

(31-8) , (3 1 -9) 

() being the distance over which the amplitude decreases by a factor of e. 
Normally , the magnitude A of an angle is a real number. By extension, 

A can be any complex number. Then 

. exp jA - exp (-jA) sm A = 2j , exp jA + exp (-jA) cos A = 2 ' (31-14) 

sin2 A + cos2 A = 1 ,  (31 - 15) 

Total reflection occurs at angles of incidence larger than the critical 
angle given by 

Then (JT is complex: 

where b is defined by 

. (J n2 sin Ie = - . n l 

sin (JT = cosh b 

(31-17) 

(31-2 1 )  

(31-20) 
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Then 
cos 8T = -j sinh b = -j(sin2 8T - 1) 112. (31-22) , (31-23) 

Total reflection is lossless. but there is a phase shift 

(31-28) 

The transmitted wave is nonuniform. It propagates parallel to the 
interface and its amplitude decreases exponentially perpendicular to the 
i nterface with an attenuation distance 

D = 
A2 

z 2:n: sinh b (31-31) 

Also, 

(31-34) 

PROBLEMS 

.1 1 -1 .  (31. 1 )  A nonuniform plane electromagnetic wave is not transverse. 
We define a transverse wave as one in which E and H are both 

perpendicular to the two vectors a and fl. 
(a) Write out Maxwell's equations for a plane sinusoidal wave in free 

space, replacing V by jk and a/ at by jw. Note that k • E is always equal to 
zero. Since the vector k is complex, it has no specific orientation in space, 
except that it lies in the plane defined by the vectors a and (1 

(b) Suppose that H is transverse: H = Hr., where r. . a = 0 and r. . fl = O. 
Show that E is then not transverse. Similarly, if E is transverse , then H is 

not transverse . 

\ 1-2. (31 .2) Total reflection as in Fig. 31-5 
An electromagnetic wave polarized with its E vector normal to the plane 

of incidence is totally reflected as in Fig. 31-5 at the interface between a 
dielectric whose index of refraction is 3 .0 and air. The angle of incidence is 
75°. 

(a) Calculate bz/1'2 and b)l 'l '  
(b) Calculate the phases of the reflected and transmitted waves with 

respect to the incident wave at any point on the interface. 
(c) Check the continuity of E across the interface. 

\ !  -3. (31 .2)  The Poynting vector for the transmitted wave 
Check the value of [fT. av]. given in Sec. 31 .2 .2 ,  for n2 = 1 .  

\ 1 -4 .  (31. 2) Total reflection on a plasma when w / wp < 1 
Show that a wave incident on an ionized region is totally reflected if 

w < w,, ,  where wp is the plasma angular frequency (Sec. 29.2 .3) .  
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31-5. (31 .2) The phase shifts <1> 11 and <1> .L  in total reflection 
(a) Show that 

(b) Show that 

(c) Plot <1> .L - <1>11 as a function of (Jl between 40° and 90° for nl = 1 . 5  and 
n2 = 1 .  

3 1-6. (31.2) The transmitted wave when E i s  parallel to the plane of incidence 
Show that (ETm) = 2

2 lI2 expj(<1>II _ �) . Elm II [(n2/n l) + 1]  2 2 

31-7. (31.2) Scintillation particle detector 
Figure 31-10 shows one type of scintillation particle detector. A scintillator 

S, usually made out of a single crystal of sodium iodide or of a suitable 
transparent plastic embedded in a reflector R, emits light when it is 
traversed by an ionizing particle such as an electron. A photomultiplier PM 
detects the emitted light. 

The scintillator has an index of refraction n 1 and is fixed to the face of the 
photomultiplier with a cement C of index n2 < n I .  Light is emitted in all 
directions in the scintillator, but only a fraction F reaches the 
photomultiplier. 

(a) Calculate F as a function of n l/n2 , assuming that T = 1 for angles of 
incidence smaller than the critical angle and that the scintillator is 
surrounded by a nonreflecting substance. 

(b) Draw a graph of F for values of n2/nl ranging from 0 . 1  to 1 .0.  

31-8. (31. 2) Total reflection in light-emitting diodes 
In light-emitting diodes (LEDs), radiation occurs in a junction plane 

within a semiconductor whose index of refraction is quite large. For 
example, with GaAsP, n = 3. 5 .  Total reflection at the semiconductor-air 
interface limits the efficiency of LEDs to a few percent. 

(a) Calculate the critical angle. 

PM 

Fig. 31-10. 
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(b) Plot curves of 111 and T� for n Jn2 := 3.5 .  Note that the transmission 
coefficients are equal and approximately independent of the angle of 
incidence when 81 is small. Identify the Brewster angle. 

(c) Assume that the face of the semiconductor is flat and parallel to the 
junction. The index of refraction is n. 

Calculate the fraction F of the light emitted at the source that reaches the 
surface at an angle smaller than the critical angle. Show that F "'"  1/(4n2). 

(d) Show that FT "'" l/ [n (n + In 
(e) Calculate F, T, and FT for n := 3. 5. 
(f) Calculate FT for an LED situated at the center of a hemisphere 

whose index of refraction is the same as that of the semiconductor. This is 
impractical because shaping the semiconductor is expensive. 

(g) LEDs are usually covered with a hemispherical transparent resin 
whose n is about 1 . 6. 

Calculate the two transmission coefficients and the efficiency. The 
efficiency is improved ,  but it is still very low. 

31-9. (31 .2) The H vector of the transmitted wave 
We found that the x and z components of the HT vector of the 

transmitted wave are in quadrature when there is total reflection with the 
E vector normal to the plane of incidence. 

Show that the vector rotates in the direction shown in Fig. 31-6. 
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Reflection and refraction at the surface of a good conductor are 
somewhat similar to total reflection in that the angle of refraction is again 
complex . However, with good conductors, the imaginary part of ()T is 
negligible and ()T = O. Then the transmitted wave is approximately 
uniform, but highly attenuated. 

Radiation pressure on a conductor results from a Hall effect on the 
conduction electrons moving in the magnetic field of the wave. 

t This chapter is a prerequisite only for Chap. 34. 
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, }, 

Fig. 32·1. The incident , reflected , and transmitted waves at the interface between 
a dielectric and a good conductor .  The E vector of the incident wave is normal to 
the plane of incidence . 

32 . 1  REFLECTION AND REFRACTION AT THE 
SURFACE OF A GOOD CONDUCTOR 

As previously. the incident and reflected waves lie in medium 1. Here, 
medium 1 is a dielectric, while medium 2 is a good conductor, as in Figs. 
32-1 and 32-2 . 

Equations 30-17 to 30-20 apply to any pair of linear and isotropic 
media. We may therefore write that 

(32-1 )  

Fig. 32·2. Reflection and refraction a t  the surface of  a good conductor. The E of 
t he incident wave is parallel to the plane of incidence . 
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ER = ERm exp j(wt - klx sin 8[ - k l z  cos 8[) ,  

E T  = ETm exp j( wt - k1x sin 8[ + k2z cos 8T) 

(32-2) 

(32-3) 

= ETm exp j{ wt - k l x  sin 8[ ± k2z I I - c�r sin2 8[ f
2

} .  (32-4) 

Now, from Sec. 29. 1 ,  
n l

= 
k l  

= 
W(E IIl I ) 1f2(j 

n2 k2 1 - j (32-5) 

(1 - j)Al . (32-6) 

We shall assume that 
(j 

21121.
1 
« 1 or that (32-7) 

See Sec. 29. 1 .  Then the expression in brackets in Eq . 32-4 is approxi
mately equal to unity.  Then 

.( . (1 - nz) 
ET = ETm exp J wt - k l x  sm 8[ ± 

(j 
(32-8) 

(32-9) 

We select the plus sign before the z term so that ET will tend to zero as z 
tends to minus infinity. So we need a plus sign in Eq. 32-4, and for 
reflection from a good conductor, 

Therefore 

But 

Then 

l (n )2 
]

1/2 
COS 8T = + 1 -

n
: sin2 8[ = 1 ,  8T = O. (32-10) 

(32- 1 1) 

(32-12) 

(32- 13) 
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and the transmitted wave propagates into the conductor along the normal 
to the interface , whatever the angle of incidence. Also, the amplitude of 
the transmitted wave decreases by a factor of e over one skin depth (i. 

32. 1 . 1  E Normal to the Plane of Incidence 

Refer to Fig . 32-1 .  From Fresnel's equations with In1 /n2 1 «  1 ,  (ERm) _ (ndn2) cos ()l - cos ()T  _ 1 Elm -L - (ndn2) cos ()l + cos ()T - - (32-14) 

for any angle of incidence. Reflection from a superconductor (n2� oo) is 
lossless. The negative sign means that the E vector of the reflected wave 
is in the direction shown in Fig. 32- 1 ,  opposite to that shown in Fig .  30-2, 
because we based our calculation on the latter figure. 

Also , from Sec. 30.3 and from the fact that cos ()T = 1 ,  

(32-15) 

again for any angle of incidence ()l' 
At the surface of a dielectric such that n2 » n 1 one also has that 

(ERm) = - 1 , Elm -L 

J2. 1 .2 E Parallel to the Plane of Incidence 

Refer now to Fig .  32-2 . From Fresnel's equations 

(ERm) (ndn2) cos ()T - cos ()I Elm II 
= (ndn2) cos ()T + cos ()l 
= (ndn2) - cos ()l = - 1  (nl/n2) + cos ()l . 

(32-16) 

(32-17) 

l'he last approximation is not valid at grazing incidence , where ()I is close 
t o  90° .  Also , (ETm) 2(nl /n2) cos ()l Elm II = cos ()l + (ndn2) cos ()T 

2nl 2n l(i = - = -. = n 1(i ( 1  + j). n2 1 - ] 

l'he approximation is again invalid at grazing incidence. 

(32-18) 

(32- 19) 
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COMMUNICA TING WITH SUBMARINES AT SEA 
For shore-to-ship communication with the submarine antenna 
submerged, the efficiency is very low, first, because of the large 
coefficient of reflection at the surface of the sea and, second, 
because of the high attenuation in seawater. The attenuation in 
seawater is about 172 decibels/meter at 20 megahertz, 5.5 at 
20 kilohertz, and 0.33 at 75 hertz. One solution is to operate at low 
frequencies (about 75 hertz and 17 to 25 kilohertz) and very high 
power, with huge transmitting antennas, many kilometers on the 
side . 

Another solution for shore-to-ship communication is to modu
late a laser beam emitted by a satellite, seawater being quite 
transparent to blue-green light. Remember that our discussion on 
the propagation of electromagnetic waves in conductors disregards 
atomic and molecular phenomena and is valid only up to roughly 
1 gigahertz. Optical frequencies are of the order of 101' hertz. 

Ship-to-shore communication at low frequencies is impossible 
with long radio waves because a submarine can neither supply the 
required power nor deploy a long enough antenna. Two-way 
communication takes place at a few megahertz with the submarine 
antenna projecting above the water. 

STANDING WAVES AT NORMAL INCIDENCE ON 
A GOOD CONDUCTOR 

Figure 32-3 shows the incident, reflected, and transmitted waves. 
Since the direction of propagation of the reflected wave is opposite 
to that of the incident wave , and since E X  H points in the 
direction of propagation,  the H of the reflected wave is in phase 
with that of the incident wave at the interface , as in the figure. At 
the reflecting surface , the electric fields nearly cancel and there is 
a node of E; the magnetic fields add , and there is a loop of H, as 

/' z Iy 
Fig. 32-3. Reflection at normal incidence from the surface of a 
good conductor: ERm = - Elm and ETm « Elm ' 
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Fig. 32·4. The standing wave pattern for reflection at normal 
incidence on a good conductor, at a particular time. Nodes of E 
and of H are spaced A/4 apart. 

in Fig. 32-4. The nodes of E and H are thus one-quarter 
wave-length apart. The energy density is uniform. 

A similar situation exists for reflection from any surface. Either 
the E or the H vector must change direction on reflection, in order 
to change the direction of the Poynting vector E X H. 

*32.2 RADIATION PRESSURE ON A 
NONMAGNETIC GOOD CONDUCTOR 

*32.2 . 1 E Normal to the Plane of Incidence 

With E normal to the plane of incidence, E is tangent to the interface , 
there are no surface charges, and there is no surface force . 

In the body of the conductor the current density J is aET. Thus J is 
parallel to ET and perpendicular to HT. It turns out, as we shall see, that 
the Qv x /-loll force pushes the conduction electrons away from the 
surface . This is just another manifestation of the Hall effect of the first 
example in Sec. 22. 1 . 1 .  The resulting electric force per unit area is the 
radiation pressure. 
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The situation would be different if the conduction electrons were 
entirely free to move through the metal: the conductivity would then be 
imaginary, as in the low-pressure ionized gases of Chap. 29, the 
conduction current would lag the field by n /2 radians , and there would 
be zero radiation pressure. In a superconductor a is real and tends to 
infinity, {j tends to zero , and the following discussion applies. 

We set 

(32-20) 

as in Sec. 32. 1  except that, now, !lr2 == 1. We consider an element of 
volume, as in Fig .  32-5, parallel to the interface , of area ab and thickness 
dz. It carries a current aETb dz and is subjected to a magnetic force 
aETab dz !loHT in the negative direction of the z-axis . Then the 
instantaneous pressure exerted on the element of thickness dz is 

(32-21) 

with the posItive directions for ET and HT chosen as in Fig. 32-5 . A 
positive result will show that the incident wave pushes on the conductor .  

From Eq. 32-13, the phasor for ET is 

E T == E Tm exp [j ( wt + �) + � ] ' 
while the corresponding phasor for HT follows from Sec. 29. 1 :  

/ z 

/ / 

': 1 " ' I,  
, I  

" \l y 

Fig. 32-5. Element of volume of thickness dz inside a conductor. 

(32-22) 
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( a ) 112 ( lr) 1 -j HT = -- exp -j - ET = --ET· wilD 4 wilDeS 
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(32-23) 

The value of ETm depends on the polarization of the incident wave . 
The time-averaged value of the element of pressure on a sheet of 

thickness dz inside the conductor is thus 

and 

_ 1 ( * _ 1 ( 1 + j *) dpav . .l - 2 all 0 Re ETH T) dz - 2 all 0 Re ET wilDeS ET dz 

a 2 2z 
= 2weS IETm l  exp b dz 

(32-24) 

(32-25) 

(32-26) 

However, we need P .l in terms of the input power flux (Sec. 28.4) 

(32-27) 

So we express P.l first in terms of Elm and then in terms of Yl,av' From 
Sec. 32. 1 . 1 ,  

(32-28) 

even at grazing incidence . Then 

(32-29) 

with 

(32-30) 

both media 1 and 2 being nonmagnetic. Then 

a (WEI )  2 2 2 (11 1) 11
2 

P .l , av = -;;; -;;- cos (Jl Elm = 2El cos (Jl � Ylav 

= 2( E 111 1)1/2 COS2 (JlYlav ' (32-31) 

Substituting the index of refraction nl of medium 1 for E�:2 and setting 
11 1 = 110 yields 
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2nl 2 , 2 P 1- av = - COS 8/:fl av = 2't COS 81> • C • (32-32) 

where 't' is the energy density in the wave. 

*32 .2 .2  E Parallel to the Plane of Incidence 

We do not go through the calculation here. As one might guess, the 
pressure is the same as above . However , the calculation is somewhat 
tricky:  there are now two forces ,  a magnetic force (as above) plus an 
electric force exerted by the electric field in the dielectric on the surface 
charge . 

*32 .2 .3  The Momentum Flux Density and the Momentum 
Density in an Electromagnetic Wave 

Suppose medium 1 is a vacuum . Then at normal incidence the radiation 
pressure exerted on medium 2, the conductor ,  is 2:::fI,avlc. Since the 
conducting surface acts as a near-perfect reflector, the pressure cor
responds to a change in the momentum of the wave of 2:::fI. avlc per unit 
time and per unit area. Then, in the incident wave, 

Now 

ft d . :::fl ay Momentum ux enslty = -'- . c (32-33) 

Momentum flux density = momentum volume density x c. (32-34) 

It follows that, in a uniform plane electromagnetic wave propagating in a 
vacuum , 

. :::flav ErmsHrms energy density Momentum volume denslty = -2- = 2 (32-35) c c c 

These results agree with those of atomic physics , where we associate 
electromagnetic waves with photons of energy liw (Ii = 1 . 05 x 10-34 is 
Planck's constant divided by 2n) and momentum Ii/A traveling at a speed 
c. Thus, for one photon, 

Momentum Ii/A 1 1 (32-36) Energy liw Aw c 

At the beginning of Sec. 32.2 we restricted ourselves to nonmagnetic 
media and assumed a magnetic force of the form Qv X /-loll. What if the 
conductor is magnetic? The pressure is the same , for otherwise there 
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would not be conservation of momentum. This is a proof that the 
magnetic force is independent of Il-r for slow electrons. 

One interesting application of the momentum flux in an electromag
netic wave is the levitation of transparent particles in a vertical light 
beam. See Prob . 32-14 . t  

*32 .2 .4  The cos2 8[ Term in the Expression for 
the Radiation Pressure 

It is easy to explain the presence of the cos2 8/ term in the radiation 
pressure if one imagines photons raining on the surface of the conductor.  
Let medium 1 be a vacuum . Say their e nergy density is  '{;' joules/meter3• 
Then ::I is equal to '{;'e, their momentum density is '{;' /e, and their 
momentum flux density is '{;' .  The change in the component of the 
momentum flux density normal to the interface is 2 '{;' cos 8/. 

Suppose the incident beam has a cross-sectional area of 1 meter2. It 
illuminates an area of l/cos 8/ meters2 . Then 

Examples 

(32-37) 

Under ordinary circumstances, radiation pressure is weak and 
difficult to observe. In sunlight, at the top of the atmosphere, Y'l."v 
is about 1 . 4  kilowatts/meter2, and the radiation pressure on a 
metallic reflector is about 10-5 pascal , or about 10- 10 atmosphere. 

At the surface of the sun, the radiation pressure is larger by the 
factor (Distance from sun to earth) 2 (' 1 . 5  x 101 1 ) 2 4 . = = 4 .6  x 10 . 

RadIUs of sun 7 x 10" 

(32-38) 

This gives a radiation pressure of only 5 x 10-6 atmosphere . 
Radiation pressure is unimportant even in the interior of the sun ,  
but i t  may play an important role in the more luminous stars. 

Comet tails point predominantly away from the sun .  This 
phenomenon results partly from radiation pressure and partly 
from the solar wind (Prob . 28-12). 

A photon-drag detector consists of a crystal of germanium with 
electrodes plated on each end. When the beam of a powerful CO2 
laser passes through the crystal along its axis, the conduction 
electrons drift forward. The voltage difference between the 
electrodes is a measure of the beam power. See Prob. 32-12. 

t A .  Askin, Science, vol . 210,  p .  I OX I  ( I 'JXO) .  
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*32 .3  THE ELECTROMAGNETIC MOMENTUM OF 
STATIC FIELDS 

We have seen above that an electromagnetic wave possesses a momen
tum density that is proportional to E X H, at least in a vacuum . Two 
questions come to mind. ( 1 )  What if the frequency is zero? The vector 
product makes no reference to frequency. Does this expression apply to 
static fields? (2) In an electromagnetic wave, there exists a mathematical 
relation between E and H: given E, H follows, and inversely. However , 
in static fields, E bears no relation to H. For example, the electric field 
might be that of some charged body and the magnetic field that of a 
permanent magnet . Does the above expression apply to any pair of 
unrelated E and H fields? Say one brings a permanent magnet near a 
charged capacitor .  Does the field possess momentum? What if the 
voltage across the capacitor is time-dependent? Is the field momentum 
also time-dependent? 

The answer to these two questions is by now well established: the 
momentum density of any electromagnetic field in a vacuum is E X H / c2• 
This fact has been demonstrated by thought experiments in which one 
establishes a field where E X H is not zero , taking into account the 
magnetic forces and torques, as well as the mechanical forces and torques 
required to keep the system immobile . To satisfy the law of conservation 
of angular momentum , the mechanical torque integrated over time is 
equal to the angular momentum of the field. In this way one always finds 
that the electromagnetic momentum density is E x  H/c2 in a vacuum. 
See Prob. 32-15 .  

32.4 SUMMARY 

Reflection at the surface of a good conductor is slightly lossy. The 
transmitted wave is weak, highly damped, and travels in a direction 
nearly perpendicular to the interface . 

When electromagnetic radiation illuminates a conductor, the trans
mitted wave's electric field gives rise to a conduction current that flows in 
the wave's magnetic field , with the result that the cloud of conduction 
electrons is pushed back. This is essentially a Hall effect and shows up as 
radiation pressure: 

(32-32) 
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Alternatively, radiation pressure results from the fact that the normal 
component of the momentum of the incident wave reverses upon 
reflection. 

In any electromagnetic field, static or not, the momentun density in a 
vacuum is E X H / c2• 

PROBLEMS 

,)2-1 .  (32. 1 )  Reflection from a good conductor 
Draw two figures similar to those of Fig. 30-4, showing E and H for an 

electromagnetic wave incident on a good conductor. You will ,  of course, 
have to exaggerate the values of Em and of A in the conductor. Be sure to 
show the phases correctly . Show X-, y- ,  z-axes on both figures to relate one 
with the other. 

,)2-2. (32. 1 )  Reflection from a good conductor 
Show that, for a good nonmagnetic conductor in air, 

This latter relation is not valid at grazing incidence , where cos 01 tends to 
zero, 

A good conductor is a better reflector when E is normal to the plane of 
incidence. High-quality metallic reflectors have coefficients of reflection of 
about 90% near normal incidence in the visible, with unpolarized light. 

)2-3 . (32. 1 )  I ERm/ Elm I as a function of the angle of incidence for reflection on a 
conductor 

For a good conductor, a/wE � 50. Then 

So 1..0/ b � 10 if E, = 4 and /J, = 1 .  
Plot IERm/Elm l "- and IERm/Elm l l l as functions of 01 for a nonmagnetic 

good conductor in air and for Ao/b = 10. You will find that, when E is in the 
plane of incidence, there exists a pseudo-Brewster angle for which the 
amplitude of the reflected wave is minimum. 

12-4. (32. 1 )  Liquid-crystal displays (LCDs) 
In liquid-crystal displays the liquid is sandwiched between a transparent 

multiple electrode in front and a single black electrode in the b ack. Upon 
application of a voltage to a portion of the front window, the rodlike 
molecules of the nematic fluid in that region stand perpendicular to the 
window, and one can see the black electrode in the back. Elsewhere , the 
molecules reflect light because their orientations are haphazard. 
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The transparent mUltiple electrode is a thin coating either of a semicon
ducting metal oxide, such as tin oxide , or of gold. The surface resistance 
(Prob. 4-9) is of the order of 10 to 100 ohms per square. At 
600 nanometers, and for gold, (3Ao = 1 . 29 and frAo = 2. 59. The conductivity 
of gold in the form of a thin film is 4.26 x 107 siemens/meter. 

(a) Calculate the skin depth D. 
(b) By what factor does the amplitude decrease in the gold film if its 

thickness s is 0 .05/)? 
( c )  What is the surface resistance? 
(d) Calculate the thickness of the film in wavelengths Ao. 
A proper calculation of the transmission would take into account 

multiple reflections. The effect of mUltiple reflections is, however, much 
less than in Prob. 30-10 because of the attenuation in the film. 

32-5. (32. 1)  The surface impedance of a conductor 
By definition, the surface impedance of a conductor is equal to the ratio 

of the tangential components of E and H at the surface, or to E,/ H,. 
(a) Show that the surface impedance of a good conductor is given by ( 0)/1)1/2 . 1 + j 

Z, = 2a 
(1 + J ) = aD 

. 

The quantity 1 /  aD corresponds to the surface resistance of Prob. 4-9. For 
copper, 1/ aD is equal to 0 .261 miliohm per square at 1 megahertz, from 
Table 29-1 .  

(b) Show that the power dissipated per square meter in  the conductor is 
H;.,msi aD. 

Now we saw in Prob. 19-4 that H, is equal to the current per unit width in 
the conductor. It follows that the power dissipated in the conductor is the 
same as if the current were uniformly distributed throughout the thickness 
D. 

32-6. (32. 1 )  Cutting steel plate with a laser beam 
Figure 32-6 shows a laser beam cutting a steel plate, 
(a) Why does the beam cut at a faster rate when the E vector lies in the 

plane of the paper than when it is perpendicular? 
(b) Roughly what percentage of the beam power serves to heat the steel 

in the former case? 
(c) Can you explain why the kerf is narrower and more even when E is 

in the plane of the paper? 
If the required kerf is not straight, then the laser should rotate to keep 

the E vector of the beam parallel to the path. A simpler solution is to use a 
circularly polarized beam. 

32-7. (32. 1 )  The standing wave at normal incidence on a good conductor 
Show that the electromagnetic energy density in a plane standing wave at 

normal incidence on a good conductor is uniform. 

32-8. (32. 1 )  Multiple reflections in a dielectric plate backed by a conductor 
An electromagnetic wave falls at an angle of fiT on a slab of dielectric that 

is backed by a good conductor. 
Under what condition is there a single reflected wave? 
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Laser beam 

Steel plate Fig. 32·6. 

32-9. (32. 2) The radiation force on a sphere 
Calculate the radiation force on a reflecting sphere of radius R in terms 

of the Poynting vector of the incident radiation. 

32-10. (32. 2) The radiation force on a cylinder 
Calculate the radiation force per unit length on a cylinder of radius R 

whose axis is perpendicular to the Poynting vector of the incoming 
radiation . 

32- 1 1 .  (32. 2) Radiation pressure and comet tails 
(a) Compare the gravitational and radiation forces exerted by the sun 

on a spherical particle of radius a whose density is 5000 kilograms/meter3• 
The sun radiates 3 .8  X 1026 watts. See the Table of Physical Constants at 
the end of the book. Assume that the particle is black. 

(b) Calculate the value of a for which the two forces are equal. 
You should find that particles smaller than about 0 . 1  micrometer in 

radius are repelled at any distance from the sun. This explains why comet 
tails that consist of fine particles point away from the sun. Such comets 
are said to be Type 2. We have disregarded diffraction, which is 
important when a � A. 

The tails of Type 1 comets are gaseous. They also point away from the 
sun , but for a different reason. The force then arises from an interaction 
between this gas and the solar wind (Prob. 28-12) , which consists of 
ionized hydrogen that evaporates from the sun. 

32-12. (32. 2) Photon-drag radiation monitor 
Figure 32-7 shows a schematic diagram of a photon-drag radiation 

monitor. These devices are used to monitor the intensity of powerful laser 
pulses. The beam enters on the left, through an antireflection coating 
(Prob. 30- 14) and a transparent electrode (Prob. 32-4) . The body of the 
monitor is a single crystal of semiconductor that is quite transparent at the 
wavelength used. The beam exits on the right where there is, again, an 
antireflection coating and a transparent electrode, in that order. 

Radiation pressure in the semiconductor propels the charge carriers to 
the right. If the carriers are electrons, the electrodes become charged, as 
in the figure , and the voltage V is a measure of the beam power. 
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o x Fig. 32·7. 

These monitors have a short response time, of the order of 
1 nanosecond. They are made in various sizes, with crystals of the order 
of 1 centimeter in diameter and a few centimeters long. The crystal 
absorbs about one-quarter of the pulse energy. The peak power density 
can be as high as 20 megawatts/centimeter2• 

Find the ratio V I Y'm. Set Y' = Y'm exp (-ax) inside the crystal . 

32-13. (32. 2. 2) Radiation pressure with E in the plane of incidence 
Show that the radiation pressure on a nonmagnetic good conductor, 

when E lies in the plane of incidence, is the same as in Sec. 32.2 . l .  In this 
instance there is both a magnetic force within the conductor and an 
electric force on the surface charges. Use Gauss's law to find or' 

32- 14. (32. 2. 3) The levitation of transparent particles in a laser beam 
Figure 32-8 shows a simplified diagram of a device for levitating 

transparent particles in a laser beam. The particles can range from 1 to 
100 micrometers in diameter. The light intensity is maximum on the axis 
of the beam and tapers off on either side. The particle stays on the axis of 
the beam at a fixed height. 

(a) Show qualitatively that, if the particle strays away from the axis, it 
suffers a restoring force . The axis is therefore a position of equilibrium. 
You can show this by sketching the paths of two rays that enter the 

1 
Fig. 32·8. 
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particle from below, one to the left of the particles' center and one to the 
right. Refraction deflects the rays and hence changes their momenta. 

(b) Show that for a given beam intensity the vertical position of the 
beam is also stable. A reflecting particle is ejected laterally. 

32- 15 .  (32. 3) The angular momentum of an electrically charged permanent 
magnet 

The field of an electrically charged permanent magnet possesses an 
angular momentum because E is radial, while H points approximately in 
the iJ direction, so that E X H is azimuthal. 

We first calculate the value of the momentum from the known values of 
E and H, and we then show that its existence follows from the law of 
conservation of momentum. 

Imagine a conducting sphere of radius R whose magnetization M is 
uniform. You may take for granted that outside the sphere the magnetic 
field is the same as that of a small magnetic dipole of moment 1nR3M 
situated at the center. The sphere carries a charge Q. 

(a) Find the angular momentum of the field. 
(b) Calculate the value of the angular momentum L for R = 

20 millimeters and M = 106 amperes/meter when the sphere is charged to 
a potential of 1000 volts. Could the sphere be useful as a gyroscope? 

(c) Now let us start with an uncharged sphere and gradually deposit 
charge on it by means of an axial ion beam . Charge flows in at the north 
pole and distributes itself uniformly over the surface of the sphere. The 
magnetic field exerts a torque Tmag on the charging current. To prevent 
the sphere from turning, the support exerts an opposing mechanical 
torque Tmech such that 

dL 
Tmech = - Tmag = --;;t . 

Choose polar coordinates with the north pole at () = o. 
Show that the downward surface current density at () is 

a =  
1 + cos () dQ 

4nR sin () dt . 

(d) Now show that Tmag = -dL/dt, as above. 
We have calculated the torque exerted by the magnet on the current . 

There is no torque exerted by the current on the magnet for the following 
reason. The equivalent currents on the spherical surface of the magnet 
are azimuthal , and any force exerted on them has a zero azimuthal 
component . 
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I n  Chaps. 28 and 29 we studied the propagation of electromagnetic waves 
in an unbounded region . Then in Chaps. 30 to 32 we investigated the 
reflection and the refraction of plane waves at the interface between two 
media. 

We now study how electromagnetic waves can be guided in prescribed 
directions by waveguides, first metallic guides in Chaps. 33 and 34, and 
then dielectric guides in Chaps. 35 and 36. 

In this chapter we first investigate some general properties of waves 
propagating in a straight line , but without making any assumption as to 
the way in which the field depends on the transverse coordinates. Then 
we study the coaxial and microstrip lines . 

There exist many types of waveguides. The most common is the coaxial 
line . It serves to interconnect electronic instruments and, in older 
systems, is used for long-distance telephony . Hollow metallic guides can 
operate at high power . They serve mostly for connecting antennas to 
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transmitters and receivers, in radar sets , for example . Metallic guides are 
lossy . Dielectric waveguides are nearly loss less and serve to transmit 
information over long distances. 

As we shall see , the coaxial and microstrip lines can transmit waves of 
any frequency , from zero to about 1010 hertz, while hollow metallic 
guides are narow-band devices that operate at frequencies of the order of 
10'1 hertz and higher. 

33 . 1  GENERAL PROPERTIES OF AN 
ELECTROMAGNETIC WAVE PROPAGATING 
IN A STRAIGHT LINE 

To simplify ,  we assume the six following conditions . 

( 1 )  The medium of propagation is homogeneous, isotropic, linear, and 
stationary (HILS) .  

(2) It i s  nonconducting. This does not exclude metallic guides, because 
the wave propagates along a metallic guide . 

(3) The free charge density is zero . This makes V ·  E = o. 

(4) Propagation occurs in a straight line, in the positive direction of the 
z-axis. There is no reflected wave traveling in the -z direction. 

(5) The wave is sinusoidal . 

(6) There is zero attenuation . If the guide is metallic, then its 
conductivity must be infinite to avoid louie losses. We shall see in Sec. 
34 .8 how to calculate attenuation with real conductors. 

We may therefore write that 

E = Em exp j(wt - kzz) = (EmxX + EmyJ + EmzZ) exp j(wt - kzz) ,  (33-1)  

H = H,1I expj(wt - kzz )  = (Hmxx + HmyJ + Hmzz) expj(wt - kzz ) ,  (33-2) 

where the coefficients Ernx, EmV' Emn H",X ' . . .  are unspecified functions 
of x and y. The dependence on z and t appears only in the exponential 
function. The wave number kz for the guided wave is reaL since there is 
zero attenuation. It is equal to 2:rr / An where Az is the wavelength of the 
guided wave. 

Let us substitute the above expressions for E and H into Maxwell's 
equations. Since V ·  E = 0, 
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oEmx
+ 

OEmy _  
ok E = 0  

ox oy ] z mz 0 

Similarly, V ·  B = 0, and 

From the fact that V X E = - oB / at, 

From V X H = aD/at, 

oHmz O
k H O E -- + ] z my = ]WE mx , oy 
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(33-3) 

(33-4) 

(33-5) 

(33-6) 

(33-7) 

(33-8) 

(33-9) 

(33-1 0) 

33 . 1 . 1  The Transverse Components are Functions of the 
Longitudinal Components 

We can now show that the four transverse components Emx , Emy , Hmx , 
Hmy are functions of the longitudinal components Emn Hmz o From Eqso 
33-6 and 33-8, 

(33- 1 1 )  

Here 

(33- 12) 

is the wave number of a uniform plane wave of wavelength A traveling in 
the medium o 
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We have assumed that kz 1= k for the moment. Both k and kz are real 
and positive. Similarly, 

(33-13) 

(33-14) 

(33-15) 

We use the subscript � to identify components that are perpendicular 
to the direction of propagation. Thus 

(33-16) 

More succinctly, 

Em� = k2 � k2 (kz V �Emz + W/l V X Hmzz), z (33-17) 

Hm� = e � k2 (kz V � Hmz - WEV X Emzz). z (33-18) 

So we need to solve the wave equation and apply the boundary 
conditions only for the two longitudinal components. Once that is done, 
the other four components will follow immediately. 

The longitudinal component of E satisfies the wave equation 27-70 with 
Pt = 0, Jt = O. So 

or 

Similarly , 

,iEmz ,iEmz 2 2 ---axz + ayz + (k - kz)Emz = 0, 

( V� + k2 - k;)Emz = O. 

a2Hmz + a2Hmz + (e _ e)H = 0 aX2 ay2 z mz , 

( �  + k2 - k;)Hmz = O. 

(33-19) 

(33-20) 

(33-21 ) 

(33-22) 

(33-23) 
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Applying the proper boundary conditions (Sec. 33 . 1 .4) yields the value of 
kz• 

33. 1 .2 TE and 
TM 

Waves 

It is convenient to consider separately three types of wave: ( 1 )  transverse 
electric (TE) waves, in which Emz = 0; (2) transverse magnetic (TM) 
waves, with Hmz = 0; (3) transverse electric and magnetic (TEM) waves , 
with Emz = 0, Hmz = O. 

With either TE or TM waves, it follows from Eqs . 33- 1 1  to 33-15 that 

Emx _ Emy 
Hmy Hmx (33-24) 

If kz is real and positive, as we have assumed, these ratios are also real 
and positive .  Then the components 

and Hy = Hmy exp j(wt - kzz)  (33-25) 

are in phase, and so are Ey and - H<. This fact , together with Eq . 33-24, 
implies that 

(33-26) 

and that the real parts of E 1- and H 1- are mutually orthogonal in both TE 
and TM waves. 

The ratio Em1-/Hm1- is the wave impedance. This is a real positive 
quantity if there is no dissipation: 

= 3 .76731 X 102 Az = 377 )'z Ao Ao ohms 

ohms (Er = 1, /1r = 1 ) .  

(33-27) 

(Er = 1 , /1r = 1 ) ,  (33-28) 

(33-29) 

(33-30) 

Here A and Ao are the wavelengths v / f of a plane wave of the same 
frequency f, and Az is the wavelength of the guided wave . 
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33 . 1 . 3 TEM Waves 

If kz = k in Eqs. 33- 1 1  to 33- 1 5 ,  the items in parentheses must be zero. 
The simplest way of satisfying this condition is to set both Emz and Hmz 
equal to zero. We then have a TEM wave. 

With TEM waves the wavelength Az of the guided wave is the same as 
that of a uniform plane wave in the same medium of propagation because 
kz is equal to k, so 

(33-3 1 )  

I f  the medium i s  air ,  then the phase velocity i s  c ,  whatever the geometry 
of the guide and whatever the frequency. Such a guide is distortionless 
because the various frequency components of a complex waveform all 
travel at the same velocity. t 

Setting Emz = 0, Hmz = 0 in Eqs. 33-6 and 33-9 gives 

The wave impedance is now 

Em = (E;"x + E�7y) 1I2 
= 
(!!:) 1/2 

H (HZ + H2 ) I/Z E m mx my 

= 377 ohms 

(33-32) 

(33-33) 

(33-34) 

The ratio (fl /E) ll2 is the characteristic impedance of the medium (Sec . 
28.5 .2) .  

The electric and magnetic energy densities are equal : 

EE2 flH2 
2 2 ' 

Also , the average Poynting vector is 

1 ( E ) l iZ g = l Re (E X H* ) = - - EZ i av Z . 
2 fl m 

watts/meter2 

(33-35) 

(33-36) 

(33-37) 

(33-38) 

t This is only approximately true. The conductivity of metallic waveguides being finite. 
there is attenuation and dispersion .  
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where 

(33-39) 

is the phase velocity. 
The magnitude of the time-averaged Poynting vector is equal to the 

energy density multiplied by the phase velocity. 

33 . 1 .3 . 1  V in TEM waves 

The uniform plane waves that we studied in Chap . 28 are TEM waves. 
We now study TEM waves that follow a conducting guide . 

In a TEM guided wave the electric field in a plane perpendicular to the 
direction of propagation is derivable from a potential, in the same way as 
an electrostatic field. We can show this as follows. 

Inside a conductor of infinite conductivity, E = 0, for otherwise J 
would be infinite . But V X E = -jwB, and thus B and H are also zero 
inside the conductor. Now let C be an arbitrary closed curve situated in a 
plane perpendicular to the z-axis . Since H is transverse in the medium of 
propagation and zero inside the conductor, there is zero longitudinal H 
and the magnetic flux linking C is zero. Thus 

f
c 
E ·  dl = exp j(wt - kz z) f

c 
Em ' dl == 0, 

fErn . dl = 0, 

and E is derivable from a potential : 

with 

(33-40) 

(33-41 )  

(33-42) 

(33-43) 

(33-44) 

If the waveguide is a hollow conducting tube , as In Fig. 33- 1 ,  the 
tangential component of E at its surface is zero , Vrn is a constant all 
around the tube , and the only possible solution inside is Vm = constant. 
Now, if Vm is constant throughout the inside of the guide , Em is zero , 
E = 0, and since V X E = -aBI at, there is no H wave either. Therefore 
TEM waves cannot travel inside a hollow conducting tube . 
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Fig. 33-1. Hollow conducting waveguide .  

This i s  not rigorously true because TEM waves are allowed if the 
wavelength is much less than the cross-sectional dimensions. For ex
ample , light goes through a straight length of metal pipe . We shall see in 
Sec. 34.4 that the TEM wave is then a limiting case of a TE wave. 

In the shielded-pair and parallel-wire lines of Fig. 33-2 and in the 
coaxial line of Fig. 33-4 the conductors need not all be at the same 
potential, v'n is a function of x and y as when the field is static , and E 
need not be zero , so TEM waves are possible . 

33 . 1 . 3 .2  A in TEM waves 

Applying the general expression for E that we found in Secs . 17 .7 and 
23-5 gives 

E = _ VV _ oA = _ OV i _ oV y _ ( OV 
Z + OA) 

at ax oy oz at ' (33-45) 

(h )  

Fig. 33-2. (a )  Shielded-pair l ine .  The outer cylinder i s  grounded . and there is a 
potent ial d ifference hctween the two w i n.''> .  (h )  Parallel-wire l ine . 
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where the expression between parentheses is equal to zero , from Eq . 
33-43 . Since A is of the same form as V (Eq. 33-44) , 

-jkz Vi + jwA = 0 or A = 
kz Vi. w (33-46) 

The vector potential A is therefore proportional to the scalar potential 
V in a TEM wave . Also , A is longitudinal, which means that the currents 
in a conducting guide for TEM waves are longitudinal . 

33 . 1 .4 Boundary Conditions at the Surface 
of a Straight Metallic Waveguide 

By hypothesis ,  the guiding structure comprises straight conductors of 
infinite conductivity, parallel to the z -axis . The cross section of the guide 
is therefore uniform . 

( 1 )  With any type of electromagnetic wave , E vanishes inside a perfect 
conductor. Then, because of the continuity of the tangential component 
of E at an interface (Sec. 10 .2 .3 ) ,  that component of E is zero close to 
the guide . For guides of finite conductivity ,  see Sec. 34. 8 .  

(2) Again for any type o f  wave , V X E = 0 inside the conductor ,  
jwB = 0 and B = 0, H = O. Then,  because of the continuity o f  the normal 
component of B at an interface (Sec. 20.8) ,  the normal component of B, 
close to a perfectly conducting guide , is zero. 

Once the tangential H is known, the surface current density a follows 
from the relation H = a X n (Prob. 19-4) , where n is the unit normal 
vector pointing away from the guide . The surface current density can be 
different from zero with E = 0 and a---+ XJ. 

In other words , close to the guide, H is tangent to the surface , 
orthogonal to a, and equal in magnitude to (Y. For example , with TM and 
TEM waves, H is everywhere transverse and the currents in the guide are 
longitudinal . 

(3) Finally, for TE waves, even with imperfectly conducting guides, 

(33-47) 

(33-48) 

With a perfectly conducting guide, Em L is normal to the surface and 
V Hmz is tangent, as in Fig. 33-3. Thus, the rate of change of Hmz in the 
direction normal to the surface , at the surface , is zero . 
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Fig. 33·3. Portion of a rectangular 
waveguide . With TE waves f'Hmz is 
tangent to the wall. 

In the coaxial line illustrated in Fig. 33-4, the wave propagates in the 
annular space between the conductors , and there is zero field outside . 
The medium of propagation is usually a low-loss dielectric. 

This type of guide normally carries TEM waves. Various TE and TM 
modes are also allowed, but only at wavelengths that are of the same 

x 

y 

Fig. 33·4. The E. H. and E X H vectors inside a coaxial line. 
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order of magnitude as, or smaller than , the diameter of the line 
(A. = 10-2 meter, f = lOlD hertz) .  Then the various modes travel at 
different velocities, and the line distorts complex waveforms . In practice, 
one operates at frequencies well below the threshold for the TE and TM 
modes, and coaxial lines are then nearly distortionless . 

Thus 
(33-49) 

and, from Eq. 33-42, ( oVm A oVm A) E = - ox x + oy y exp j(wt - kzz) .  (33-50) 

For a given t and a given z, E varies with x and y exactly as when the 
field is static. It  is radial and varies as 1/ P (Prob . 3-8) : 

E = � exp j(wt - kzz) p, 
P 

where C is a constant and 

1 1 k = - = W ( EII ) 112 = -z " ,....0 " ' z 

(33-5 1) 

(33-52) 

as for a uniform plane wave in the medium of propagation. We have set 
Il, = 1 since magnetic materials are lossy. 

The velocity of propagation is equal to w/kz . 
The potential of the inner conductor with respect to the outer 

conductor is 

where PI and PZ are the inner and outer radii of the annular region 
between the conductors. This is the line voltage. 

From the previous section, H is orthogonal to E and ( E ) liZ C A 
H = - - exp j(wt - kzz) q, /10 P 

The vectors E and H are as in Fig. 33-4. 

(/1, = 1). (33-54) 

The line current flowing along the surface of the inner conductor is 
related to H through the circuital law of Sec. 20.6 :  
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(33-55) 

(33-56) 

An equal current flows in the opposite direction along the inner surface 
of the outer conductor . If the medium of propagation is air, then 
C = 60Im . 

The Poynting vector E X H points in the direction of propagation, as in 
Fig. 33-4, and the average transmitted power is 

where 

Thus 

Also, 

( £ ) 1/2 c2 
Yay = 1 Re (E X H*) = - -2 i. 

110 2p 

p = £ 1 /2 � In P2 T r 120 PI 
watts 

(33-57) 

(33-58) 

(33-59) 

(33-60) 

The characteristic impedance of a coaxial line is the ratio "VI I when 
there is no reflected wave traveling in the -z direction: 

"If 60 P2 Z = - = - In -
I £;12 

P I  
ohms 

33 .3  THE MICROSTRIP LINE 

(33-61) 

Figure 33-5 shows a cross section of a micros trip line. It comprises a 
grounded conducting plane , an insulating sheet, and a conducting strip. 
The strip is gold or copper, plated onto the insulator, which is either 
alumina or fused quartz. 

Microstrip lines carry TEM waves. t They are particularly useful in 
printed and integrated circuits that operate at frequencies of about one to 

t This is an approximation; E and H also have longitudinal components. 
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s � D  
G 

Fig. 33·5. Cross-section 
of a micros trip line: 
G, ground-plane layer; 
D, dielectric substrate; 
S, conducting strip. 

tens of gigahertz. They have the advantage of being much less costly than 
either the coaxial line or the rectangular waveguide . Their main 
disadvantage lies in the fact that their field is not strictly limited to the 
region immediately below the upper electrode . Microstrip lines are 
therefore lossy and can interact with other elements in a circuit ,  unless 
they are either spaced or shielded properly. Losses are high , of the order 
of 0.5 decibel /millimeter.  

33. 4  SUMMARY 

In any electromagnetic wave propagating in a straight line, the transverse 
components of E and H are s imple functions of the longitudinal 
components. Using the subscript 1- for components that are perpendicu
lar to the direction of propagation, 

Eml. = 
k2 � e (kz Vl. Emz + Wf.1 V X Hmzz), z (33-17) 

Hml. = k2 � e (kz Vl. Hmz - WE V X Emzz) . z 
(33-18) 

The longitudinal components themselves satisfy the wave equations: 

( �  + k2 - k;)Emz = 0, 
( V� + e - k;)Hmz = O. 

(33-21 ) 
(33-23) 

There exist three types of wave: TE (Emz = 0), TM (Hmz = 0) , and 
TEM (Emz = 0, Hmz = 0) waves. 

In TE and TM waves, the real parts of E 1. and of H1. are mutually 
orthogonal . 

The wave impedances are 

Z = Em1. = (f.10) lf2 Az 
= 

377 Az 
TE H A 1/2 1 ' m1. E Er I\. 

(33-27) 

(33-29) 
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Here Az is the wavelength of the guided wave , and A is the wavelength of 
a plane wave of the same frequency in the medium of propagation. 

For TEM waves the wavelength Az of the guided wave is the same as 
that of a uniform plane wave in the same medium of propagation , 

and the wave impedance is 

Em _ ( /10) 112 377 -H - - ""' ---uz m E E, 

(33-31) 

ohms (33-33) 

The electric and magnetic energies are equal, and the magnitude of the 
Poynting vector is equal to the total energy density multiplied by the 
phase velocity . 

In a TEM wave , E is derivable from a potential : E = - VV. Also, the 
currents flowing in a conducting guide are longitudinal. 

The boundary conditions at the surface of a perfectly conducting guide 
are as follows : E lang�nlial = 0 , Bnorma' = 0, H,angemial = a X n, VHmz is 
tangential . 

Figure 33-3 shows a portion of a coaxial line. In the field, 

C 
E = - expj(wt - kzz) p, 

p ( E ) 1/2 C � 
H =  - - exp j(wt - kzz ) t/J , 110 P 

where C is a constant that fixes the amplitude of the field . 
The voltage , current, and power flow are 

( E ) 112 1 =  2:rcC - exp j( (V{ - kzz) ,  110 
The characteristic impedance of a coaxial line is 

ohms. 

(33-51 ) 

(33-54) 

(33-53) 

(33-55) 

(33-60) 

(33-61 )  

The velocity of propagation of a TEM wave in a coaxial line i s  the same 
as that of a uniform plane wave in the medium of propagation. 
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PROBLEMS 

33- 1 .  (33. 2)  The field inside a coaxial line 
(a) Sketch a rather large cross-sectional view of a coaxial line in a plane 

containing the axis. Show lines of E and of H at a given instant over at least 
one wavelength .  The lines should be most closely spaced where the field is 
strongest. Indicate the directions of the fields by means of arrow heads. The 
direction of propagation should point to the right. 

(b) Add arrows at various points to represent Poynting vectors, using 
longer arrows where the power flow is larger. Assume that the length of the 
arrow represents the magnitude of the Poynting vector at its midpoint. 

(c) Sketch a cross-sectional view of the coaxial line in a plane perpen
dicular to the axis, and show lines of E and of H at a particular instant. 
Relate this plane to the figure you drew in (a) . 

(d) Add plus and minus signs to both figures to show the surface charges. 
The spacing between the signs should indicate qualitatively the relative 
magnitude of the surface charge density. 

(e) Now add arrows of various lengths to your first figure to represent 
surface current densities. 

(f) How do the current patterns change with time? 

33-2. (33. 2 )  The current and the charge density in a coaxial line 
Show that , in a coaxial line of infinite conductivity, the current is equal to 

the linear charge density multiplied by the speed of propagation . 

33-3. (33.2 )  The characteristic impedance of a coaxial line 
It is known from transmission-line theory that the characteristic im

pedance of a line is given by Zc = (L '/C') li2, where L'  and C are , 
respectively, the inductance and capacitance per meter. Show that this 
applies to the coaxial line .  

33-4. (33. 2) Eliminating reflection a t  the end of a coaxial line 
An air-insulated coaxial line is terminated by a sheet whose surface 

resistance is 377 ohms per square (Prob. 4-9) .  
Show that the resistance of the termination is equal to the characteristic 

impedance of the line. There is then no reflection at the end of the line. 

33-5. (33. 1 .3 )  Predicting the characteristic impedance of a TEM guide 
One important parameter of a TEM waveguide is its characteristic 

impedance Zc = (L ' /C) li2, where L'  and C are, respectively, the induc
tance and the capacitance per meter of guide (Prob. 33-3) .  

In  designing such lines i t  i s  important to predict the values of L'  and of 
C. If the geometry is such that these quantities are difficult to calculate, as 
in Fig. 33-6(a) ,  one can perform the following measurements on a 
resistance-sheet analog. 

(a) One can find the value of C by cutting out a sheet of resistive 
material in the shape of the cross section of the dielectric as in Fig . 33-6(b) 
and by measuring the resistance RJ between electrodes A and B. See Prob. 
9-10. 
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(a ) (b) (e) 

Fig. 33·6. 

Show that, if the material has a conductivity a and a thickness s, and if 
the permittivity of the dielectric is E, then R,C '  = E isa. 

(b) One can measure L' as in Fig. 33-6(c) by measuring the resistance Rz 
between electrodes C and D. 

Show that R2L ' = /lo/sa. Thus Zc = (/lo/ E) " 2(R ,/Rz) 1I1. 
33-6. (33. 3)  The microstrip line 

Figure 33-5 shows a cross section of a microstrip line . 
(a) Sketch lines of E and of H Use arrows to show the directions of E 

and H at a given time. Show the direction of propagation . 
(b) In practice, the width b of the strip is much larger than its distance h 

to the grounded plane. and edge effects are small. Show that the 
instantaneous value TV of the transmitted power is equal to the Poynting 
vector integrated over the cross section bh. Assume that there is no 
reflected wave. 

(c) Show that the characteristic impedance 'V/I is equal to (/l/E) ' /2h /b. 
(d) Show that one arrives at the same result if one defines the 

characteristic impedance as in Prob. 33-3. 
(e) Show that the addition of a second grounded plane placed symmetri

cally with the first reduces the characteristic impedance by a factor of 2 . 

. B-7. (33. 3)  The microstrip line.  
Calculate the transmitted power when the voltage across the microstrip 

line of Fig. 33-6 is cV. Disregard edge effects, and assume that there is no 
reflected wave. 
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A hollow metallic waveguide is s imply a metallic pipe inside which an 
electromagnetic wave can propagate by reflection on the inner surfaces, 
in much the same way as a sound wave . 

There exist many types of hollow metallic waveguides, but we 
concentrate on guides of rectangular cross section , as in Fig . 34- l .  This is 
the most common type , and it is also the simplest one . The figure shows 

b 
(aj (bj 

Fig. 34-1.  Rectangular metallic waveguides fed by a coaxial line . (a) A 
quarter-wave antenna injects an electric field at a distance of )..)4 from the dosed 
end of the guide. (b) A small loop antenna injects a magnetic field. 
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Table 34·1 Characteristics of a few standard rectangular waveguides (TEl mode) 

INSIDE OPERATING MEAN 
DIMENSIONS CUTOFF WAVELENGTH POWER 

a x b  WAVELENGTH RANGE A ITENUA TION RATING 

millimeters dB/meter megawatts 

72. 1 X 34.0 144 75 .9- 1 15 0.0247-0.0362 2.7 
47 .5  X 22 . 1  95 . 1  5 1 .2-75 .9 0.0472-0.0682 1 .9  
34. 8  X 15 . 8  69.7 36.6-51 .2  0.0755-0.0942 0.64 
22. 9  X 10.2 45.7 24.2-36.6 0. 147-0.212 0.25 
15 .8  X 7.9 3 1 . 6  16.7-24.2 0.273-0.312 

how such a guide can be connected to a coaxial line. Table 34-1 lists some 
common standard sizes, but there are many more , down to a width of a 
few millimeters. 

We assume that the medium of propagation is air, as is usually the 
case . We also assume, for the moment, that the guide is perfectly 
conducting. 

We consider only the Transverse Electric (TE) mode (Emz = 0) that 
results from the multiple reflection of a plane wave on the faces parallel 
to the yz -plane in Fig . 34-2 . 

/ 

Fig. 34·2. Typical wave front inside a 
rectangular waveguide. Reflection 
occurs on the narrow faces, and E is 
everywhere transverse . 
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The Transverse Magnetic (TM) waves in hollow rectangular wave
guides are not useful because they require larger guides. As we saw in 
Sec . 33. 1 .3 . 1 ,  TEM modes are forbidden . 

34. 1 THE FIELD COMPONENTS OF A TE WAVE IN 
A RECTANGULAR METALLIC WAVEGUIDE 

We use the coordinate system of Fig . 34-2 . The wave propagates in the 
positive direction of the z-axis by multiple reflection on the upper and 
lower walls. The figure also shows a wave front of a plane wave incident 
on the top face at the angle 8. 

With this mode of propagation, 

Emz = 0, Hmy = 0, B - = 0. By 

We require the three other components Emy , Hmn Hmz o  

(34- 1 ) 

We proceed as indicated at the end of Sec. 33 . 1 . 1 .  First we solve the 
wave equation for Hmz for the given boundary conditions. This will give 
us both Hmz and kz . Then the values of Em} and Hmx will follow, from 
Eqs. 33-13 and 33-14. 

From Eq . 33-22, 

(34-2) 

where 

(34-3) 

is known , for a given frequency. However, 

(34-4) 

is unknown, Az being the wavelength of the guided wave. 
We expect an interference pattern of some sort in the x direction . So 

Hmz is a sinusoidal function of x, and this requires that the expression in 
parentheses in Eq . 34-2 be negative . So we know that kz < ko and hence 
that Az > AD, or that the wavelength measured along the guide is longer 
than the wavelength of a plane wave in air . This makes the phase velocity 
larger than c, which is correct ; the group velocity will turn out to be 
smaller than c. 
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Thus 
(34-5) 

where M is an arbitrary constant that defines the amplitude of the wave. 
We now apply the boundary conditions of Sec. 33 . 1 .4 :  

oHrnz -- = 0 
ax 

oHrnz -- = 0 
oy 

at x = 0, a, 

at y = 0, b. 

(34-6) 

(34-7) 

The second condition is already satisfied because 0/ oy = O. From the first 
condition, 

kz sin a = 0 and (34-8) 

Now kx is a positive number. Therefore 

a = O  and (34-9) 
where n is an integer. 

Observe that kxa can take on only discrete or eigen values and that 
n = 0 is forbidden: 

So 
n = 1 , 2, 3 ,  . . . 

IlITX Hrnz = M cos a 
and ,  from Eq . 34-5, 

_ [ 
2 _ (nIT)2] 1 12 _ { 1 - [nAo/(2a )f} 1 12 

k - k 0 - �-----'-"----'----'-"----'- -z a Ao 

(34-10) 

(34- 1 1 )  

(34-12) 

Then, from Eqs. 33- 13 and 33-14, remembering that both Ernz and % y  
are zero , 

jWllo . jWlloa . nITX = --- M sm kxx = - --M sm - ,  kx nIT a 
jkza . IlITX 

Hmx = - M sm -
11 IT a 

(34-13) 

(34-14) 

(34-15) 
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h 

(a) (b) 

Fig. 34-3. The amplitude Em = Emy of the electric field strength for a TE wave . 
(a) TEl mode. (b) TE2 mode . 

Figure 34-3(a) shows Emy as a function of x for n = 1 : E is zero along the 
walls and maximum in the plane x = a12. With n = 2, Em\" is zero at 
x = a12. 

The various values of n thus correspond to different modes of 
propagation, denoted as TE l ,  TE2 , etc. As we shall see below, TEl is the 
only useful mode. 

Summarizing, 
jWfJ.oa . flICX Em .. = - -- M sm -, IlIC a 

k = { I  - [flAo/ (2aW} 1 /2 z Ko 

34.2 THE CUTOFF WAVELENGTH. 
NONPROP AGA TING FIELDS 

From Eg. 34- 18,  

For 
flICe 

w > - , a or 2a Ao < - , n 

(34- 16) 

nICX Hmz = M cos - , a 
(34-17) 

(34- 1 8) 

(34- 19) 

(34-20) 

kz is real and a wave can propagate unattenuated down the guide. 
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The wavelength 2a/n is the cutoff wavelength for the TEn mode. This 
corresponds to the condition w = (Up for propagation in an ionized gas. 
At that wavelength kx = a and Az � 00. 

At wavelengths larger than 2a /n, kz is imaginary, there is no wave , and 
the field decreases exponentially with z. There is zero power flow once 
the field is established. At these longer wavelengths the field amplitude 
decreases rapidly with z. For example , at twice the cutoff wavelength , 
where the frequency is too low by a factor of 2, 

w 

c 
nJC 
2a ' (34-21) 

We choose the negative sign before the square root so that the amplitude 
will decrease exponentially with z, and then 

( 2JC3 l/2Z) ( Z ) exp (-jkzz ) = exp - Ao = exp -10.88 Ao . (34-22) 

The amplitude decreases by a factor of 5 x 104 in one free-space 
wavelength Ao! 

The waveguide thus acts as a high -pass filter, with the lower frequency 
limit fixed by the width a, and not by b.  

The free-space wavelength Ao must be shorter than twice the distance 
between the reflecting walls. For example, if a = 100 millimeters, then Ao 
must be less than 200 millimeters and the frequency must be higher than 
1 . 5  gigahertz (1 .5 x 109 hertz) .  

34 .3  THE TEl MODE 

In practice , one selects first the operating frequency, and then a guide 
whose dimensions are such that it can carry only the n = 1 mode. This 
condition requires that 2a be larger than Ao ,  as above. But a must be less 
than Ao to make TE2, TE3 , . . •  forbidden modes . Thus the dimension a 
must be such that 

a < Ao < 2a. (34-23) 

With single-mode propagation the field configuration is well defined. 
Rectangular metallic waveguides are narrow band devices: for a given a ,  
Ao can vary by at  most a factor of 2. 

The antennas of Fig . 34-1 launch an assortment of modes, but only the 
TEl survives. 
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We now write out the field components for the n = 1 mode . We 
simplify the notation by setting 

Then 

where 

E' = _ jW/loaM mv . n (34-24) 

, . nx .( k ) Ey = Emy sm - exPl W( - zZ , a Ez = 0, (34-25) 

nE:'y nx .[ (
A
z) ] Hz = -- cos - exp l (1)( - kz Z - - , (I)/loa a 4 

kz = 
2n 

= 
{ I - [Ao/(2aW} 

1 /2 
= [ 1 _ (

A
O)2] 1/2ko ,  A

z Ao 2a 
,1..0 Az = { I _ [Ao/(2aW} 

1 /2
· 

(34-26) 

(34-27) 

(34-28) 

(34-29) 

Figure 34-4 shows lines of E and of H for this TEl mode . 

x 

Fig. 34-4. Lines of E (dots and 
crosses) and of H (ovals) for the TE l 
mode . 
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34 .4 MULTIPLE REFLECTIONS 

The multiple reflections that take place between the top and bottom walls 
are interesting . We need only consider the E field. We substitute kx for 
:rr / a, in agreement with Eg. 34-9. 

First recall that 

(34-30) 

Then we can rewrite the expression for Ey as follows: 

The first term between the brackets represents a wave whose vector wave 
number is -kxx + kzz (App . C) . It is oriented as in Fig . 34-5(a) . The 
second term corresponds to the wave in Fig .  34-5(b) . So the sine term in 
Eg. 34-25 for Ey does come from the interference between an up-going 
and a down-going wave . 

Similarly , the H vector is the sum of two terms of the form 
k X E/(w/1o), corresponding to the up-going and down-going waves. 

Mathematically, there is a single up-going wave and a single down
going wave . 

The angle of incidence fJ is given by 

., 

k [ ( A )2] 112 sin fJ = k: = 1 - 2� , 

AO cos fJ = - . 
2a 

x 

a-t===========;;:;::= 

(a) 

(34-32) 

(34-33) 

(b) 

Fig. 34-5. Wave fronts and the k's for the (a) down-going and (b) up-going 
waves. Observe that  /., ;', == k ;  + k ; .  as in Eg. 34-5 . The angle of incidence is e. 
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Fig. 34-6. Geometric construction for deducing Eq. 34-33 . 

For a given guide width a and a given free-space wavelength AD, 
propagation in the TEl mode occurs through reflection only at that 
particular angle. For Ao « 2a, e = :rr /2 and the wave is nearly TEM. 

In practice , a < AD < 2a as in Eq. 34-23 and e lies between 0 and 60°. 
Typically (Table 34- 1 ) ,  e is about 50°. 

Equation 34-33 has a simple explanation . Refer to Fig . 34-6 . Lines A 
and C are wave fronts of the wave that travels upward . At a given time t, 
set EA = exp jwt for that wave along A. Then ,  along line C, 

( 2:rr1) Ec = exp j wt + To . (34-34) 

Because of the phase shift upon reflection at D, the E-field of the 
downward wave front B must lead that of the upward wave front A by :rr 
radians and E B = exp j (wt + :rr) . 

Similarly, because of the phase shift upon reflection at E, 

Ec = exp j(wt + 2:rr) .  

Equating the two expressions for Ec and setting 

then 
1 = 2a cos e, 

cos e 2a -- = 1 Ao ' 
A() cos e = - .  2a 

(34-35) 

(34-36) 

(34-37) 
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34 . 5  THE PHASE, SIGNAL, AND 
GROUP VELOCITIES 

The phase velocity is 

c c = = -- > c  { l - [t'o/(2aW} 1/2 sin e 
. 

(34-38) 

(34-39) 

This is the velocity at which the phase propagates down the guide . It is 
larger than the speed of light c because the TEl wave is the superposition 
of two plane waves whose k's are inclined as in Fig. 34-2. For example. 
when the wave front AB of Fig. 34-7 moves downward at speed c to 
A I B I ,  point A moves to the right at a speed vp > C. 

At what velocity does a signal progress down the line? From Fig. 34-8 
this is c sin e. So the signal velocity is 

A a/sin e A '  

/ / 

v, = c sin e < c,  (34-40) 

/ / / 
/ ,/ 

B 

/ / / 
/ / / 

/ 
/ / / 

B'  

///' 

Fig. 34-7. As a wave front 
AB moves to A '  B '  through 
the distance a, the point A 
moves to A I through a larger 
distance a/sin e, where e is 
the angle of incidence. 

Fig. 34-8. As a wave front travels 
from A to B at the speed c ,  the 
signal progresses along the guide 
through the shorter distance 
AB sin fJ. 
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This is in agreement with the fact that a signal cannot propagate at a 
speed larger than c (Sec. 13 .5 .3 ) .  

The group velocity Vg i s  equal to the signal velocity VS' See Prob. 34-8. 

34.6 THE TRANSMITTED POWER 

To calculate the average power transmitted through the guide we 
integrate the time-averaged Poynting vector over the cross section of the 
guide : 

Here 

PT,av = f f Y'av dx dy = f f � Re I (E X H*) I  dx dy. 

9'av = � Re 
i 
0 

H; 

Y 
Ey 
0 

z 
0 = � Re (EyH;i - EyH;z), 

H* z 

(34-41 ) 

(34-42) 

where the components of E and of H are as in Eqs . 34-25 to 34-27. After 
substituting 2Jr for k).z, the expression for Hz becomes 

(34-43) 

Thus the x component of the time-averaged Poynting vector is zero. The 
net power flows in the direction of the z -axis and 

UJ _ E;;ykz . 2 JrX � 
oJ av - SIn z. 

We assume that E�JY is real. 

20)/10 a (34-44) 

The average power density 9'av is independent of y, as expected, since 
both E and H are independent of y. It is zero at x = 0, x = a where E is 
zero and maximum at x = a /2. 

The time-averaged transmitted power is thus 

P _ E;;ykz La . 2 JrX b T.av - 2 Sill dx 
0)/10 0 a 

(34-45) 

(34-46) 
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ab ( £0 ) 1/2 [ ( A ) 2J 1I2 PT,av = E:,;y 4 fI
� 1 - 2� , 

34 .7  THE STORED ENERGY DENSITY 
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(34-47) 

The instantaneous electric energy density is � Eo IRe E12, and its time
averaged value is 

cpl _ EO E2 _ EO E '2 ' 2 JrX (:) - 4 m - 4 my sm a ' (34-48) 

The time-averaged electric energy stored per unit length of guide is thus 

CPl! = EO E ,2 fa . 2 (JrX)b d = EO bE ' 2 (:) 4 my sIn x a my-o a 8 (34-49) 

Similarly, the instantaneous magnetic energy density is �fIlJ IRe H12, 
with a time-averaged value of 

(34-50) 

fIo [ (E ;"yk z)2 , 2 JrX (E :nyJr) 2 2 JrX ] = - -- sm - + -- cos - . 4 WfIo a wfIoa a (34-51 )  

The electric energy density i s  highest near the center, while the 
magnetic energy density is highest near the sides, Upon integrating over 
the cross section of the guide as above , one finds that , per unit length of 
guide , 

(34-52) 

As one might expect , the transmitted power is equal to the energy per 
unit length multiplied by the signal velocity: 

(34-53) 

34 .8  ATTENUATION 

We have assumed until now that the waveguide walls are perfectly 
conducting ; it is time to consider real waveguides of finite conductivity , 
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In the process of guiding electromagnetic waves , conductors dissipate 
part of the wave energy in the form of louie losses, because the wave 
induces electric currents in the guide . A rigorous calculation of the field 
for a guide of finite conductivity is difficult , but fortunately unnecessary. 

The procedure for calculating the louie losses is the following. As a 
first approximation, we consider the guide conductivity a to be infinite. 
Then the field is the one that we found above . As a second approxima
tion , we make a large but not infinite . A refracted wave penetrates the 
conductor, and a tiny part of the electromagnetic energy is lost as heat. 
As a result , the amplitude of the guided wave decreases with increas
ing z. 

The attenuation is exponential for the following reason. The amplitude 
of the wave refracted into the guide is proportional to the amplitude of 
the incident wave, or to the amplitude of the guided wave . Then the 
power lost in the guide is proportional to the power in the wave, which is 
the condition required for an exponential attenuation . See also below. 

In this second approximation , with a large but not infinite , E and H 
are the same as previously ,  except that kz is now complex: 

(34-54) 

Let us calculate ll'. The vector H is tangential at the surface of the 
guide . Since the guide material has a finite a, the skin depth is finite , 
there are no true surface currents, and the tangential H just inside the 
guide is the same as the tangential H just outside. A wave penetrates into 
the conductor and, from Sec. 29. 1 ,  

E (!J-OW) 1/2 . JT - =  -- exp ] - .  H a 4 (34-55) 

This small E exists on both sides of the interface. We assume that the 
guide is nonmagnetic. This E is a perturbation of the ideal field that we 
derived for perfect conductors. The method is satisfactory because this 
small E hardly disturbs the wave. 

We thus have a tangential E, a tangential H, and a Poynting vector 
that is normal to the conducting surface and directed into the metal . 

We can thus calculate the average power P� that leaks into the 
conductor per meter of length . We then require the attenuation constant 
ll'. This constant must be such that multiplying both the E and the H of 
the guided wave that we found above by exp ( - ll'z)  decreases the 
average transmitted power Pr.av by a factor of 

exp (-2ll' �z) = 1 - 2ll' �z (34-56) 
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in a distance !1z. The approximation is excellent for standard guides. 
Then 

P� !1z = (2(1' !1z )Pr, (34-57) 

The real part f3 of kz is approximately equal to the kz obtained on the 
assumption of perfectly conducting walls .  You will recall that we 
calculated Pr,av in Sec . 34.6. 

We can calculate P� as follows. Along the face x = 0, and at z = 0, 
from Eq. 34-27, 

lrE�,y H = Hz = - -- j exp jwt. 
!J.owa (34-58) 

This is independent of y. Now, from Prob. 29-5, the power dissipated per 
square meter is the same as if one had a current 1 of the same magnitude 
as H, spread uniformly over a cross section 1 x b, where b is the skin 
depth. So the power dissipation per square meter is nms x 1 /( 0 x 1 x b) ,  
or (H;"/2)/ (ob) .  Then , for the face x = 0 and at  z = 0, 

g' = � (lrE�ly)2 � = � (lrE�ly)2(!J.OOW)· 112 = (lrE�,y/a)2 (34-59) av 2 !J.owa ob 20 !J.owa 2 01l2(2!J.oW)3/2 . 

The power lost over a length of 1 meter in one face is b times larger, 
and for the two faces at x = 0 and x = a, it is 

(faces x = 0 and x = a) .  (34-60) 

For the faces at y = 0 and y = b, H has two components . The power lost 
over 1 meter of guide in these two faces proves to be 

Summing these two powers , 

Finally , using Eqs . 34-47 and 34 .57, 

(faces y = 0 and b). (34-61) 

(34-62) 

(1' = � [lr( Eo/ !J.O)1/2 ] 1/2 1 + (2b / a)[ Ao/ (2a W 
b oAo { 1  - [Ao/ (2a) ]2}112 (34-63) 
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Fig. 34·9. The product aa312 as a function of the ratio Ao/2a for b = al2 and for 
copper. 

1 1 + (2bla) [Ao/(2a)Y a = b (120aAo) 112 { 1 - [Ao/(2aW} 112 • (34-64) 

In practice, 2b I a = 1 .  This makes the magnitudes of the power densities 
about equal on all four sides. This also excludes a TEl mode with 
reflection on the other pair of sides. 

Figure 34-9 shows aa3/2 as a function of Aol (2a) for copper and for 
b = a12. In the range AD = 0 .2 x 2a to 0.7 x 2a, 

4 X 10-5 
a =  a3/2 (34-65) 

The optimum value of AD is about 0 .4 x 2a, but actual values are 
somewhat larger so as to achieve strong attenuation for the n = 2 mode. 

The attenuation of the n = 1 mode in commercial guides is of the order 
of 0 . 1  decibel/metert at frequencies of a few gigahertz. 

This is a high rate of attenuation. For example , over 100 meters the 
attenuation is about 10 decibels , which means that the amplitude of the 
wave decreases by a factor of 3 .  Such guides transmit high-power signals 
over distances of the order of tens of meters or less , usually for 

t 20 log [(amplitude at the output)/(amplitude at the input)] = -0. 1 .  
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connecting a transmitter or receiver to an antenna, either for radar or for 
microwave links . 

Table 34-1 gives the main characteristics of a few standard types of 
rectangular waveguide. 

34.9 SUMMARY 

A transverse electric (TE) wave can propagate inside a rectangular 
waveguide by reflection from two opposite sides, as in Fig .  34-2 . Then 

Emx = 0, E jW/1oa . niTX m = - --M sm -, y niT a Emz = 0, (34-16) 

jkza niTX Hmx = - M sin -, niT a Hmy = 0, niTX Hmz = M cos - , (34-17) a 

k = { I - [nAo/(2aW} 1 I2 z Ao (34-18) 

Here n is the mode order, and, as usual, the subscript m stands for 
"maximum value of. " 

In practice , one uses the TEL mode, and then 

Ex = 0, I • iTx .( ) Ey = Emv sm - exp f wt - kzz , - a Ez = 0, (34-25) 

Hy = 0, (34-26) 

iTE'mv iTX [ ( Az)J Hz = --- cos - exp j wt - kz z - - , W/1oa a 4 
2iT { I - [AoI(2aW} 112 

kz = T = A ' z 0 

where Az is the wavelength of the guided wave. 
With this mode the angle of incidence (Fig. 34-2) is given by 

[ (A )2J 1 12 sin () = 1 - 2� . 

The phase and group velocities are 
c 

(34-27) 

(34-28) 

(34-32) 

v = -- > c  
P sin () , Vg = Vs = c sin () < c. (34-39), (34-40) 
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The time-averaged Poynting vector is 

co E'm�kz . 2 JtX A 
Jav = -- Slll - Z 2wf.lo a 

and the time-averaged transmitted power is 

= 1 2 ab ( Eo) 1I2[ _ ( Ao)2J 1I2 
PT.av Emy 4 1 2 ' f.lo a 

where (f.lo/Eo) 1/2 = 377. 
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(34-44) 

(34-47) 

In real waveguides of finite conductivity 0, the field is hardly different , 
except that 

kz = fJ - jet 
with fJ equal to the above kz and 

(34-54) 

1 1 + (2b /a)[Ao/(2a)]2 et = 
b (1200Ao) 1!2 { l - [Ao/(2a)f} 112 • (34-64) 

PROBLEMS 

34- 1 .  (34. 3) Wavelength and frequency in a rectangular waveguide 
An electromagnetic wave propagating in the TEl mode in a 34.0 x 

72. 1  millimeter rectangular waveguide has a wavelength Az of 
138 millimeters. Calculate its frequency. 

34-2. (34. 3) The surface currents and the Poynting vector in a rectangular 
metallic wave guide 

Figure 34-10  shows three sides of a rectangular guide that is split open 
and flattened. Draw a figure like this and show , on face B, lines of H, 
electric charges, and vectors E X H at a given instant. Then add lines of 
current on all three faces. 

34-3. (34. 3) The angle of incidence e in a rectangular guide 

A 

According to Table 34- 1 ,  the recommended range of operating fre
quencies for a rectangular waveguide with a cross section of 34.0 x 

A ) 

B 

C ) 
(a) (b) Fig. 34-10. 
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72. 1  millimeters extends from 2.61 to 3.95 gigahertz. 
Calculate the values of e at both ends of this range. 

34-4. (34. 3)  Measuring the standing wave ratio in a rectangular guide 
If a load is not properly matched to a waveguide , part of the incident 

wave turns back and there is a standing wave along the guide. Then only a 
fraction of the power available at the source reaches the load. It is 
therefore useful to be able to move a small probe along a longitudinal slot 
to sample the field inside the guide. The voltage standing wave ratio 
(VSWR) is the ratio of the maximum to the minimum time-averaged rms 
voltage measured at the probe. Under ideal conditions there is no reflected 
wave , and the VSWR is equal to unity. 

The probe can be a short length of wire that responds to the electric field 
or a small loop coupled to the magnetic field. The probe projects into the 
field by about 1 millimeter. 

(a) With the TEl mode, where should the slot be cut to disturb the wave 
as little as possible? 

(b) If the probe is a loop, how should it be oriented? 
(c) How would you proceed to measure the wavelength of the guided 

wave? 
(d) If the VSWR is equal to 2, what is the value of the ratio 

Ereftectectl Eincident . ? 

34-5.  (34. 3)  An artificial dielectric 
Figure 34- 1 1 shows a set of parallel conducting plates uniformly spaced 

by a distance s. If s / A has the correct value and if the incident wave is 
correctly polarized,  this medium acts as an artificial dielectric whose index 
of refraction is less than unity. 

(a) What must be the orientation of E? 
(b) Find the index of refraction as a function of the ratio s /1..o .  
(c) Show rays deflected by (i) a prism and (ii) a converging cylindrical 

lens made in this way. 

Incidcnl "ave Fig. 34-11. 
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34-6. (34. 3)  Dielectric-filled rectangular waveguides 
A rectangular metallic waveguide A is air-filled. and its cross section is 

a, b.  Another rectangular metallic waveguide D is filled with a dielectric En 
and its cross section is a / E;12, b / E ;I2. 

(a) Show that waveguides A and D have the same cutoff frequency and 
that , at a given frequency, A,D = AZA/E;12. Thus, for a given operating 
frequency, a dielectric-filled guide is smaller than an air-filled one. With 
Teflon (E, = 2. 1 ) ,  both dimensions a and b are smaller by a factor of 1 .45 . 
Also, the phase and signal velocities are smaller by a factor of 1 .45 . 

(b) Compare the power ratings of A and D at a given frequency. 
The dielectric strength of a material is the maximum permissible value of E before breakdown. The dielectric strength of a good dielectric such as 

Teflon is of the order of 10 times that of air. Set this ratio equal to R. The 
value of R increases as the thickness decreases .  

34-7. (34. 5) The phase and group velocities in a rectangular waveguide 
(a) Find An/ Az as a function of An/ Ac for a rectangular waveguide , where 

A, is the cutoff wavelength. 
(b) Find wAci c as a function of kz(·. For a given frequency. 

vp = � = wAc k A c kz c z c · 

The group, or signal, velocity is given by 

Vg d(wA,./c) 
-;: = 

d(kzAJ 
. 

34-8. (34. 5) The group or signal velocity in a rectangular waveguide 
Show that , in a hollow rectangular waveguide , 

34-9. (34. 6) Measuring the transmitted power in a hollow rectangular guide 
One can measure the power transmitted down a rectangular metallic 

waveguide by reading the voltage induced in a tiny loop projecting into the 
guide, as in Fig. 34-12.  The loop is situated at x = a /2, y = 0, and it lies in 
the yz-plane. 

Show that 

where c'V is the rms voltage induced in the loop and S!i is the area of the 
loop. The effective value of S!i is unknown, but the method is satisfactory 
for measuring relative values of PT' 

34-10. (34. 8) Attenuation in rectangular guides 
(a) Show that, upon reflection from a good nonmagnetic conductor, in 

air, the amplitude of an electromagnetic wave decreases by a factor of 
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Fig. 34-12. 

approximately 1 - (2Eow/ 0)112 cos el if E is normal to the plane of 
incidence . 

(b) Show that this is in agreement with the attenuation calculated in 
Sec. 34.8. 

34- 1 1 .  (34. 8)  The relative power ratings of a coaxial line and of a rectangular 
guide 

(a) Calculate the maximum power that can be carried by a coaxial line 
and by a rectangular metallic waveguide at 3.00 gigahertz. The coaxial 
line has a diameter pz of 25 .0 millimeters, and the guide has an inside 
cross section of 37.5 x 75. 0  millimeters. The coaxial line satisfies the 
condition for maximum power transfer, namely, PZ/P I = 1 .65, and its 
outside radius is small enough to ensure the attenuation of higher-order 
modes. Both lines are air-filled, and the current-carrying surfaces are 
silver-plated. The maximum allowed E is 1 .5 megavolts/meter. (Under 
ideal conditions the breakdown field at 3 gigahertz is about 
108 volts/meter.)  There is no reflected wave. 

(b) Calculate the power dissipation per meter in both cases. Clearly, 
these lines can operate at these power levels only during short pulses. 

(c) Calculate the rms voltage and current at the input end of the 
coaxial line. 

34-12. (34. 8) Decibels and nepers 
Attenuation on a transmission line is expressed in decibels per meter. 

The number of decibels per meter is 20 times the logarithm to the base 10 
of the ratio of the E's (or the H's ,  or the voltages, or the currents) at the 
two ends of a line 1 meter long. The degree of attenuation is also 
expressed in nepers per meter, and this is simply the value of /3. 

Show that 1 neper/meter is equivalent to 8.686 decibels/meter. 
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Chapters 35 and 36 are the last two chapters on guided waves . They 
concern a guiding structure that comprises only dielectrics. The wave 
again follows a zigzag path, as in the hollow conducting waveguides of 
the last chapter, but guidance results from total reflection . 

In optical waveguides total reflection occurs inside a dielectric flanked 
by another one of a lower index of refraction .  Although most of the 
power flows through the inner medium, some power also flows through 
the outer one, and the wave is not tightly confined as with a hollow 
metallic guide . 

Dielectric waveguides serve mostly in the form of optical fibers for the 
transmission of information. However, there are many other forms . Clad 
rods, either straight or curved and up to a few millimeters in diameter, 
serve to convey light from one point to another . Light guides consist of 
bundles of fibers inside a flexible sheath. They serve the same purpose . 
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Fiber bundles are similar to light guides except that their ends are 
coordinated, which makes them suitable for transmitting images. 
Fiberscopes are useful , among other things, for medical examinations. 
They comprise a light guide, for illumination, and a fiber bundle 
equipped with lenses at each end. Some oscilloscopes have fiber-optic, or 
microchannel, face plates. These consist of a stack of parallel fibers , with 
both faces polished, and phosphor on the inner side. The fibers convey 
the light emitted by the phosphor more efficiently than a glass plate . See 
the first example in Sec. 31 .2 .2 .  This permits the observation of very fast 
transients. One commercial oscilloscope has a writing speed of 2 x 
lOs meters/second. 

Optical fibers are made of either silica or plastic, and their diameters 
range from that of a human hair to about 0.5 millimeter. The index of 
refraction decreases with the radius, either gradually or abruptly. The 
smaller diameter fibers can transmit digital information at rates up to 
gigabits per second. 

Total reflection has the advantage of being lossless. For example, the 
attenuation of a light wave in an optical fiber can be as low as 0. 1 decibel 
(98 .9% transmission) per kilometer, while the attenuation in a hollow 
conducting guide is of the same order over 1 meter. The attenuation in 
optical fibers comes largely from absorption, since no material is perfectly 
transparent . 

Metallic guides serve at frequencies of several gigahertz, usually at high 
power, while dielectric guides serve at optical frequencies and low power .  
The two types are therefore complementary. 

Rather than go through the fairly abstruse mathematics of fibers , we 
study the simplest form of optical guide, namely, the planar optical 
waveguide, composed of three layers of dielectric: a substrate, a sheet, 
and a cover. The indices of refraction of the substrate and of the cover 
are only slightly lower than that of the sheet . Similar planar guides are 
used in millimeter-wave integrated circuits . The physics of planar guides 
is basically the same as that of fibers . 

Planar optical waveguides have overall thicknesses of the order of 
10 micrometers and widths about 10 times larger. These guides are the 
basic components of various integrated optics devices that are, in a way, 
the optical analogs of integrated circuits. 

Figure 35-1 shows two methods for launching a light wave into a planar 
dielectric guide. 

Our discussion parallels that of the rectangular guides of Chap . 34. We 
study only the transverse electric (TE) waves in which the electric vector 
is normal to the direction of propagation . 
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(a) 

I 1 i 
( b )  

Fig. 35-1. Two methods for launching an electromagnetic wave in a planar optical 
waveguide . In both cases the coupling efficiency is about 80% . (a) The prism 
coupler uses frustrated total reflection. The distance between the prism and the 
guide is a fraction of a wavelength. The transmitted wave couples into the guide. 
The angle 8 is, in fact , close to 90°. (b) Grating coupler. The grooves on the 
surface of the guide diffract a beam at the appropriate angle 8. 

35 . 1  THE PLANAR DIELECTRIC GUIDE 

We select axes as in Fig .  35-2. Medium 1 is the substrate. The sheet, or 
slab , is medium 2 .  Medium 3, the cover ,  can be air . Total reflection 
occurs at the interfaces 2 , 1  and 2 ,3 . 

We assume that all three media are homogeneous, isotropic, linear, 
and stationary (HILS) and that they are nonmagnetic (/1r = 1), lossless 
(a = 0), and nondispersive (the index of refraction n is independent of 
the frequency) . 

To simplify the calculations, we also assume that medium 1 extends 
downward to infinity, while medium 3 extends upward to infinity. In 
practice , media 1 and 3 need only be several wavelengths thick. 

We disregard reflected waves , which means that the guide extends to 
infinity in the + z direction. 

Finally, we assume that all three media extend to infinity in the plus 
and minus y directions. The reason for this assumption is the following. 

Figure 35-3 shows a cross section of a guide whose core occupies only 
the region between x = ±a and y = ±b. The cladding has a lower index 
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Fig. 35-2. Coordinate system for the 
planar optical waveguide . The three 
media are infinite in the y and z 
directions. Media 1 and 3 extend to 
infinity downward and upward, respec
tively. Total reflection at the 2 , 1  and 2,3 
interfaces makes the way propagate in zig 
zag fashion along the positive direction of 
the z-axis. 

of refraction, and total reflection occurs at the x = -a and x = a 
interfaces .  Then the wave above x = a and below x = -a spills over into 
the shaded region . The field in the core will also penetrate the y = -b 
and y = b interfaces, so as to  satisfy the continuity conditions for the 
normal and tangential components of E and of H. So the field of a 
rectangular dielectric waveguide of finite cross section is quite complex. It 
is wiser for us to disregard these edge effects and make the guide infinite 
in the ±y direction .  Our analysis will be satisfactory as long as the 
breadth of the core is much larger than its height. That is usually the 
case. 

x 

+ a  

- II 

Fig. 35-3. Cross section of an optical 
waveguide of rectangular cross section. 



650 GUIDED WAVES III 

The electromagnetic field propagates to the right at some phase 
velocity vP '  and the field components in all three media therefore have 
the form 

E = Em expj(wt - kz z )j, (35-1 )  

where Em is a function of x only and 

(35-2) 

Az being the wavelength of the guided wave . The wave number kz is real 
because we have assumed zero attenuation. 

We set 

1 W 112 
ko = - = - = w(  Eoflo) , 

Xo c 

k - 1 - w _ w n - n k - w(� � II ) 112 1 - - - - - - I - J 0 - "rl"  0,...0 , X I vp 1 C 

(35-3) 

(35-4) 

and similarly for k2 and k3 · The wavelengths Ao , A I , A2,  A3 apply to 
uniform plane waves in a vacuum and in media 1 ,  2, and 3 , respectively. 

35 . 2  RELATIONS BETWEEN 
THE FIELD COMPONENTS 

As stated previously, we consider only TE waves. You will recall from 
Sec. 33 . 1 . 1  that the transverse components of the field in a guided wave 
are simple functions of the longitudinal components . Here kz is equal to 
neither kl nor k2 nor k3• 

By hypothesis, a/ ay = O. Also, in TE waves, Emz = O. Then, from Eqs . 
33-1 1  to 33- 15 ,  setting flr = 1 ,  

Emx = 0, (35-5) 

(35-6) 

(35-7) 

Hmy = O. (35-8) 

These equations apply to all three media , with k equal to k l '  k2 ' or k3 . 
To find Hz , we must solve its wave equation 
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(35-9) 

where 

(35-10) 

We must therefore solve the differential equation 

(35- 1 1 ) 

for each medium in succession with, again, k equal to kJ > k2 ' or k3 0 

35 . 3  THE FIELD COMPONENTS IN 
THE THREE MEDIA 

In medium 1 we require an exponential decrease in the -x direction . 
Therefore, in medium 1 ,  the expression between parentheses in Eq. 
35-1 1 is positive ,  kz > k l ' and 

where K is a constant and k Ix is real and positive: 

k = + (k
2 - k2) 1/2 

Lx z 1 . 

The value of kz is as yet unknown . 
Then , from Eqs. 35-6 and 35-7 , in medium 1 ,  

(35-12) 

(35-13)  

(35-14) 

(35-15) 

In medium 3 we require an exponential decrease in the +x direction . 
Then the parenthesis in Eq. 35- 1 1  is again positive , kz > k3 , and we set 

(35-16) 

Here L is another constant, and k,: is real and positive : 

(35- 1 7) 
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Also , in medium 3 ,  from Eqs . 35-6 and 35-7 , 

In medium 2, 

jWf111 Emy = + -k- Hmz •  3x 

GUIDED WAVES III 

(35- 18) 

(35-19) 

(35-20) 

We have put a negative sign before the last term for the following reason . 
Both kz and k2 are real. Then kL is real . If k2.t is real with k; < k� . then 
Hmx is a sinusoidal function of x and there are two uniform plane waves 
in medium 2, zigzagging up and down the guide as in Sec . 34.4. This is 
the type of propagation that we are interested in here . So 

(35-21)  

We arbitrarily choose a plus sign before the parenthesis . 
Observe that the k's are related as in Fig. 35-4. Then 

Hmz = M cos (k2xX + ct) . (35-22) 

Fig. 35-4. Ray of light propagating down an optical waveguide by total reflection. 
Actual values of e are close to 90°. 
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We have added a phase angle ct to satisfy the continuity conditions at the 
interface . From Sec . 35 .2 ,  

jW/1o . Em}' = - -- M Sill (k2xX + ct) , k2x 

Grouping Eqs. 35- 1 3 ,  35-21 , and 35-17 gives 

(35-23) 

(35-24) 

(35-25) 

All the k's are real and positive . Therefore k 1 < k2 and k." < k2 , in 
agreement with the requirements n 1 <  n2 and nJ < n2 for total reflection 
at the interfaces . 

The situation is as follows. 

Medium 3 :  

Medium 2 :  

Medium 1 :  

Hmz = M cos (k2xX + ct), 

Hmz = K exp klxX, 

jW!to Emy = - -k- Hmz , Ix 

(35-26) 

(35-27) 

(35-28) 

(35-29) 

(35-30) 

(35-31 ) 

(35-32) 

(35-33) 

(35-34) 

The wave numbers k1x , k2x ' and k3x are all simple functions of kn as we 
have seen. 



654 GUIDED W A YES III 

35 .4 THE CONDITIONS OF CONTINUITY 
AT THE INTERFACES 

There are two interfaces ,  and at each one the tangential components Hmz 
and Emy are continuous .  This provides us with four independent 
equations . The normal component Hmx is also continuous, but its 
continuity is already ensured by that of Em) ,  which is a multiple of Hmx-

These four conditions of continuity will first give us the ratios K! M and 
L! M, in terms of the k 's and of ly. They will also provide two 
independent expressions for ly. Later these two expressions for ly will 
lead us to the values of the four k ' s .  We use M as a measure of the 
amplitude of the wave, which is, of course , arbitrary. 

35 .4 . 1 Continuity at the x = -a Interface 

To simplify the calculations , set 

Because of the continuity of Hmz at x = -a, 

(35-35) 

M cos (-b + ly) = K exp (-k Lxa) ,  K = M cos (b - ly) exp k Lxa. 
(35-36) 

Also, from the continuity of Emy , 

jWJ10 . jWJ10 - -k
- M sm (-b + ly) = - -k- K exp (-kLxa) , b � 

kLx . (b ) K = -M - sm - ly  exp k Lxa. k2x 

Equating the two values of K, we find that 

k2x tan (b - ly) = - - . 
k Lx 

(35-37) 

(35-38) 

(35-39) 

Since both k's are positive , the angle b - a is in either the second or the 
fourth quadrant. Also , 

kb 
ly = arctan k + b + m ' JT, 

L x 
(35-40) 

where m ' is any integer .  Setting m ' = 0 gives 

kb ly = arctan k + b. 
I x 

(35-4 1 ) 
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35 .4 .2  Continuity at the x = a Interface 

Because of the continuity of Hmz ' 
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M cos (b + (1') = L exp (-k3xa) ,  L = M cos (b + (1') exp k3xa. (35-42) 

Proceeding similarly for Emy ,  
jWJ.1.o .  jwJ.1.o - -- M Sin (b + (1') = -- L exp (-k3xa) ,  k2x k3x 

k3x . 
L = -M --- Sin (b + (1') exp k3xa. 

k2x 
Equating now the two expressions for L , 

k2x tan (b + (1' ) = - - . k3x 

(35-43) 

(35-44) 

(35-45) 

Remember that all the k's are real and positive. Then the angle b + (1' 
lies in either the second or the fourth quadrant, like b - (1'. 

Also , k2x 
(1' = -arctan - - b + m "n k1x ' (35-46) 

m" being again an integer . We cannot set m " arbitrarily equal to zero , 
now that we have set m ' = O. 

35 . 5  THE FIELD COMPONENTS 
IN THE THREE MEDIA 

Now the field components are as follows . 

Medium 3 :  

Medium 2:  

Hmz = M cos (b + (1') exp [k,x (a - x)] ,  
JW/1o Emy = -k- Hmz ' 3x 

Hmz = M cos (k2xX + (1') , 

jW/1o . Emy = - k2x 
M Sin (k2xX + (1'), 

(35-47) 

(35-48) 

(35-49) 

(35-50) 

(35-51 )  

(35-52) 
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Hmz == M cos (b - a) exp [k,. (a + x)] ,  (35-53) 

Medium 1 : (35-54) 

(35-55) 

We set M equal to a real number. The wave number k and m" are now 
the only unknowns. 

35 .6 THE PHASE SHIFTS ON TOTAL REFLECTION 

We shall need the phase shifts at the two interfaces in a moment . 
Figure 35-4 shows a ray that zigzags down the guide . The angle of 

incidence is (J (the (J/ of Chap. 30) . Also, 

k2x k = cOS (J. 2 (35-56) 

Observe that kz < k2 . Since k == l /X ,  Az > A2 , where Az is the wavelength 
of the guided wave and A2 is the wavelength of a uniform plane wave in 
medium 2. Then the phase velocity of the guided wave is larger than 
c/nz. 

We found the phase shift upon reflection in Sec. 3 1 .2 . 1 . Remember 
that the first medium is now medium 2, while the second is medium 3 .  
Substituting (nz/n) sin (J for sin 8T, the phase shift a t  the 2 ,3  interface is 

k,x == 2 arctan -'- , kzx 

Remember that the incident ray lies in medium 2 ,  here . Similarly, 

k 1x 4>2, ! == 2 arctan k ' 
2. 

(35-58) 

(35-59) 

(35-60) 
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35 .7  THE EIGENVALUE EQUATION 

Equating the two expressions for ll' from Eqs . 35-41 and 35-46 gives 

k2x k2x arctan - + b = -arctan - - b + m"n, kJx k3x 
k2x k2x , 2b = -arctan - - arctan - + m 'n. kb k3x 

But, from the definition of the tangent function , 

Setting 

k2x n k 1x arctan - = - - arctan - , k1x 2 k2x 
k2x n k3x arctan - = - - arctan - . k3x 2 k2x 

m = m" - l ,  

where m is again an integer, 

Now 

k1x k3x 2b = arctan - + arctan - + mn. k2' k2x 

(35-61 ) 

(35-62) 

(35-63) 

(35-64) 

(35-65) 

(35-66) 

(35-67) 

where A2 = Aol n2 is the wavelength of a uniform plane wave in medium 2. 
Substituting the <I>'s from Eqs. 35-58 and 35-60 into Eq .  35-66, and 
multiplying both sides by 2, we end up with the relation 

a 8n ;:- cos e = <1>2. 1 + <1>2 . 3 + 2mn. 
2 

(35-68) 

This is tbe eigenvalue equation for e, the <I>'s being functions of e. The 
angle of incidence e of Fig. 35-4 can take only those values that satisfy 
the above equation, each integral value of m corresponding to an 
eigenvalue of e and to a particular propagation mode . Thus m is the 
mode order. As we shall see in Sec. 36. 1 ,  m 2: O. The various modes are 
denoted as TEo, TEl >  TE2• etc .  

We can also deduce the eigenvalue equation directly, as in Sec. 34.4. 
Figure 35-5 shows two wave fronts. A and C, of the up-going wave . At a 
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Fig. 35-5. Geometric construction for deducing the eigenvalue equation . 

given time t, set EA == exp jwt for that wave along A. At the same 
time t, ( 2ltl) Ec = exp j wt + ).,2 . 

At point D, reflection on the upper interface 
<1>2,3 ' Thus, along B, E8 = expj(wt + <P2,3) '  

Similarly , as a result of the reflection at E, 

and 

(35-69) 

gives a phase shift of 

(35-70) 

(35-71 )  

I f  m = 0, then I i s  minimum and the angle of incidence e is maximum. 
As m increases to 1 ,  2 ,  3 "  . . , I becomes progressively larger and the 
angle of incidence decreases , 

Now, from Fig , 35-5 , 
l = 4a cos e. (35-72) 

Substituting into Eq, 35-71 gives the eigenvalue equation . 
We shall solve the eigenvalue equation graphically in the next chapter. 

This will yield the values of e for the various possible modes. Then the 
values of a and of the various k's will follow . 
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Before going on to that, let us find a third expression for the phase 
angle CY. 

35 .8  A THIRD EXPRESSION FOR (l' 

Combining Eqs. 35-4 1 ,  35-63 , 35-66, 35-59, and 35-60, we find that 

k2x CY = arctan - + b k1x 

<1>0 .,  <1>, 1 :rr: 
= ---=.:..c - ---' + (m + 1 )  - .  4 4 2 

(35-73) 

(35-74) 

(35-75) 

In a symmetric guide, medium 1 and medium 3 are identical, the <I>'s are 
equal , and 

35.9 SUMMARY 

:rr: 
0' = (m + 1 )  - .  2 (35-76) 

A planar optical waveguide comprises a substrate, a sheet, and a cover, 
with n [  < n2 , n3 < n2 ,  n being an index of refraction . Total reflection 
occurs at the interfaces 2 , 1  and 2,3 .  

We proceed as follows to find the field equations for a traveling wave . 
( 1 )  We apply the theory of Sec. 33. 1 .  (2) The field in medium 1 must 
decrease exponentially with -x, and the field in medium 3 exponentially 
with x .  (3) In medium 2 we choose uniform plane waves that zigzag down 
the guide . (4) We apply the conditions of continuity for the tangential 
components of E and H at the interfaces .  

This leads to Eqs . 35-47 to 35-55 for the field, 
The factor M is a measure of the amplitude of the wave, 

b = k2xa, (35-67) 
k2x k2x CY = arctan - + b = -arctan - - b + m":rr:, (35-41) ,  (35-46) k1x k3x 

where m" is an integer, 
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k = + (k2 _ k2) l!2 
Ix z 1 , k = + (k2 - e) 1/2 2x 2 Z '  

GUIDED WAVES II I  

k = + (k2 _ k2) l!2 3x z 3 , 

(35- 1 3 ) ,  (35-2 1 ) ,  (35- 17) 

(35-4) 

and similarly for k2 and k, .  
The constants k lx , klj, k3X ' and a are al l  functions of kz ' which is itself 

related to the angle of incidence e :  

(35-56) 

Equating the two values of a leads to the eigenvalue equation 
a 

8.iT 
A2 

cos e = <1>2. 1 + <1>2. 1 + 2m.iT (35-68) 

that fixes the values of e for the various modes m. Here 

klx <I> = 2 arctan -2. 1  klj 
and k3x 

<1>2, 3  = 2 arctan 
klj 

(35-60) , (35-58) 

are the phase shifts upon total reflection. 
The phase angle is 

PROBLEMS 

<1>2. 1 <1>2. I JT a = - - - + (m + 1 ) - .  4 4 2 

35- 1 .  (35.1 )  The numerical aperture of an optical fiber 

(35-75) 

Figure 35-6 shows a longitudinal section through an optical fiber. A ray 
emanating from a source S enters the fiber at an angle such that e is the 
critical angle. 

(a) Show that sin <p = (n� - ni ) lc .  The quantity sin <p is the numerical 
aperture (NA) of the fiber. This expression is valid only if n� - n �  s 1 .  The 
maximum possible value of <p is 900. If the angle <p increases beyond the 
value defined by the above equation , then e becomes smaller than the 
critical angle and the ray does not propagate down the guide . This equation 
therefore defines an upper limit for <p. 

(b) Show that, if the source radiates isotropically, then the fraction of 
the total available light that is collected by the fiber is about (NAr/4. or 
about n2 /).n/2, where /).n = n2 - n t .  If nz = 2 and n t  = 1. 98, then <p = I 1. SO 
and F = 0 . 0 1 .  The light collection efficiency is thus very low. 
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'" 

Fig. 35-6. 

35-2. (35. 3) The k 's 
(a) Show that ki, + k�x = (n3 - ni)k�. 
(b) Show also that if, in a symmetric guide, II, = n3 = n,  fl 2 = n + /)'n , 

/),fl « fl ,  then ki.c + kix = (80n /)'fl )/ A�. 

35-3 .  (35. 5) Multiple reflections in the sheet 
Show that the E field in medium 2 is the superposition of an up-going and 

a down-going wave, at the correct angle of incidence. 

35-4. (35. 7) tan 2k2.,a in terms of the k 's 
Show that 

Recall that k}, = k2 cos e, where cos e «  1 and k2 = nlkn = fll/An. 

35-5 .  (35. 8) The field components in a symmetric optical guide 
(a) Show that, for even modes in a symmetric guide, 

Em} = M '  cos b exp [k3Aa - x)] 

� M' cos k2xx 

= M '  cos b exp [k Ix (a + x) ] 

where M'  = ( - 1  )ml'+'jw!J.oM / (k2x) ' 

in medium 3 ,  

in medium 2 ,  

in medium 1 ,  

(b) Show that, for odd modes in a symmetric guide, 

Em, = -M" sin b exp [k3xCa - x )] in medium 3 ,  

in  medium 2 ,  

= + M" sin b exp [ kh(a + x) ]  i n  medium 1 ,  
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We terminate here our study of the planar optical waveguide and of 
guided waves. The next , and last, subject will be the radiation of 
electromagnetic waves . 

You have probably noticed that the field of a planar optical waveguide 
is more complex than that of a hollow rectangular metallic guide. There 
are two reasons. First, the field extends over three different regions, 
instead of one . Second , the phase shifts at the interfaces are complex 
functions of the indices of refraction and of the angle of incidence . 

We do not show the calculations in detail in this chapter, because they 
are rather involved. 

36. 1 SOLVING THE EIGENVALUE EQUATION 
FOR e 

In Sec . 35 . 7  we found that the angle of incidence (J of Fig . 35.4 satisfies 
the equation 

a 8n A? cos (J = $2. I + $2. :1  + 2mn. (36- 1 ) 
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Here a is half the thickness of medium 2 (Fig. 35-4) , )"z is the wavelength 
of a uniform plane wave in medium 2, the <I>'s are the phase shifts upon 
total reflection (Sec. 35.6) , 

(sin2 e - niln�)lIZ 
<l>z 1 = 2 arctan 

e '  
(36-2) , cos 

(sinZ e - nVnDl/Z <1>2 3  = 2 arctan , . cos e 
(36-3) 

and the mode order m is an integer. For each allowed value of m there 
corresponds one mode of propagation . 

Equation 36- 1 does not seem to possess an analytical solution . We shall 
solve it graphically, but let us first examine it carefully. 

( 1 )  Total reflection occurs i f  both 
. n 1 e > arcsm 

nz 
and . n3 e >  arcsm - .  nz 

(2) Since e s n12 , the left-hand side of Eq. 36-1 is positive . 

(36-4) 

(3) From Sec. 3 1 .2 . 1 ,  the phase shifts <1>, with E normal to the plane of 
incidence , lie between 0 and n. Thus 

0 <  <l>Z, 1 + <l>Z.3 < 2n. (36-5) 
Then the integer m cannot be negative. 

(4) The <I>'s increase with e, while cos e decreases. Then for a given m 
there is only one possible e. 

(5) As m increases from 1 to 2 to 3, etc . ,  the corresponding value of e 
decreases. 

We solve Eq. 36-1 below by plotting both sides as functions of e on the 
same graph, and noting where the curves cross. That is less accurate, but 
more instructive , than a numerical solution. The values shown in Tables 
36- 1  and 36-2 were calculated numerically. 

Example A SYMMETRIC GUIDE 

Figure 36-1 shows a set of such curves for the symmetric (n I = n3) 
guide of Table 36- 1 .  The curves marked m = 0, 1 , 2, 3 are curves 
of the right-hand side of Eq. 36-1 .  They start at 

(J . n I . n, arCSlll - = arcsm -'- , 
n2 nz 

n I being equal to n \ in this case . 

(36-6) 



Table 36-1 Parameters for a symmetric guide 

MODE ORDER 

CHARACTERISTICS QUANTITY 0 

a = l tlm et + 1 .5223 1 .4752 
nl = 1.9800 sin e 10.99882 0.99543 
n2 = 2.0000 kz 2.5103 X 107 2.5018 X 107 
n3 = 1 . 9800 A 2.5030 x 10-7 2 .5118 X 10-7 
Ao = 500 nm k 1x 3.3289 X 10" 2.6106 X 106 
ko = 1 . 2566 X 107 k2x 1 .2196 X 106 2.3989 X 106 
k l = 2. 4881 X 1 07 k3x 3.3289 X 1 0" 2 .6106 X 10" 
k2 = 2. 5133 X 107 b+ 1 .2196 2 .3989 
k3 = 2.4881 X 107 <1>2. 1 + 2.4392 1 .6553 
sin ec = 0. 99000 <1>2.3 + 2.4392 1 .6553 
e, = 81 .890° (1'+ :n;/2 = 1 . 5708 :n; = 3. 1416 

b - (1't -0.35120 -0.74269 
b + (1'+ 2.7904 5 .5405 
vp 1 .5007 x 108 1 . 5058 X 108 
Vg 1 .4980 X 108 1 .4959 X 108 

t We found these values by solving the eigenvalue equation numerically. 
t radians 

0-0-.p.. 

2 

1 .4345 
0 .99073 
2.4900 X 107 
2.5234 X 10-7 
9.5415 X 105 
3.4146 x 10° 
9.5415 X 105 
3 .4146 
0.54496 
0.54496 
3:n;/2 = 4. 7124 
- 1 .2978 
8. 1270 
1 .5130 X 108 
1 .4992 X 10" 
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Table 36-2 Parameters for an asymmetric guide 

MODE ORDER 

CHARACfERISTICS QUANTITY 0 

a = l .um et 1 . 5 172 1 . 4649 
nl = 1 .9800 sin e 0.99856 0.99440 
n2 = 2.0000 kz 2.5097 X 107 2.4992 X 107 
n3 = 1 .0000 A 2 .5036 X 10-7 2.5141 X 10-7 
Ao = 500 nm k lx 3 .2801 x 106 2 .3471 X 106 
ko = 1 .2566 X 107 k2x 1 .3458 X 106 2.6573 X 106 
k I = 2.4881 X 107 k3x 2 . 1724 X 107 2 . 1603 X 107 
k2 = 2. 5 133 X 107 bt 1 .3458 2.6573 
k3 = 1 .2566 X 107 <1>2, I t 2 .3629 1 .4470 
sin eel = 0. 9900 <1>2.3 t 3.0179 2.8968 
eel = 81 . 890° 
ee2 = 30. 0()()0 

t radians 

fm 

at 1 .7351 3.5046 
b - at -0.3893 -0.8473 
b + at 3 . 0809 6 . 1619 

Curve A is a cosine function of amplitude 8:n(aIA2)' near :n12. 
Decreasing the ratio al A2 sweeps A down in the direction of the 
arrow, its right-hand extremity remaining fixed [cos (:n12) = 0]. 
This eliminates the higher modes (m = 3, 2, 1 )  one by one . 
However, mode m = 0 remains. even at long wavelengths. 

Thus a very thin guide is monomode: it supports only the m = 0 
mode. Then the angle of incidence is only slightly larger than the 
critical angle. 

1/ 
Fig. 36-1. Graphical solution of the eigenvalue equation for the symmetric guide 
of Table 36- 1 .  Curve A is a plot of the left-hand side of the equation. The other 
curves are plots of the right-hand side for various values of the mode order m. 
The curves intersect at the values of e shown in Table 36- 1 .  
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Example 

2 

() (L.) _---':--_L-_....L._---' __ "--_....L._......L __ L....--=:::o.Ilj(( 
Ii 

Fig. 36-2. Graphical solution of the eigenvalue equation for the 
asymmetric guide of Table 36-2. 

Table 36-1 shows the guide parameters for the allowed modes 
m = 0, 1 , 2. 

AN ASYMMETRIC GUIDE 

Now let medium 3 be air. Then n,  = 1 as in Table 36-2, with n2 = 2 
and n I = 1. 98 as above. The critical angle at the 2 ,3 interface is 
arcsin 0 .5 , or 0 .52 radian, but total reflection at the 2,1 interface 
can only occur for () � arcsin 0.99, or 1 . 43 radians. The allowed 
range for () is therefore the same as for the symmetric guide. 

Figure 36-2 shows the graphical solution for this guide. Only the 
m = 0 and m = 1 modes are allowed. Notice that , as the ratio aj).'2 
decreases, curve A swings along the arrow, as previously , and 
mode 0 eventually disappears. So an asymmetric guide filters out 
long wavelengths. 

36.2 THE ELECTRIC FIELD STRENGTH E AS A 
FUNCTION OF X 

Figure 36-3(a) to (e) shows Emy as a function of the vertical coordinate x 
for the five modes of Tables 36-1 and 36-2 and Figs. 36-1 and 36-2 . 

Recall that , for the TE modes that we are considering, E is everywhere 
parallel to the y-axis of Fig . 35-2. 

36. 3  LINES OF E AND OF H FOR THE m = 0 
MODE IN THE SYMMETRIC GUIDE 

Let us see what the lines of E and H look like with the m = 0 mode in the 
symmetric guide . Starting with Eqs . 35-47 to 35-5:\ we set lY = n12, from 
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m =- () 

la I I b l  

I I  

m = .2 

Ic \ Id )  

r e i  

Fig. 36-3. (a), (b) , (c) Curves of Emy as a function of x for the symmetric guide of 
Table 36- 1 .  (d) , (e) Curves of Emy for the asymmetric guide of Table 36-2. 

Table 36- 1 .  We set M = j. Then we multiply each equation by exp j(rot 
kzz) to obtain the phasors, take the real parts, and disregard constant 
factors, while preserving the signs. The field components are now as 
follows. {n ex exp [k3Aa - x)] sin (rot - kzz) ,  

Medium 3 :  Ey ex exp [k3Aa - x)] cos (rot - kzz), 

Hx ex -exp [k3x Ca - x)] cos (rot - kzz) . {n ex sin k2xx sin (rot - kzz), 

Medium 2: Ey ex cos k2>.x cos (rot - kzz), 
II.  ex -cos k2xx cos ( wt - kzz) .  

(36-7) 

(36-8) 
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y 

Fig. 36-4. Lines of E (dots and crosses) and of H for the symmetrical optical 
waveguide of Table 36- 1 .  The wave travels from left to right. The figure does not 
show lines of E in media 1 and 3 because the electric field there is much weaker 
than in medium 2. Compare with Fig. 34-4. {Hz rx -exp [k1Aa + x)] sin (wt - kzz), 

Medium 1 :  Ey rx exp [klAa + x)] cos (wt - kzz ), 

Rx rx -exp [k1Aa + x)]  cos (wt - kzz ). 
(36-9) 

Figure 36-4 shows lines of E and lines of H. Compare with Fig .  34-4. 

36.4 THE PHASE VELOCITY Vp 

The wavelength of the guided wave is given by 

(36- 10) 
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so Az = Ao/(n2 sin 8) > Ao. The phase velocity is given by 

(36- 1 1 )  

For the m = 0 mode of  the symmetric guide of Table 36-1 , sin 8 = 0. 9988. 
The dispersion relation for a wave is w expressed as a function of kz • 

The dispersion relation for a planar optical waveguide is hidden in the 
eigenvalue equation, 36- 1 .  Its left-hand side is 4an2(w/e) cos 8, while its 
right-hand side is a function of 8, n j ,  n2 , n3 , and m. Thus, for a given 
mode in a given guide , Eq. 36-1 expresses w as a function of 8 in implicit 
form. But 8 is itself a function of kz and w :  from Eq.  35-56, 

(36-12) 

So the eigenvalue equation gives w as a function of kZJ and inversely. 
To plot w as a function of kz we proceed as follows. We first select a 

value for m. Then, for each value of w, we solve Eq. 36-1 for 8, and then 
we deduce kz from the above equation. t 

For the symmetric guide of Table 36- 1 ,  
2ne w = 2nj = To ' 

w . 2n . {3 = kz = n2 - Sill 8 = n2 - Sill 8. e Ao 

(36-13) 

(36-14) 

Now 8 can vary only between 8e and 90°, with sin 8e = 1 . 98/2 = 0.99. So, 
throughout the permissible range of 8, sin 8 varies at most between 0.99 
and 1 .0, and 

w 2ne Ao e 
73 = Ao 4n = 2: . (36- 15) 

The phase velocity of the guided wave is approximately the same as that 
of a uniform plane wave in medium 2. 

For this symmetric guide , the curve of Q' as a function of kz is very 
nearly a straight line through the origin with a slope of e/n2 = e/2. 

t The wave number kz is the fJ of Chap. 28 and the curve of w as a function of fJ is then 
referred to as an w-fJ diagram. 
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36.5 THE GROUP VELOCITY Vg 
The group velocity (Sec. 29.2 .4 and App. C) is defined as 

dw 1 v = - =  
g dkz dkz ldw ' (36-16) 

This is the slope of the curve of w as a function of kz . It is shown in Prob . 
36.5 that,t for a symmetric guide with n3 = n l , 

c .  (sin2 e - niln�) 112 + (A)a) v = - SIll e . g n2 (sin2 e - nVn�)1/2 + (A2Ia) sin2 e 

For the symmetric guide of Table 36- 1 ,  
c 

v = v  = -g p 2 ' 

36.6 THE FIELD ENERGY 

(36-17) 

(36-18) 

We now calculate the time-averaged electromagnetic field energy in the 
guide per unit length and per unit width: 

(36- 19) 

with 
(36-20) 

The average energies per unit length and per unit width III the three 
media are, respectively ,  

if;'  _ l1oM2k� 
/) 1 -

4kl z (2, 1 )  , 

if;' = 110M2 [2ak2 + klxk; + k3xk; ] 2 
4k� 2 (2, 1 )  (2, 3) , 

(36-21 )  

(36-22) 

(36-23) 

t When we discussed the group, or signal, velocity in a rectangular metallic waveguide. 
we saw that Vg was simply the axial component of an individual plane wave that zigzags 
down the guide. In that case. Vg = (cln2) sin 8. Here the group velocity is slightly larger 
than this axial component, because of the Goos-Haenchen shift (Sec. 3 1 .2 .2) .  A given ray 
travels part of the time in media 1 and 3. This effect increases when 8 decreases or when the 
mode order increases. 
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We have set 
(1 ,  2) = kix + kin (2, 3) = kix + k�x (36-24) 

and we have assumed that M is a real number. 
The total time-averaged energy per unit length and per unit width is 

thus 

!.l M2 [ k2 ( 1 1 ) ] 
= _0_ -+ - + - + 2a + 2a . 

4 k2x klx k3x 

(36-25) 

(36-26) 

This energy is half electric and half magnetic, with a slight excess of 
magnetic energy in media 1 and 3 and a slight deficiency in medium 2. 
For the symmetric guide of Table 36-1 and for the mode m = 0, 
jg; = jg; = 0.0136jg;. 

36.7 THE TRANSMITIED POWER 

To obtain the power transmitted per unit width , we integrate the 
time-averaged Poynting vector over a width of 1 meter: 

(36-27) 

Integrating and simplifying as in Prob . 36-8, the values of pi for the three 
media are , respectively , 

Then 
W" k M2 ( 1 1 ) p i  = p i  + p� + pi = ,... 0 Z _ + _ + 2 I - 3 4e k k 

a .  
2x Ix 3x 

36 .8  SUMMARY 

(36-28) 

(36-29) 

(36-30) 

(36-31 )  

We can solve the eigenvalue equation for e, Eq.  36- 1 ,  by plotting the two 
sides separately as functions of e and noting where the curves cross. 
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With a symmetric guide whose parameters are those of Table 36- 1 ,  we 
have the curves of Figs. 36- 1 and 36-3(a) , (b) , (c) .  

With the asymmetric guide of  Table 36-2 we have Figs . 36-2 and 
36-3(d) and (e) .  

The lines of E and of H (Fig. 36-4) are reminiscent of those for a 
hollow rectangular metallic guide (Fig . 34-4) . 

The phase velocity 
c v = --p n2 sin e 

(36- 1 1 )  

i s  only slightly larger than that of a uniform plane wave in  medium 2 .  
The dispersion relation i s  the circular frequency w expressed as  a 

function of kr 
The group velocity is 

dw c . (sin2 e - n�/nD I/2 + (A2/a ) vv = - = - sm e  (36- 17) � dkz n2 (sin2 e - nT/nD '/2 + (A2/a) sin2 e 

for a symmetric guide . 
The field energy per unit length and per unit width is 

(36-26) 

and the transmitted power per unit width is 

(36-31) 

PROBLEMS 

36- 1 .  (36. 1 )  Negative mode orders are forbidden 
In Fig. 36- 1 ,  curves for m = -2, -3 ,  -4, . . . would intersect curve A at 

angles of incidence larger than 90°, which is absurd. So those modes are 
forbidden. But for mode m = -1  the curves would intersect at e = Jr /2, 
which is sensible. 

We have shown that all negative values of m are forbidden . Show in a 
different way that the mode m = - 1  is forbidden. 

36-2. (36. 1) The maximum value of the free-space wavelength A" as a function 
of the mode order m 

Find the maximum permissible value of A" as a function of m for a 
symmetric optical waveguide . 

36-3. (36. 1 )  Modal dispersion and the numerical aperture in a symmetric guide 
In multimode propagation , each mode has its own group velocity. Then a 
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narrow light pulse broadens as it travels down the guide. This is modal 
dispersion. We saw in Prob. 35-1 that the numerical aperture is only of the 
order of 1 % for a symmetric optical guide with n I and n3 slightly smaller 
than nz. How would the numerical aperture and the modal dispersion for 
the guide of Table 36-1 be affected if media 1 and 3 were both air? 

36-4. (36. 4) The phase velocity vp ' 
Let medium 1 be denser than medium 3 .  
Show that , i f  e i s  only slightly larger than the critical angle a t  the 

interface 2 , 1 ,  then the phase velocity of the guided wave is approximately 
equal to that of a uniform plane wave traveling in medium 1 .  

36-5 . (36. 5) The group velocity Vg 
Show that the group velocity in a symmetric planar optical waveguide is 

c .  A tI2 + (�z/a) c 
v = - sm e =--- = V  g n2 AI/2 + (�2/a) sinZ e n2 sin e P '  

where A = sinz e - n �/n�. 
Show that the approximate value applies to the mode m = 1 of Table 

36- 1 .  You can find the value of de/dw by differentiating the eigenvalue 
equation with respect to w .  Thus 

c2 A\l2 + (�2/a) 
V" Vg = 

n� A 1/2 + (�2!a) sin2 e ' 

36-6. (36. 6) The field energy 
(a) Show that , in a planar optical waveguide, the electromagnetic energy 

per unit width and per unit length , in medium 1 ,  comprises three terms: 

The first term is the electric energy; the second is the longitudinal magnetic 
energy, or the magnetic energy associated with the longitudinal component 
of H; and the third term is the transverse magnetic energy. From Sec. 35 .3 ,  
k� = k; - ki • .  Thus there is more magnetic energy than electric energy in 
medium l .  

(b) Show that It' ;  = .uoM2k;/ [4k" (2, 1)] ,  where (2, 1) is defined in Sec. 
36.6. In medium 3, by symmetry, It'� = .uoM2k;/[4k3xC2, 3)]. Here also there 
is more magnetic than electric energy. 

( c) Show that 
It'; 

= 
,110M2 [

2a
e 

+ 
k Ixk; + 

k3Xk;] 
- 4k� 2 (2, 1) (2 , 3) 

. 

(d) Show that , for the three media together and for a symmetric guide, 

It" 
= 

,110M2 [ (�)2(� 
+

) ] 
2 k k 

a + a  . 
2x l �· 

As one would expect, l,� = 'I;". 
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36-7. (36. 7) The power density and the electric field strength in an optical guide 
One author states that he has transmitted a ISO-milliwatt signal through 

an optical guide with a cross section of 3 by S micrometers. 
(a) Calculate the space- and time-averaged value of the Poynting vector. 
(b) Calculate the peak electric field strength. This is the breakdown field . 

The index of refraction is 1 .S .  

36-8. (36. 7) Power transmission in the three media 
(a) Show that the powers transmitted per meter of width in media 1 and 

2 are , respectively, 

P� = w/1(:k, [2a + � + �]M2, 4k�, (2, 1 )  (2, 3) 

where (2, 1 )  and (2 , 3) are defined in Sec. 36.6 .  By symmetry, the power 
transmitted in 3 is 

(c) Calculate the ratio P;jP� for the symmetric guide of Table 36-1 for 
modes 0, 1 ,  and 2 .  

36-9. (36. 7) The energy transport velocity 
By definition, the energy transport velocity is equal to the ratio P' j'{; ' ,  

where P'  is the transmitted power per meter of  width, and '{;' is the 
electromagnetic energy per meter of width and per meter of length. 

Show that the energy transport velocity for a symmetrical guide is equal 
to the group velocity given in Prob. 36-S . 
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We have studied the propagation of electromagnetic waves in con
siderable detail .  In Chaps. 28 through 36 we studied successively their 
propagation in free space and in various media, across an interface, and 
then along various guiding structures. 

Our final topic, the radiation of electromagnetic fields, will occupy us 
during the next three chapters . 

Here we turn to general considerations on the fields of time-dependent 
sources. Until now we have disregarded the time taken by the field to 
propagate from the source of radiation to the point of observation. This 
is legitimate only if the time delay is a small fraction of one period. 

We shall obtain the correct integrals for the retarded field from the 
nonhomogeneous wave equations for E and B. These equations are 
similar to the usual wave equations , except that they include a source 
term . 
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37. 1 THE LORENTZ CONDITION 

In Sees. 9.4 and 20. 3  we found that 

1 f P V = -- - dv ' 4.nEo p ' r ' A = flo f -! dv ' 4.n p ' r ' (37-1 )  

where V and A are, respectively , the scalar and vector potentials at the 
field point P(x, y, z ) ,  P = Pf + Pb is the total charge density at the source 
point P' (x ' ,  y ' , z ' ) ,  dv ' is the element of volume dx ' dy ' dz ' at P' , r is 
the distance between P and P' , and J = Jf + ap / at + v x M is the total 
current density at P' . The volume v ' encloses all the charges and all the 
currents . 

Now P and J are not independent quantities because they satisfy the 
equation for the conservation of charge (Secs, 4.2 ,  16 .4 , and 27.5) : 

ap V · J =  - at (37-2) 

Let us therefore seek an equation linking V and A, We shall need this 
equation in the next sections , We have already found this equation in 
Sec. 17 .9 for the field of a point charge moving at a constant velocity , 

We start with the divergence of A :  

flo f J , fl o  f J , V . A = - V ·  - dv = - V ·  - dv . 4.n v , r 4.n v '  r (37-3) 

We can invert the order of the V and of the integral sign because the 
former operates on x, y, z and the latter on x ' , y ' , z ' . Now 

J 1 1 V · - = - V · J + J ·  V- . r r r (37-4) 

The first term on the right is zero because J is a function of x ' , y " Z I and 
not of the coordinates x, y, z of the field point. Also , from identities 15 
and 16 from the inside of the front cover, V(l /r) = - V ' (l/r) , Thus 

Also , 

J 1 V · - = -J · V ' - .  r r 

, J 1 , , 1  V · - = - V  · J + J · V - .  r r r 

Adding these last two equations and rearranging , we find that 

(37-5) 

(37-6) 
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and 

J 1 J V · - = - V ' . J - V ' · -r r r 

V . A = flo f � V , . J dv ' _ flo f V " !dv '. 4.n v ' r 4.n v ' r 
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(37-7) 

(37-8) 

The second integral is identical to the one that we started from,  except 
that now we have the divergence of J I r at the source point P' instead of 
at P. This second integral is zero for the following reason. According to 
the divergence theorem, it is equal to the integral of (Jlr)· dd over the 
surface bounding v ' ,  Now, by definition, v '  encloses all the currents. So, 
on the surface of v ' ,  J is either zero or tangential, and (J I r) . dd = O. 
Then 

V . A = flo f ! V '  . J dv ' ,  4.n v ' r (37-9) 

Here we used a prime on the V that appears under the integral sign 
because we needed to distinguish between V and V ' . But V ' · J is really 
the same as the V ·  J that appears in Eq. 37-2. In this latter equation we 
were concerned with only the source point , and a prime on the V would 
have been superfluous, Then, applying the law of conservation of charge, 

V ' A = - flo f oplot dv '. 4.n v ' r (37-10) 

Since the distance r between P and P' is not a function of the time , we 
can remove the time derivative from under the integral sign, and 

or 

V . A = - flo .i f !!. dv ' = -£oflo 
OV , 4.n at v ' r at 

oV V · A + £oflo - = O.  at 

(37- 1 1 )  

(37- 12) 

This is the Lorentz condition. It is an identity with V and A defined as in 
Eq. 37-1 . The Lorentz condition is a consequence of the conservation of 
charge. 

This result is general , but our proof is not because, as we shall see ,  the 
above integrals for V and A are valid only for slowly varying fields. The 
Lorentz condition has practical importance . Of course, the six 
components of E and B derive from the four components of V and A. 
However, with the Lorentz condition , and i f  V is a function of  t .  one 
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need only know the three components of A to find V and the six 
components of E and B. 

For example , one can calculate E and H in the field of an antenna 
solely from A, hence solely from the currents in the antenna. 

37 . 2  THE NONHOMOGENEOUS WAVE EQUATION 
FOR V 

We can now find the wave equation for V in just a few lines . If P is the 
total charge density PI + Pb, then 

V . E = £ (37-13) Eo ' 

V .  (- VV _ aA) = £ , 

at Eo 

v2V + � V . A = - £ at Eo 

2 a2v P V V - Eol1o -2 
= - - . at Eo 

This is the nonhomogeneous wave equation for V. 
At points where P = 0, 

which is the usual homogeneous wave equation (App. C). 
The phase velocity is 

as for E and B (Sec . 27.8) . 
If V is constant, then 

as in Sec. 4. 1 .  

1 
c = --:-= 

( E 0110) 
1/2 ' 

(37-14) 

(37-15) 

(37-16) 

(37- 17) 

(37- 18) 

(37-19) 

37 .3  THE NONHOMOGENEOUS WAVE EQUATION 
FOR A 

We can find the corresponding equation for A just as easily, starting this 
time from the Maxwell equation for the curl of B:  



37 . 3  THE NONHOMOGENEOUS WAVE EQUATION FOR A 

Here 

as in Sec. 27. 1 .  Thus 

aE 
V x B  = 110J + Eol1o - . at 

a ( aA) V x ( V x A) = 110J + E 0110 - - VV - - , at at 
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(37-20) 

(37-21) 

(37-22) 

(37-23) 

(37-24) 

(37-25) 

We used the vector identity for the Laplacian of a vector from the inside 
of the front cover and the Lorentz condition of Sec. 37. 1 .  This is the 
nonhomogeneous wave equation for A.  

Outside current distributions, we  have the homogeneous wave equation 

(37-26) 

For static fields , the homogeneous wave equation reduces to 

(37-27) 
as in Sec. 19 .2 .  

Observe that we deduced the existence of the potentials V and A, 
defined by 

aA E =  - VV - at 

from Maxwell's equations 

V · B = O  and 

and B =  V X A, 

V X E =  aB 
at . 

(37-28) 

(37-29) 

Then we deduced the nonhomogeneous wave equations for V and A from 
the other two equat ions of Maxwell . 
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P V · E = -
EO 

and 
aE 

V X B = floJ + Eoflo - . at 

37.4 THE RETARDED POTENTIALS 

RADIATION I 

(37-30) 

The integrals for V and A of Eq. 37-1 do not take into account the finite 
velocity of propagation of electric and magnetic fields . For example , if 
the charge distribution shifts in one region, then the integrals imply that 
V and A change simultaneously throughout all space . 

In fact, the potentials at a given point and at a given instant do not 
correspond to the charge and current distributions at that instant, unless 
the charges are all fixed in space . The analogy with astronomy is obvious: 
we cannot see a star as it is now, but only as it was millions or billions of 
years ago. The star is not even at the place where we see it !  

The correct integral for V is the solution of the nonhomogeneous wave 
equation 37- 16 for V. This is 

V(  t) = 
_1_ J p(x ' , y ' ,  z ' ,  t - ric) d ' x, y, z, 4 

v . JrEo v '  r (37-31 )  

This integral i s  identical to  that of  Eq .  37-1 , except that P is the electric 
charge density at the previous time t - ric, the interval ric being the time 
taken by a wave of speed c to travel the distance r. This is the retarded 
scalar potential. 

Notice that the speed that we have used is c, the speed of light in a 
vacuum, and not the speed in the medium of propagation . This comes 
about as follows. As we shall see in Chap. 38, electromagnetic radiation 
occurs whenever electric charges accelerate. An electromagnetic wave 
travels through space at the speed c everywhere. Upon passing through, 
say, a piece of glass, the fluctuating electric field of the wave polarizes the 
molecules, which radiate in turn in all directions . The sum of all these 
waves is a single wave that travels at a speed different from c. If we 
express V and A in Eq.  37- 1 ,  with 

P = PI + Pb and ap 
J = JI + - + V X M  at (37-32) 

under the integral sign, we consider , in effect, that the medium of 
propagation itself acts as a source in a vacuum. Then the retardation 
involves the speed c. 
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Similarly, 

A( ) - flo J J(x ' , y ' , z ' ,  t - ric) d ' x, y, z, t - v . 4.n v ' r (37-33) 

The retarded potentials satisfy the Lorentz condition . 
Fortunately , retardation effects are often negligible. Retardation is 

important whenever the delay is an appreciable fraction of a period 
T = l lf. 

For an infinite , homogeneous, isotropic, linear, and stationary (HILS) 
medium E, fl, 

( ) _ _  1_ J Pt(x ' , y ' , z ' ,  t - rlv) d V x, y, z, t - V, 4.nE v ' r 

A( ) _ £ J Jt(X ' , Y ' , z ' , t - rlv) d '  x, y, z, t - v , 4.n v ' r 

(37-34) 

(37-35) 

where v is the speed of propagation 1 /(Efl) I/2 (Sec. 28 .2) in the medium. 
This is another application of the rule of Sec . 27. 1 .  

Example THE RETARDED POTENTIALS FOR THE 
OSCILLATING ELECTRIC DIPOLE 

Figure 37- 1 shows an electric dipole similar to that of Fig. 5-1 , 
except that now the electric dipole moment P is a sinusoidal 
function of t :  

Q = Q", exp jwt, 

P = Qms exp jwt = Pm exp jwt, 

(37-36) 

(37-37) 

This simple-minded model serves to calculate the radiation field of 
any charge distribution whose dipole moment is a sinusoidal 
function of the time. 

The upward current through the wire is 

I 
dQ . Q . I 

. = dt = JW '" exp Jwt = m exp Jwt. (37-38) 

Thus 
Is == jwp. (37-39) 

We could first calculate A and then deduce V from the Lorentz 
condition (Sec. 37. 1 ) .  However, it will be more instructive to 
calculate V separately . Refer to Fig. 5-1 . 

First 

V = 
Q", exp jw(t - r�/e) _ Qm exp jw(t - r,, /e) 

4Jtf "r� 4Jtf"ra ' (37-40) 
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II 
- Q  

(a) (b) 
Fig. 37-1. An oscillating electric dipole . (a) The vector s points in 
the direction shown. (b) The charges and currents as functions of 
the time. 

where the numerators are the charges, as they appear at P of Fig. 
5-1 at the time t. Notice that the two components of V differ both 
in amplitude and in phase . 

One can usually set s' « r3 and S3 « 1.3. This legitimates a 
simpler expression for V. Setting 

then 

where 

s r = r + - cos e a 2 ' 
s rb = r - - cos e 
2 ' 

( rh) ( r s cos e) s w t - - = w t - - + -- = w[t] + - cos e, c c 2c 1. 

1. =� = � .  
2n w 

r [t] = t - -c and 

(37-42) 

(37-43) 

A similar expression applies to wet - ra /C) ,  with a negative sign 
before the cosine term. 

From now on we reserve brackets for quantities taken at the time 
t - r / c. 

Then 
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v = Qm exp jw[t] {exp {js cos e/(2A)} _ exp {-js cos e/(2A)} } 
4.7H'or 1 - (s cos e)/(2r) 1 + (s cos e)/(2r) 

. 

(37-44) 

Expanding the exponentials and the denominators between the 
braces as power series , neglecting terms of the third order and 
higher in sir and in S/A, and then substituting Pm for Qms, we find 
that 

V = 
Pm:y (� +  j) cos e exp jw[t] 4.n:Eoll.r r (S2 « r3, S3 « Xl (37-45) 

We have made no assumption as to the relative magnitudes of r 
and A. Of course, 

Thus 

A (A2 112 ( r) � + j = ---;> + 1) exp j arctan � . 

P (A2 ) 112 { ( r) r} 
V = 

4.n::;;
Ar 

---;> + 1 cos e exp j w t - -;; + arctan � . 

(37-46) 

(37-47) 

Naturally, V = 0 in the equatorial plane at e = 90°, where the 
potentials of the charges + Q  and - Q  cancel exactly. Figure 37-2 
shows a radial plot of V as a function of e and 1>. 

Observe the peculiar way in which the amplitude of V decreases 
with the distance r. Close to the dipole where r2 / A2 « 1 , V falls off 
as 1/r2. But farther out, where r2/A2 » 1, V falls off as l /r. 

At zero frequency, A--'> 00 and [t] = t. This returns to the V of a 
static field (Sec. 5. 1 ) . 

As to A,  it is simply the vector potential of the element of 
current Is : 

Since 

A - _ILo_(J_]s _ !-/L.::::oj_w�[p�] 
- 4.n:r - 4.n:r . 

1 
/Lo = --2 , EoC 

w 1 
C A '  

A =  j[p ]  = jPm 
expjw (t - �) . 4.n:EocAr 4.n:EocAr C 

(37-48) 

(37-49) 

(37-50) 

The vector potential propagates at the speed C everywhere. It is 
parallel to the polar axis, and its magnitude at P depends solely on 
the distance r to the dipole. See Fig. 37-2. 

In polar coordinates, 

A j[p] 
( (J A . e oA) = ;t cos r - SIn . 4.n:EoCAr (37-51) 
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x 

l' 

Fig. 37-2. The scalar potential V and the magnitude of the vector potential A as 
functions of e and cp, about an oscillating electric dipole oriented as shown. The 
radial distance from the center of the dipole to the spheres marked V is 
proportional to the value of V at a fixed distance in that particular direction. The 
scalar potential is maximum at the poles and vanishes at the equator, where the 
individual potentials of the charges - Q and + Q of the dipole cancel. It is positive 
in the northern hemisphere , where the field of + Q  is predominant, and negative 
in the southern hemisphere. The vector potential A is independent, both in 
magnitude and in direction, of the coordinates e and cp. 

Example THE RETARDED POTENTIALS FOR THE 
OSCILLATING MAGNETIC DIPOLE 
The magnetic dipole of Fig. 37-3 is identical to that of Fig. 18-9 , 
except that the source now supplies an alternating current. By 
hypothesis, there is zero net charge and V = O. 

We now have that 

/10 12" 1m exp jw(t - r ' Ie) � 
A = 

4
- a cos cp dcp t/J 

:n; 0 r' (37-52) 
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y 

Fig. 37·3. An oscillating magnetic dipole. 

/.l J
2" exp U(, - , ,)/1..} 

A = � alm expjw[tl , cos tj> dtj> ,J,. (37-53) 
4n 0 , 

As in the third example in Sec. 18.4, we set 

1 1 { a2 ax } - = - 1 + - + - cos tj> . 
, ' , 2,2 ,2 (37-54) 

Then, within the same approximation ,3 » a3, 

, ( a 2 ax cos tj» 
, = ,  1 + - - ---;;----'-

2,2 ,2 
, 

ax cos tj> a2 
, - , ' = - - . (37-55) 

Also, 

, 2, 

, - , ' , - " ax cos tj> a2 
exp j -1..- =  1 + j -1..- =  1 + j 1.., 

- j 
21.., ' 

(37-56) 

if a2 « 21..2• Then the above integral becomes equal to 
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1 J2" ( a2 ax cos 1» ( . ax cos 1> a2 ') - 1 - - + 1 + ] - - cos 1> d1>. 
r 0 2r2 r2 Xr 2Xr 

This integral is easy to evaluate . First we disregard the cosine 
and the cosine cubed terms because their integrals are zero. Also , 
the integral of cos2 1> is n. Then the integral is equal to 

nax (� + j �) . 
r2 r X 

Substituting now r sin e for x, and mm for na2Im , mm being the 
maximum value of the dipole moment, m = mm exp jwt, 

l10mm (X ) , 
A =  

4nXr 
� + j sin e exp jw[tJ Ij) (37-57) 

= 
jl1o[m 1 x r (

1 
_ 

j �)" 
4nXr r (a3 « r', a2 « 21.'). (37-58) 

Compare Eq. 37-57 with Eq. 37-45 for the V of an electric dipole . 
Since V = 0, then V ·  A = 0, from the Lorentz condition (Sec. 

37. 1) .  
For r» X the vector potential propagates as a spherical wave of 

wavelength clf whose amplitude is inversely proportional to r. 

However, A is zero on the axis of symmetry and maximum in the 
equatorial plane , again as we might expect. 

37 .5  A SECOND PAIR OF INTEGRALS 
FOR E AND B 

We found the following integral for E in Sec. 9.4 :  
1 f pr E = -- z dv ' ,  4JTEo v '  r 

(37-59) 

where E is the electric field strength at P(x, y, z ) ,  P = PI + Pb is the total 
charge density at P' (x ' , y ' , z ' ) ,  dv ' = dx ' dy ' dz ' is the element of 
volume at P' , and r is the distance between P and P' . We disregard 
surface charges here. 

In Sec. 20. 3  we found that 

B = Jill f J X r dv ' 4JT v '  r
2 ' 

where B is the magnetic flux density at the point P(x, y, z ) and 

ap J = Jr + - +  V X M. 
at 

(37-60) 

(37-61 )  
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Jf being the free current density, OP / at the polarization density, and 
V X M the volume density of equivalent currents in magnetized matter at 
P' (X ' ,  y ' ,  Z l ) .  

The above integrals apply only if  retardation effects are negligible. To 
find more general expressions, we start with the nonhomogeneous wave 
equations for E and for B. We found those equations in Sec. 27 .8. By 
analogy with the solution of  the corresponding equation for A,  the 
retarded fields are 

E = - -1- 1 [ Vip + Eol1o(oJ/ot)] dv ' 4,nEo v ' , 
, 

B = 110 I [ V  I X J] dv I . 
4,n 1) ' , 

(37-62) 

(37-63) 

Here E and B are the fields at (x ,  y, z, t) ,  while the bracketed terms are 
taken at (x I , Y I , Z I ,  t - , / c) , , being again the distance between P and P' .  

You will remember that the integrals for the retarded potentials 
involved [p] and [J] ; the integrals for the retarded fields involve more 
complex quantities. 

We found the above integral for E, but for static fields , in Sec. 12 .2 .  
The integral for B is  intriguing. For a static field we now have that 

B = 110 r V I X J dv I , 4,n L , (37-64) 

instead of Eq. 37-60. The source term is now V I X J, instead of J X r, 
and the term in the denominator is , instead of ,

2
. 

37 .6 A THIRD PAIR OF INTEGRALS 
FOR E AND B 

We can deduce another pair of integrals for E and B from the retarded 
potentials of Eqs. 37-3 1 and 37-33 . Let us start with E:  

E = - Vv _ oA = - V-1- 1 [P] dv , _ i I10 1 [J] dv ' (37-65) at 4,nEo v ' , ot 4,n v ' , 

= - -1- 1 v [p] dv , _ l10 1 o[J]/ot dv ' . (37-66) 4,nEo v" 4,n v ' , 

We can insert the del operator under the first integral sign because it 
operates on x ,  y, z while the integral operates on x I ,  Y I, Z I .  Recall that 
the quantities between brackets are measured at (x I ,  Y I ,  Z I ,  t - , / c) . 
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Now 
[p] 1 1 1 i-V- = - V [p] + [p] V - = - V [p] - [p] - . r r r r r2 (37-67) 

Here [p] is a function of r and hence of x, y, z. Therefore 

V [p] = o[p] V (t _ �) = _ [ OP] ! Vr = _ [ OP] � . (37-68) o(t - ric) c at c at c 
Also, 

� [J] = o[J] o(t - ric) = o[J] = [ oJ] 
at o(t - ric) at o[t] at ' 

Thus 

E =  - -1- f (_ [ OP] i- - [p] �) dv ' - 1l0 f [oJlot] dv ' 
4JTEo u ' at rc r 4JT v ' r 

= _1_ f [p] + [ op! ot](rlc) i-dv ' _ 110 f [oJ lot] dv ' . 
4JTEo v ' r 4JT u ' r 

(37-69) 

(37-70) 

(37-71) 

The first integral is curious. The integrand is p dv ' lr2, except that the 
charge density is p at t - ric, extrapolated to the time t, to the first order ! 
The term under the second integral is not extrapolated. 

Similarly, 

B = V X A = V X 
110 f [J] dv ' = 110 f V X 

[J] dv ' 
4JT v ' r 4JT v ' r 

_ 110 f [J] + [oJlot] (rlc) � , - -
4 2 X r dv . JT v ' r 

(37-72) 

(37-73) 

The numerator under the integral sign is again a first-order extrapolation 
of J. 

37.7  SUMMARY 

The Lorentz condition 
oV V . A + E 0110 - = 0 at (37-12) 

is an identity if V and A are defined by the usual integrals, retarded or 
not (Eq. 37-1 or Eqs . 37-31 and 37-33) .  If V is time-dependent, the three 
components of A yield V, and then the six components of E and B 
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follow. The Lorentz condition is a consequence of the conservation of 
charge. 

The nonhomogeneous wave equation for V is 

where p is the total charge density Pt + Pb ' 
The nonhomogeneous wave equation for A is 

a2A V2A - Eol1o at2 = - l1oJ, 

where J is Jt + ap I at + v x M. 

(37-16) 

(37-25) 

The solutions of these two equations are the retarded potentials : 

V( t) = _1_ f P(x ' , y l , z ' , t - rlc) d I x, y, z, 4 v , JTEo v ' r 

A(  t) = 110 f J(X ' , y l , z ' , t - rlc) d I x, y, z, v .  4JT v ' r 

(37-31) 

(37-33) 

The solutions of the nonhomogeneous wave equations for E and B that 
we found in Sec. 27 , 8 are the retarded fields 

E = - _1_ f [ V  I P + E 0110 aJ I at] dv I 
4JTEo v ' r ' 

B = + 110 dv ' . f [ V ' x J] 
4JT v ' r 

(37-62) 

(37-63) 

The retarded potentials yield still another pair of integrals for E and B :  

E = _1_ f [p] + [aplat] (rlc )  idv ' - 110 f [aJlat] dv ' 4JTEo v ' r2 4JT v ' r ' 

B - 110 f { [J] + [aJlat](rlc)}  �d I - 4 2 X r v ,  JT v ' r 

PROBLEMS 

(37-71) 

(37-73) 

37-1 .  (37. 4) The retarded vector potential near a long, straight wire carrying a 
time-dependent current 

A long, straight wire of length C carries a current that increases linearly 
with time: 1 =  Kt. 
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Show that, at a distance p from the wire such that 4p2 « C2, and away 
from the ends, 

Refer to the first example in Sec. 18.4. We have disregarded a term that is 
independent of both the time and the coordinates and that does not, 
therefore, affect either E or B. This particular A therefore has the same 
form as if the current were constant. 

37-2. (37. 4) The propagation speed of V and A in the field of an electric dipole 
Find the propagation speed of the scalar and vector potentials V and A in 

the field of an electric dipole, on the assumption that S3 « ,3 and that 
S3 « �? 

Observe that the addition of two waves of V traveling at the speed c gives 
a wave whose phase speed is larger than c. This is an interference effect. 
Observe also that the speed of propagation V, close to the dipole, is a 
function of the wavelength and hence of the frequency. The dispersion 
originates, not in the properties of the medium,  but rather in the geometry, 
as in rectangular metallic waveguides and in dielectric waveguides. 

37-3. (37.4)  Can A be zero in a radiation field? 
In the field of a magnetic dipole, V = 0, A *'  0. Do there exist radiation 

fields where the inverse is true? 

37-4. (37. 5) The alternate integral for B 
We have shown that 

B = /10 f V ' X J dv ' ,  
4.7r v ' , 

if retardation is negligible. The volume v ' encloses all the currents. 
Show that the term on the right is equal to V X A for a finite current 

distribution . Refer to the identities on the inside of the front cover. 

37-5. (37. 5) Identity of the first and second integrals for E 
Show that, for any finite charge distribution , the integrals for E given in 

Sec. 37.5 are equal : 

_1_ f pr dv ' = - _1_ f V 'p dv ' .  
4.7rEo u · ,2 4.7rEo v ' , 

37-6. (37. 5) Identity of the first and second integrals for B 
Show that, for any finite current distribution , the integrals for B given in 

Sec. 37.5 are equal: 

/10 f J � rdV , = /1o f V' X Jdv ' .  
4.7r ,, ' , 4.7r ,,' , 
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37-7. (37. 5) 
Show that 

f v '  x !.. dv ' = O. 
v '  , 

691 

37-8. (37. 6) The electric field of the electric dipole, calculated from the third 
integral for E 

Calculate E in the field of the electric dipole, starting from the integral of 
Sec. 37.6. To simplify the calculation, disregard terms in sZl,2 and s3/,3 as 
well as the higher-order terms in s 1 A. This will leave you only the radiation 
term. 

37-9. (37. 5) The field at the center of a rotating disk of charge. 
Suppose you have a disk of radius R and thickness 2s «  R. It carries a 

charge density Q '  = K(R - p)(s - zf We use Q ' for the charge density in 
order to use p for the radial coodinate. 

You are required to find the value of B at the center when the disk 
rotates as a solid at the angular velocity lV. Of course, B is normal to the 
plane of the disk . See Prob. 18-4. 

Calculate B from Eq . 37-60 and then from Eq. 37-63. 



CHAPTER 38 
RADIATION II 
The Electric Dipole Transmitting Antenna 

38. 1  RADIATION B Y  AN ACCELERATED CHARGE 692 

38.2 ELECTRIC DIPOLE RADIATION 697 

38 .2 . 1  THE ELECTRIC FIELD STRENGTH E 698 

38.2 .2 THE MAGNETIC FIELD STRENGTH H 699 

38.2.3 THE POYNTING VECTOR E X  H 70 1 

38.2.4 THE RADIATED POWER P 702 

Examples : THE COLOR OF THE SKY, OF THE SETTIN G  SUN , AND OF 

TOBACCO SMOKE 703 

38.2.5 RADIATION RESISTANCE 703 

*38.2 .6 THE LIN ES OF E 704 

*38.2 .7 THE Kt.. SURFACE 705 

*38.2.8 THE LINES OF H 708 

38.3 SUMMARY 708 

PROBLEMS 709 

The final two chapters address the radiation of electromagnetic fields by 
antennas . There exist a seemingly endless variety of antennas, but we 
study only three basic types, namely . the electric dipole, the half-wave 
antenna, and the magnetic dipole . We also study briefly some simple 
antenna arrays that serve to orient the radiation in a given direction .  

I n  this chapter we  return t o  the electric dipole. We found its potentials 
in the first example in Sec. 37 .4, and we now study its field in some 
detail .  

38 . 1  RADIATION BY AN ACCELERATED CHARGE 

We saw in Chap. 17 that, if a charge moves at a constant speed, its field 
follows as a rigid body. The lines of E are radial. As the speed 
approaches c, then, for a fixed observer, the field contracts in the 
longitudinal direction and eventually shrinks to the plane normal to the 
direction of motion. 

If the charge accelerates , then the lines of E become twisted into odd 
shapes , as in Fig. 38- 1 .  The kink moves out at the speed c. 
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Ib)  

Ie)  

Fig. 38-1. (a) The field of a point charge that travels at a velocity of 0. 8e. (b) The 
field a short time after the charge has stopped. The kink travels outward at the 
speed of light. For a distant observer the field is that of a charge at Pl ' (c) The 
field a short time later. 

Let us do a rough calculation of E and B in the kink. This will yield all 
the basic characteristics of radiation fields. 

It appears that J. J .  Thomson was the first to calculate this E. He did 
so in 1903/ 2 years before the publication of Einstein's historic paper on 
relativity . Several authors have since extended the calculation to rel
ativistic velocities and to B. 

Imagine a charge that starts from rest, accelerates at the rate a for a 
short interval of time r, and then continues in a straight line at the 
constant velocity ar. Figure 38-2(a) and (b) shows the velocity v and the 
distance traveled z as functions of the time. The interval r is short and 
z = (or)/. 

Figure 38-3 shows how a line of E changes with time . Beyond the circle 
of radius ct centered on the origin, the field is that of a stationary charge 
at O. Inside a circle of radius c(t - r) centered on the charge, the field is 

t J .  J .  Thomson, Electricity and Matter, Yale University Press, New Haven, Conn. , 1904, 

p. 55.  
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(a) ( b l  

Fig. 38·2. (a) Velocity v of a point charge as a function of the time t .  Between 
t = 0 and t = r the acceleration is a. (b) Distance z traveled as a function of t. For 
t »  r, z = (ar)t. 

that of a point charge moving at the constant velocity aT. Set again 
v2 « c2• Then, in the figure, bd is parallel to De because the field moves 
as a solid. 

Assume that, in the kink, the line of E is straight . This is a coarse 
approximation !  Then, in that region , from Fig. 38-4, 

CT C2 
--- = --- = ---
aTt sin (J at sin (J ar sin (J ' (38-1 )  Er = ---

EfJ vt sin (J 
CT C 

where r = ct = De. 
We now apply Gauss's law and set 

(38-2) 

This is also a coarse approximation because the radial component of E is 
not uniform in the region between the spheres centered on D and on b. 
Then 

We have used the relation Eol1o = 1 /c2, from Sec. 27.8 .  

(38-3) 

Observe that this EfJ is proportional to the acceleration, that it varies 
inversely as the first power of r, and that it is maximum in the direction 
perpendicular to the acceleration. 

We now calculate the magnetic field in the region of the kink. We 
expect a B that is azimuthal around the z-axis, like the magnetic field 
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Fig. 38-3. The charge is originally at rest at O. After a time r it moves to the 
right at the constant velocity aT. When the charge reaches point b, one of its lines 
of E has the shape bdef. A short time later the charge is at b ' ,  and the line of E is 
now b 'd ' e 'f. 

near a current-carrying wire. If C is a circle whose plane is perpendicular 
to the paper in Fig. 38-4 and that goes through points e and g, 

B . dl = 2nr sin e B. (38-4) 

Now apply Eq. 27-31 to the circle C and to the area of the spherical 
surface bounded on the left by C: 

f f aE d f d<l>E B . dl = Eo!1o - • ds4 = Eo!1o d- E . ds4 = Eo!1o -- , 
C sJ at t sJ dt (38-5) 

where <l>E is the flux of E through C. Thus d<l>E is the sudden change in 
the electric flux that occurs when the region of the kink goes through the 
point e, and dt = T. 
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f 

� 8 

Fig. 38-4. The charge is at b, as in Fig. 38-3. C is a circle whose plane is 
perpendicular to the paper and that is centered on the z-axis. 

In Fig . 38-4 the spherical surface bounded on the left by C lies, just 
before the arrival of the kink, in the field of a stationary charge situated 
at the origin and 

Q Q Q 1 - cos e 
<1>£ = - - =  

Eo 4JT Eo 2 ' 
(38-6) 

where Q is the solid angle sub tended by C at the origin .  
After i seconds the kink has swept through e. The point e then lies in 

the field of a charge situated slightly to the right of b, and <1>£ is larger: 

So 

Q 1 - cos (e + � e ) <I>£ + �<I>£ = -
2 

. 
Eo 

�<I>£ Q Q . --= - �(-cos e) = - sm e �e. 
i 2Eoi 2Eoi 

(38-7) 

(38-8) 

Now the two circles in Figs. 38-3 and 38-4 are very close together. We 
can therefore set r � e = vt sin e. Then 
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Q sin () vt sin () 
2ET r 

Q sin2 () aTt Qa sin2 () t 
2EoTr 2Eor 
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(38-9) 

Combining, finally , Eqs. 38-4, 38-5 , and 38-9 , and setting r = et, gives 

1 �<I>E 110 Qa sin () Ee B = Eol1o -- = - '-=---2Jrr sin () T 4Jr er e (38-10) 

Therefore, both Ee and B in the kink result from the acceleration, they 
are proportional to the acceleration a, they vary as l /r, and they are 
maximum in the direction perpendicular to the acceleration. Moreover, 
Ee and B are mutually orthogonal , and orthogonal to the direction of 
propagation of the kink . Finally, Ee = Be. All these characteristics apply 
to the radiation fields that we shall study in this chapter and the next. t 

38 .2 ELECTRIC DIPOLE RADIATION 

Figure 38-5 shows an electric dipole . As we saw in the example in Sec. 
37.4, this simple model serves to calculate the radiation field of any 
charge distribution whose dipole moment is a sinusoidal function of the 

P(r. O. 4» 

x 

Fig. 38·5. Electric dipole of moment p = Qs and a point P in its field. 

t They do not apply to the field close to a source of radiation. 
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Fig. 38-6. Electric dipole antenna at the end of a coaxial line .  The outer 
conductor is folded back. 

time , disregarding quadrupole , octupole , and higher-order fields. In the 
oscillating dipole , charges oscillate along s,  and their acceleration is thus 
lengthwise. 

We calculated V and A in the example , setting S3 « ,3 and S3 « 1.3 ,  but 
without limiting the relative magnitudes or , and A. We now deduce E, 
H, the Poynting vector Y, and the radiated power P. 

The dipole is in free space. 
Figure 38-6 shows an electric dipole antenna at the end of a coaxial 

line. 

38 .2 . 1 The Electric Field Strength E 

First , in polar coordinates , 
av 1 av A VV = - r + - - 8 a, , a8 ' (38- 1 1 ) 

V being independent of ¢. Then , from Eq . 37-45t 

[P] { (  1.2 A) (1."2 A) A } VV = 1 - 2 - - 2j - cos 8 r - - + j - sin 8 8 . (38-12) 4.7TE 01.2, ,2 , ,2 , 

Also, from Eq. 37-51 , 

and 

aA . [p] [p] A . A - = ]wA = - 1.2 = - x2 (cos 8 r - sm 8 8) (38-13) at 4.7TEo ' 4.7TEol\. , 

t We again reserve brackets for quantities measured at the previous time t - r / c. 
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Fig. 38-7. The E, H, and 9' = 
E x H vectors for an oscillating 
electric dipole for r » � and 
w[t] = O. 

[p] { (I.2 I.) (1.2 I.) � } E = 4 1'2 2 2" + j - cos 8 r + 2" - 1 + j - sin 8 (J • JTEw'l. r r r r r (38-14) 

Close to the dipole, where r «  I., or at zero frequency (I.� 00) , only 
two terms survive, and 

E = � (2 cos 8 r + sin 8 8) 4JTEo'- (r « I., or f = 0). (38-15) 

These are the static terms of Sec. 5 . 1 .  They fall off as l/r3. 
Far away from the dipole , for r » 1., only the radiation term remains, 

and it falls off as l/r :  

E = - 4 [p �2 sin 8 8 JTEu r (r » 1.). (38-16) 

See Figs. 38-7 and 38-8 . Remember that we have set S3 « r3 and S3 « 1.3. 
Observe that E is proportional to 1 /1.2, or to u/, or to the second time 
derivative of p, or to the acceleration of the charges. 

38.2 .2 The Magnetic Field Strength H 

In  the example in Sec. 37 .4 we found that in the field of an electric dipole 
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Fig. 38-8. Polar diagrams of sin (J (outer surface) and of sin2 (J (inner surface) 
showing, respectively, the angular distributions of E, or of H, and of gav at a 
distance r »  1.. from an oscillating electric dipole situated at the origin. The radial 
distance from the dipole to one of the surfaces is proportional to the magnitude of 
the quantity in the corresponding direction. There is zero field and zero power 
flow along the axis. 

A = j[p]
J;: (cos 8 r - sin 8 0) .  4.7rEoC r 

Then H has only a </> component: 

1 1 { O OAr} A H = - V X A = - - (rA e ) - - q,. f-lo f-lor or 08 

To work this out, we require the following two derivatives : 

o 0 { . ( r)} jW[p] j[p] - [p] = - Pm exP JW t - - = --- = - -, or or c c J;: 
o 

08 [P ] = 0. 

(38-17) 

(38-18) 

(38-19) 

(38-20) 
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Then 
c[p] ( A) � H =-- - 1  + j - sin (J q" 4.7d2r r 

again with 53 « r3 and 53 « A3. 
For r «  A, and using Eqs. 37-39, 

jw [p] . � [1]s X r H = -- sm (J q, = "---"-�-4.nr2 4.nr2 (r « A), 

which agrees with the Biot-Savart law of Sec . 18 .2 .  
For r »  A, 

w [p] . � w [p ] X r c [p] X r H = - -4.n-A-r sm (J q, = - 4.nAr 
= - ---'4�.n�A-2r-

as in Figs. 38-7 and 38-8. 
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(38-21 )  

(38-22) 

(r » A), (38-23) 

For r »  A, the characteristic impedance is the same as that for a 
uniform plane wave in free space (Sec. 28.3) : 

E 
Z = - = {..loC = 377 ohms H (r » A). 

The electric and magnetic energies are equal. 

(38-24) 

Curiously enough, A propagates everywhere at the speed c, but H 
propagates at that speed only for r »  A. Closer in, its phase speed is 
larger than c. 

At zero frequency w = 0 and H = 0, as expected. 

38.2 .3 The Poynting Vector E X  H 

We now calculate the time-averaged Poynting vector and the radiated 
power. 

For any r, 

(38-25) 

Recalling that 

r X #J = - iJ, iJ X #J = r, (38-26) 

then, from Eqs . 38-14 and 38-2 1 ,  

[flY = � Re ( -ErH;iJ + EfJH;r) (38-27) 
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II W4p2 II :rr2 f4p2 _ rO m ·  2 e� _ _ rO_ � . 2 e � - 32 2 2 Sill r - 2 Sill r 
:rr cr 2c r 

f4 2 = 4. 137 X 10- 14 P;ms sin2 e i r 

f2[2 2 
a) _ flo � . 2 e � 
Jav - 8 2 Sill r c r 

f2p 2 
= 1 . 0496 x 10- 1 5  r�sS sin2 e i  r 

1O-7C ( S )2 [;ms . 2 � =-- - - Sill e r  4:rr " r2 

watts/ meter2 . 

watts/meter2 

2 [" 
2 38 ( s ) ;ms . 2 � = . 6 � 7 slll e r  watts/ meter2 . 

(38-28) 

(38-29) 

(38-30) 

(38-31 ) 

(38-32) 

Note the following points about this time-averaged Poynting vector .  

( 1 )  I t  involves only the radiation terms , despite the fact that our 
calculation is valid even if r is not much larger than A. The time-averaged 
power flux is everywhere radial, at least for r3 » S3, ,,3 » S3. See Figs. 
38-7 and 38-8 
(2) It varies as 1 /r2 because , under steady conditions, the power flow 
through any given solid angle must be independent of r to satisfy the 
conservation of energy. This 1 /r2 dependence results from the fact that 
the radiation terms for E and for H both vary as l/r. 
(3) Since it varies as sin2 e, it is zero along the axis of the dipole and 
maximum in the equatorial plane, as in Fig. 38-8 . An electric dipoLe does 
not radiate aLong its axis. 

38.2 .4 The Radiated Power P 

Integrating the time-averaged Poynting vector over a sphere of radius r 
yields the radiated power : 

:rr2f4 2 i2'" in: P 
flo Prms . 2 e 2 . e de dA. = 2 Sill r Sill 't' cr ° 0 

8fl :rr3 = -(-) _f4p2 = 3 466 X 1O- 13'f4p2 
3c rms . rms 

(38-33) 

watts. (38-34) 
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Substituting again Irmss I ill for Prm" 

p = 
2{.1olTf2I2 S2 = 8 779 X 1O- 1 5:r2I2 S2 

3c rms · rms (38-35) 

watts. (38-36) 

Thus the radiated power is proportional to: (1 ) (sl,,-)2, which is a small 
quantity as we assumed in the first example in Sec. 37 .4 ;  (2) S2 , where s 
in the length of the dipole; (3) F for a given Irms; and (4) f4 for a given 
Prrns' 

Example THE COLORS OF THE SKY, OF THE SETIING 
SUN , AND OF TOBACCO SMOKe 

Dust particles suspended in the atmosphere scatter the light 
coming from the sun . This scattering occurs because the electric 
field of the incident light wave excites electrons present in the 
particles. These electrons act as small electric dipoles and 
reradiate. If we disregard resonances, the Pm of an oscillating 
electron is proportional to the amplitude of the incident wave . 
Then the reradiated power is proportional to /" and the light 
scattered by the sky is bluer than sunlight. 

If the air were completely dust-free ,  the sky would still be blue , 
but darker: atoms and molecules of the air also absorb and 
reradiate energy, but mostly in the ultraviolet. The light from the 
sun that reaches the earth , particularly at sunset, is reddish 
because part of the blue has been diffused out. 

It is for the same reason that tobacco smoke is either bluish or 
reddish. according to the way you look at it , with respect to a 
source of light. See Fig. 38-9. 

38 .2 .5  Radiation Resistance 

We saw above that the radiated power is proportional to the square of 
the rms current. The factor of proportionality is the radiation resistance : 

ohms (38-37) 

if (sl"-? « l. 
Let (sl"-? = 0.01 .  Then (sl"-? = 0. 46 . and the radiation resistance is 

about 0 .9 ohm. 

t See M. Minnaert ,  The Nature of Light and Color in the Open Air. Dover, New York, 
1954. 
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� 
-........ � Reddish light --... 

I ! \ 
Bluish light 

Fig. 38-9. Fine particles, as in tobacco smoke, scatter blue light preferentially. 
The transmitted light is thus reddish. 

*38 .2 .6  The Lines of E 

Of course, there is no such thing as a distinct line of E or of H. All that 
we know is that the fields E and H possess both a magnitude and a 
direction that vary from one point to another in space, and from one 
instant to another in time, according to certain laws. Lines of E and of H, 
however, provide the best way to picture a field. 

We can find an equation for the lines of E by setting 

(38-38) 

where dr and r de are the components of an element of a line of E. Here 
Er and EfJ are the real parts of the corresponding phasors. We continue 
our calculation with phasors. 

First we note that, from Maxwell's equation for the curl of H (Eq. 
27-27) ,  

1 E = -. - V X H. (38-39) 
JWEo 

Since H has only a <p component, from Sec. 38.2.2, 

1 1 0 Er = -. - --. -e - (H sin e) ,  
JWEo r Sill oe 

1 1 0 EfJ = - -. - - - (rH).  (38-40) 
JWEo r or 

Thus the differential equation for the lines of E becomes 
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1 0 1 0 -. -- (H sin 8) d8 = - -- (rH) dr. sm 8 08 r or 

Multiplying both sides by r sin 8 gives 

o 0 
08 (Hr sin 8) d8 + 

or (Hr sin 8) dr = O. 
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(38-41) 

(38-42) 

The total differential of Hr sin 8 is therefore zero, and on a given line 
of E, Hr sin 8 is a constant . Substituting the value of H from Eq. 38-21 
after replacing jwp by Is, expressing the complex factor in polar form, 
and replacing the exponential function by a cosine , we have the equation 
for a line of E :  

(1..2 ) 112 ( r r) sin2 8 r2 
+ 1 cos wt - � + arctan � = K1... (38-43) 

The parameter K varies from one line to the next. Remember that we 
have assumed the conditions (S/1..)3 « 1 and (s/r)3 « l . 

Figure 38-10 shows eight families of  lines of E.  t 

At r » 1.., 
. ( r n) sm2 8 cos wt - � + "2 = K1.., (38-44) 

and the lines of E travel outward at speed w1.. = c. Closer in , the arctan 
term is a function of r and the speed of the lines is larger than c. 

*38 .2 .7  The K1.. Surface 

It is instructive to plot Eq. 38-43 as a three-dimensional surface as in Fig. 
38- 1 1 .  The loops are both contour lines and lines of E at t = O. In fact, 
they are the same lines of E as those of Fig . 38-1O(a) . As time goes on, 
the argument of the cosine function increases ,  and the ripples move out 
as a damped wave, carrying the lines of E with them. 

Let us see how the lines behave. Figure 38-12 shows the intersection of 
the K1.. surface, again at t = 0, with the plane 8 = n/2. These curves lie 
inside the envelope 

(1..2 ) 112 
K1.. = ± r2 

+ 1 (sin 8 = 1) .  (38-45) 

t See the animated film loop on Dipole Radiation by R. H. Good, California State 
University, Hayward . California. 
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Fig. 38·10. Lines of E for an oscillating electric dipole for wt '" 0, 1[/4, 1[/2, 
31[/4. 1[, 51[/4, 31[/2, 71[/4. The dipole is vertical at the center. Note how the 
wavelength decreases with distance . The lines of H are circles perpendicular to 
the paper and centered on the axis of the dipole . 



3 7T  {ur = -
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As the ripples move out, their height decreases rapidly and soon 
approaches unity . Clearly, lines of E with Kf... < 1 can travel out to 
infinity . They provide the radiation field. It is also clear that , if Kf... > 1 ,  
they cannot go  far. I f  Kf... i s  only slightly larger than unity , a loop shrinks 
until it reaches the top of a ripple and then disappears. 

! K7. 

/��_ �I 

Fig. 38-11. The parameter KA plotted as a function of the coordinates r and e at t = O. The dipole is at the center. on the e = 0 axis. As t increases ,  the central 
peaks oscillate in unison from -:xl to +00, and the ripples move out radially. The 
loops are both level lines and lines of E. 
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6 

4 

-4 

-6 

Fig. 38-U. This figure illustrates how the intersection of the Kf. surface with the 
plane () = :rr/2 changes with time. The curves all lie within the envelope shown as 
a dashed line. 

*38 .2 .8  The Lines of H 

We have seen in Sec. 38.2.2 that H has only a 1> component. Thus the 
lines of H are circles perpendicular to, and centered on , the axis of the 
electric dipole . 

38. 3  SUMMARY 

In the field of an oscillating electric dipole , 

(38-21 )  

r 2 
9'av = � Re (E X H*) = 4. 137 X 10- 14 P;ms sin2 8 r (38-29) r 

watts/ meter2 . (38-32) 

Far away from the dipole (r » A) , E has only a 8 component and H is 
azimuthal. The time-averaged Poynting vector is everywhere radial. 
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The radiation power is 

P = 3. 466 x lO- 13rP;ms 
= 8. 799 x 1O-15FI;mss2 

= 19. 99c�r I;ms watts . 
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(38-34) 
(38-35) 

(38-36) 

The radiation resistance of an electric dipole is about 20(S/A? ohms. 
On a line of E, (A2 ) 1/2 ( r r) sin2 e r2 

+ 1 cos wt - � + arctan � = KA. (38-43) 

Lines of H are circles perpendicular to and centered on the axis of the 
dipole. 

PROBLEMS 

38-1 .  (38. 1 )  The radiation field of a long wire carrying a step current 
Figure 38- 13(  a) shows a long wire that carries a current that varies as in 

Fig. 38-13(b). Beyond P2 = el there is no field. Inside PI = e (1 - r) the field 
is that of a steady current [0' In the shaded region, 

where C is the length of the wire, as in Prob. 37- 1 .  
(a) Calculate E and B in  the shaded region . 
(b) Show that Maxwell's equations apply . 
(c) Sketch curves of E and B as functions of P at a given instant, 

between P = 0 and P = P2' There are discontinuities at P = P I  and at P = P2 
because we have assumed that d2[ / dl2 is infinite at I = 0 and at I = r. 

P, 

(a )  

E = 0 
, 1 8  = 0 

Fig. 38·13. 

(b) 
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38-2. (38.2)  The dipole moment of an oscillating charge 
A charge Q oscillates along the z-axis, and z = Zm exp jwt. 
What is the dipole moment of an equivalent oscillating dipole? You can 

find the equivalence in the following way. If the currents are the same, then 
the A's are the same. Then the V's are the same, from the Lorentz 
condition (Sec. 37. 1) .  Then the E ' s  and H's are the same. 

38-3. (38. 2. 1 ) The three components of the E field of an electric dipole 
Show that the electric field of an electric dipole has three components: 

one that depends on the positions of the charges, one that depends on their 
velocities, and one that depends on their accelerations. 

38-4. (38. 2.3)  The radiation pattern of the electric dipole 
What fraction of the total power in the field of an electric dipole is 

radiated within 45" of the equatorial plane? 

38-5. (38. 2. 3) The electric and magnetic energy densities in the field of an 
electric dipole 

Calculate the ratio of the time-averaged electric energy density to the 
time-averaged magnetic energy density in the field of an electric dipole (a) 
for r «  X, (b) for r = X, and (c) for r »  X. 

38-6. (38. 2. 3) The Poynting vector and the energy density in the field of an 
electric dipole 

Show that, for r »  X, the magnitude of the Poynting vector in the field of 
an electric dipole is equal to the energy density multiplied by c. 

38-7. (38. 2. 4)  The light source paradox 
All light sources should be black, for the following reason. Take the sun , 

for example. A cone in the retina of the eye collects radiation emanating 
from a very large number of atoms .  These sources are incoherent. 

At any given instant there is a near-infinite number of phasors in the 
complex plane, all of different magnitudes and different phases, rotating at 
different velocities. Their vector sum is clearly zero. 

The same reasoning applies to any object, say a white wall, illuminated 
with incoherent light. The radiation that reaches a given cone comes from 
an area that is a large number of wavelengths in diameter. There again , the 
net field at the cone should be zero, and the wall should appear black. 

To explain this paradox, consider N waves of a single frequency and of a 
given linear polarization but of random amplitudes and phases. The 
number N is very large. For the i-th wave, Ei = Emi exp j( wt - a,) at the 
cone, and the net E is the sum of the E:s .  

Now the eye i s  sensitive, not to E but to Y, and thus to EE* .  Show that 
Yav = � Y',. This means that the net energy flux is equal to the sum of the 
energy fluxes of the individual waves . '  

t You have probably noticed that laser ligh t diffused b y  a wall o r  a sheet o f  paper has a 
granular structure. The pattern moves if one moves one's head from side to side. This 
phenomenon is called speckle. It is used for studying surfaces .  

Speckle arises in the following way.  Each point on the object, say the sheet of paper, 
produces on the retina a diffraction pattern whose shape and size depend on the optical 
characteristics of the eye . Since the radiation is coherent ,  there is interference between 
these patterns and the field varies from point to point on the retina. 
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38-8. (38. 2. 4 )  Cosmological evolution 
Consider a particular class of astronomical objects, say quasars. Assume 

that they are all identical and distributed uniformly in a Euclidean universe. 
Show that, if N is the number of objects whose radio-frequency flux is 

greater than Y' at the earth, then a plot of log N against log Y' should be a 
straight line whose slope is - 1 .5 .  The slope for quasars is, in fact , larger. 
This is possibly a measure of cosmological evolution. 

38-9. (38. 2. 4)  The polarization of skylight 
The atmosphere scatters sunlight. Draw a sketch showing the sun, the 

earth, and a vector E on a ray of scattered light. Explain why skylight is 
polarized. The light is only partially polarized because it is scattered many 
times. 
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The half-wave antenna is a long, straight conductor, one-half wavelength 
long, that carries a standing wave of current . Its radiation pattern is 
similar to that of an electric dipole. However, for a given current, it 
radiates much more energy. This is the building block for assembling 
arrays of antennas. We deduce its field from that of an electric dipole. 

The directivity of a half-wave antenna is hardly better than that of an 
electric dipole. However, arrays of such antennas, with the proper 
spacings and the proper phases, can be highly directive. Some arrays 
comprise a few antennas, but others comprise thousands. 

We also calculate E and B in the field of a magnetic dipole, and we 
discuss briefly electric and magnetic dipoles as receiving antennas. 
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This chapter ends our study of electromagnetic fields and waves. 
Obviously we have not exhausted the subject! Indeed, we have done no 
more than establish a base from which you can explore on your own. 

39 . 1  RADIATION FROM A HALF-WAVE ANTENNA 

Figure 39-1 shows a half-wave antenna connected to a transmitter 
through a parallel-wire line. The half-wave antenna is essentially a pair of 
wires, each A/4 long, fed with a current 1m cos wt at the junction .  Here A 
is the wavelength of a uniform plane wave in the medium of propagation. 

At short wavelengths one can fold back a length A/4 of the outer 
conductor of a coaxial line , as in Fig . 38-6 to obtain a half-wave antenna . 

Roof antennas for automobiles are only one-quarter wavelength long; 
the other half is a reflection in the sheet metal of the roof. Transmitting 
antennas for AM waves are similarly .1.0/4 towers standing on conducting 
ground. 

The antenna carries a standing wave of current , with a maximum at the 
center and nodes at the end. The current at I is thus 

I I = 1m cos � exp jwt. (39-1 ) 

Each element of length dl radiates as an electric dipole. 

P(r. (J) 

(J,' " r 

" 
" 

"-
\ 

/ 
/ 

./ 
'<.4 .-' 

l .-' 

I 
Fig. 39-1. Half-wave antenna. The broken line shows the standing wave of 
current at cos lOt = 1 .  



714  RADIATION 111  

This description of the half-wave antenna is contradictory because the 
standing wave along the conductor can be truly sinusoidal only if there is 
zero energy loss , hence no radiation . In a real antenna the current 
distribution is not quite sinusoidal , but the distortion hardly affects the 
field. 

The standing wave of current is the sum of two waves, one in the 
positive direction of I and the other in the negative direction , each of 
amplitude Im/2:t 

39. 1 . 1  The Electric Field Strength E 

We set r »  1... Then e '  = e, Eq . 38-16 applies, and 

where 

[dp] . A w2[ dp ] . A dE = -4 1'2 , SIn e () = - 2 , Sin e () nEo/\. r 4nEoc r 
_ ,uojw[I] dl . O ()A 
- 4 ' sIn u , nr 

r ' = r - I cos e, 

as in Fig . 39-1 ,  or 

,uojw1m { (  I ) ( I ) } A dE = 8nr' exp j w[t' ] - A + exp j w[t' ] + � sin e dl (). 

(39-2) 

(39-3) 

(39-4) 

(39-5) 

(39-6) 

We now integrate over the length of the antenna to find E at r, e. We 
can replace the r' in the denominator by r since r »  A, hence r »  l. 
However, we must not replace the r' by r in 

r ' [t '] = t - -
c 

(39-7) 

because the phases of the exponential terms vary rapidly with r ' . So we 
set 

[ ' ]  
r - I cos e [ ] 

I cos e t = t - = t + -- . 
c c 

(39-8) 

t As in the previous two chapters, we reserve brackets for quantities evaluated at I - ric. 
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At a given point in space, the dE's thus all have about the same 
amplitude and direction, but their phases differ. All these dE's point in 
the direction of the local unit vector 9. Then 

f..lojwIm . e . [ ]f+Al4 { , l(cos e - 1) , l(cos e + I )} dl � E = --- sIn eXPlw t eXPl A + eXPl A 8. 8nr -A/4 
(39-9) 

Integrating yields 

jIm . . [ ] (Sin {n(cos e - 1)/2} sin {n(cos e + 1 )/2} } � E = --- SIn e exp lW t + 8, 4ncEor cos e - 1 cos e + 1 

where 

. n(cos e - 1 ) (n ) SIn 2 = -cos 2 cOS e , 

Thus 

(39-10) 

n(cos e + 1) (n ) sin 2 = +cos 2 cos e . 

(39-1 1 ) 

E = 
_1_' _ cos { (n

./2) 
cos e} [1]9 = 60.0 ' cos { (nl?) cos 8 } [1]9. 2nCEor SIn e � r Sin e (39-12) 

This expression is indeterminate at e = 0 and at e = n. But, according 
to L'Hospital's rule , the limiting value of such a ratio is equal to the 
limiting value of the ratio of the derivatives . So E is zero on the axis of a 
half-wave antenna, in agreement with the fact that the elementary dipoles 
do not radiate along the axis. 

Why should the magnitude of E be independent of the frequency? The 
explanation is that the E of an elementary dipole , for a given current, is 
proportional to l /A, but the antenna is A/2 long.  

Figure 39-2 shows that the radiation pattern for a half-wave antenna is 
similar to that of a dipole .  This is because the phase differences between 
the dE's from the elements of current along the antenna are small near 
e = n12, where the dE's are large , and are large only near the polar axis 
where the dE's tend to zero. 

39 . 1 .2 The Magnetic Field Strength H 

The value of H follows immediately. We found in Sec. 38 . 1 .2 that , for 
the electric dipole , H is azimuthal and 
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Fig. 39-2. Polar diagrams of the functions cos { (  Jr /2) cos e} (outer pair of curves) 
and of its square (inner pair ) .  On the outer pair, the distance from the origin to a 
point on a curve is proportional to the magnitude of E, or of H at a fixed distance 
from a half-wave antenna. in that direction . On the inner pair .  this distance is 
proportional to gay' Compared to the electric dipole , the half-wave antenna 
radiates a somewhat larger fraction of its power in the region of the equatorial 
plane . 

- =  � = 377 ohms E (!l ) 1/2 
H Eo 

Therefore . in the field of a half-wave antenna , 

(r »  A) . 

j cos { (nI2) cos 8}  [ ] , H = - . 1 tjJ. 2nr SIn 8 

39. 1 .3 The Poynting Vector E X  H 

The time-averaged Poynting vector i s  

Y'. = 1 Re (E X H*) av 2 
1 COs2 { ( n /2) cos 8 }  l;ms , == -- r 

nCEo sin2 8 4nr2 

cos2 { (nI2) cos 8 }  l;m, A == 9. 543 . 2 8  
-, r SIn r-

See Fig .  39-2. 

watts/meter2 . 

(39-13) 

(39- 14) 

(39- 1 5) 

(39-16) 

(39- 17) 

39 . 1 .4 The Radiated Power P and the Radiation Resistance 

To obtain the radiated power, we integrate over a sphere of radius r :  

P
_ l;ms fJT cos2 {(nI2) COS 8 }  2 '  d - 4 2 2 2n . 2 r SIn 8 8. n CEor 0 SIn 8 

The integral is equal to l . 2188267, and 

(39- 18) 
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watts. (39-19) 

The radiation resistance of a half-wave antenna is about 73 ohms. 

39 .2  ANTENNA ARRAYS 

The electric dipole and the half-wave antenna are omnidirectional in the 
equatorial plane : at a given distance, the amplitude of the field is the 
same in all directions in that plane. Omnidirectional antennas have their 
uses , but for most applications the radiation field of an antenna should be 
maximum in a given direction. This is achieved with arrays of half-wave 
antennas that are properly spaced and properly phased. 
Linear arrays comprise several parallel half-wave antennas disposed 

along a straight line . Planar arrays operating at wavelengths of the order 
of 1 centimeter comprise many more, often thousands, disposed over a 
rectangular or circular plane surface . Usually the individual antennas are 
identical , equally spaced, and oriented similarly. Beam steering and 
pattern control are achieved nearly instantaneously by means of phase 
shifters next to each element . 

The radiation patterns of arrays are typically like the one shown in Fig . 
39-3, with one main lobe and several smaller side lobes. 

An adaptive receiving array adjusts its pattern automatically to 
optimize the signal-to-noise ratio in the presence of identifiable noise 
sources. 

We illustrate the principle involved in antenna arrays by calculating the 
field of two half-wave antennas spaced by A/2, first when they are in 
phase and then when they are in opposite phases. 

Example PAIR OF PARALLEL ANTENNAS SEPARATED 
BY ONE-HALF WAVELENGTH 
Figure 39-4 shows a pair of parallel half-wave antennas separated 
by a distance M2. We assume that r »  A. 
The antennas are in phase 
If the antennas are in phase, then E at point P is the sum of two 
terms like that of Eq. 39-12,  except that one wave travels a 
distance r + (M4) cos 1JI and the other a distance r - (M4) cos 1JI. 
Therefore one wave leads, relative to an imaginary antenna at the 
center, by the phase angle 

2n ). cos 1JI n 
A --4- = 2 cos 1Jl• (39-20) 
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(a )  
1> 
(b) 

Fig. 39·3. The radiation pattern of an antenna is a plot of E 
as a function of e. This is the radiation pattern of a 
lO-eIement linear array of in-phase half-wave antennas. (a) 
Polar diagram. (b) Cartesian diagram. 

the other lags by the same amount, and 

cos {( Jr /2) cos e }  { ( Jr ) ( Jr ) } , E = 60j . exp j - cos 1/1 + exp -j - cos 1/1 [I]O 
r sm e 2 2 

cos { (Jr/2) cos e }  (' Jr ) ' = 120j 
r sin e 

cos '2 cos 1/1 [1]0. 

(39-21 ) 

(39-22) 

The angle 1/1 is awkward to use , but we can express it in terms of 
e and 4>. since 

Then 

r cos 1/1 = r sin e cos <p. (39-23) 

. cos {(Jr/2) cos e }  (Jr ) ' 
E "" 120, ' e  cos - sin e cos 4> [1]0. (39-24) r sm 2 

In the xy-plane, e = Jr/2 and 

E ex cos (� cos 4> ) . (39-25) 

This function is zero at cJ> equal to 0 or Jr. and maximum at 
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Fig. 39-4. Pair of parallel half
wave antennas separated by a 
distance of )../2. The distances 
from the centers of the antennas 
to P are approximately r -
(A/4) cos 1JI and r + (A/4) cos 1JI. 

<p = n /2: there is destructive interference along the x-axis and 
constructive interference along the y-axis. 

In the xz -plane, <p = 0 and 

E cos { (n/2) cos e} (n . ) ct: • e 
cos -

2 
SIO e . 

SIO 
(39-26) 

The first term on the right is the angular distribution for a single 
half-wave antenna; it is zero at e = 0 and maximum at e = n/2. 
The second term comes from the interference between the two 
antennas; it is maximum at e = 0 and zero at 8 = n/2. The 
product of the two is zero both at e = 0 and at e = n /2. 

Finally, in the yz-plane , <p = n/2 and 

E ct: cos { (n/2) cos 8 }  
sin 8 ' (39-27) 

as for a single half-wave antenna. The two waves are in phase, and 
the total field is twice that of a single antenna when r »  A. 

Figure 39-5 shows the radiation pattern. 

The antennas are in opposite phases 

The antenna at x = ),,/4 now leads by n. Equation 39-21 applies, 
except that the first term between the pair of braces on the right is 
negative and 

cos {(n/2) cos 8 }  (n ) -
E = 120 . sin -

2 
sin 8 cos <p [lJ8. (39-28) 

r SIO e 
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Fig. 39-5. The radiation pattern for the simple antenna array of Fig. 39-4 when 
the two antennas are excited in phase and for r » K  Here we have plotted the 
magnitude of E, or of H, radially as a function of f} and of <p. We have split the 
surface into two parts for clarity. In the yz-plane , the field is twice that of a single 
antenna. Along the x-axis the waves arrive in opposite phases , for r »  f., and 
cancel. There is zero field on the z-axis, again for r »  f.. 

The radiation pattern is now that of Fig. 39-6. 
These simple arrays are only slightly more directional than a 

single half-wave antenna. 
Clearly, one can obtain a wide range of radiation patterns by 

varying either the geometry of an antenna array or the phases of 
the individual antennas, or both. The main beam sharpens as the 
size of the array increases. 

39 .3  MAGNETIC DIPOLE RADIATION 

Figure 39-7 shows a magnetic dipole that is similar to that of Fig. 37-4 . As 
in that section , we set 

and (39-29) 

We already know that 
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Fig. 39-6. The radiation pattern for the array of Fig. 39-4 with the antennas 
excited in opposite phases. 

V == o, . ,uo[m] ( . 1..) . A A == ] -- 1 - ] - Sill (] tP, 4.TCAr r 

from the second example in Sec. 37 .4 .  

39 . 3 . 1  The Electric Field Strength E 

Since V == 0, and since w == ciA, 

aA . ,uoc[m] ( . 1..) . A E = - - == -]wA = 1 - ]- Sill (] tP, at 4.TCA2r r 

where ,uoC = 377 ohms. Thus E is azimuthal. 
At zero frequency, ). is infinite and E is zero, as expected. 
For r »  A, 

(r » A). 

(39-30) 

(39-31 ) 

(39-32) 

Observe that E is proportional to the time derivative of A, hence to 
the time derivative of the current, and thus to the azimuthal acceleration 
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II 

E 

Fig. 39-7. Magnetic dipole antenna fed by an oscillator. The E and H vectors 
point in the directions shown when w [t] = O. The Poynting vector E X H always 
points outward. We assume that r» X. 

of the electrons .  The centripetal acceleration is negligible (Prob. 39-8) . 
The situation is different with high-energy electrons on a circular 

trajectory, as is a synchrotron accelerator. Then the electron speed is 
close to c and nearly constant, the acceleration is radial and the radiation 
is tangential . Because of the headlight effect (Prob. 14-3) , the electrons 
radiate in the forward direction over a small solid angle .  This is 
synchrotron radiation. 

39 . 3 .2 The Magnetic Field Strength H 

We have that 

V x A  jmm { I  ( A) ( r) � } H = -- = - V x - I  - j - sin e exp jw t - - l/J 110 4.nA r r c 

[m] { (A2 A) ( A2 A) � }  = --2- 2 2" + j - cos e i + - 1  + 2" + j - sin e o .  4.nA r r r r r 

At zero frequency, A � 00 and 

(39-33) 

(39-34) 
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H = mm1 (2 cos 8 i- + sin 8 0)  4.71r 

as in the fourth example in Sec. 18 .4 . For r »  A . 

(J = 0), 

[m] . � H = - -- Sill 8 0  4nA2r (r »  A). 
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(39-35) 

(39-36) 

39 .3 . 3  The Poynting Vector, the Radiated Power, and the 
Radiation Resistance 

The time-averaged Poynting vector for the magnetic dipole is 

2 2 f4 1 ( * ) lion m nns . 2 � gay = 2 Re E X H = -3---2 - Sill 8 r c r (39-37) 

2 f4 
= 4. 603 X 10-3 1 mrm; sin2 8 ir watts/meter2 . (39-38) 

The vector gay is radial, even close to the magnetic dipole. See Sec. 
38.2 . 3 .  

Integrating over 8 to  obtain the radiated power, we  find that 

8 3 2 f4 
P = lion mrms 

3c3 
= 3. 8564 x 1O-30m;ms!4 

For a circular loop of radius a and N turns, 

and 
P = 3 . 806 x 1O-29(Na2Inns?r 

= 197. 3(ir(Nlnns? 

watts. 

= 200(�) \Nlnns)2 watts . 

(39-39) 

(39-40) 

(39-41) 

(39-42) 

(39-43) 

(39-44) 

The radiation resistance is about 200(a /A)4N2 ohms and is proportional 
to the fourth power of the frequency. We have assumed that a2 « 2A2. 
and that a3 « r3. 
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39.3 .4  Electric and Magnetic Dipole Radiation Compared 

Compare Eqs . 38-16 and 38-23 , for electric dipole radiation, with Eqs . 
39-32 and 39-36, for magnetic dipole radiation. The E and H fields of the 
electric dipole are similar to the H and E fields of the magnetic dipole , 
respectively. However ,  the sign of E for the magnetic dipole is opposite 
to that of H for the electric dipole. This keeps the Poynting vector 
directed outward. 

The lines of E and of H for the magnetic dipole are identical, 
respectively, to the lines of H and of E for an electric dipole at points 
remote from the dipoles. 

The radiation resistance of an electric dipole is about 20(s / A)2, while 
that of a magnetic dipole is about 200(a/A)4. 

39 .4 THE ELECTRIC DIPOLE 
AS A RECEIVING ANTENNA 

Figure 39-8(a) shows an electric dipole set up as a receiving antenna. The 
current induced in the dipole is detected at the receiver. If the input 
impedance of the receiver is infinite, the antenna generates a voltage that 
is equal to the tangential component of E, multiplied by the length of the 
dipole . 

39 .5  THE MAGNETIC DIPOLE 
AS A RECEIVING ANTENNA 

The electromotance induced in a loop antenna, under proper conditions, 
is simply equal to dA./dt, where A. is the flux linkage in the loop. 

The output voltage of the magnetic dipole is not necessarily equal to 
the induced electromotance, because the loop can also operate in the 
electric dipole mode . For example , with the loop of Fig. 39-8(b) , if E is 
horizontal and in the plane of the paper, charge oscillates from one end 
of the circuit to the other and the above relation is correct. However, if E 
is vertical , an extra voltage comes from the electric dipole excitation and 
adds to the induced electromotance. 

The induced electromotance is maximum when the axis of the dipole is 
parallel to the ambient magnetic field. Since the H vector of a distant 
transmitter tends to be horizontal near the earth's surface and transverse 
to the direction of propagation, magnetic dipoles are useful for direction 
finding. The loop is set up with its axis horizontal and rotated about the 



725 

(a) (b) 

Fig. 39·8. An electric and a magnetic dipole, connected as receiving antennas. 
The radio receivers R measure the induced voltages. 

vertical diameter. The signal is zero when the transmitter lies in the 
vertical plane containing the axis of the coil. 

The antennas of small portable radios are usually coils wound on a rod 
of ferrite. The ferrite core amplifies the magnetic flux by a factor of about 
100 . The directivity of these antennas is well known. However, indoors, 
the antenna is close to many metallic objects that reradiate radio waves, 
and its directivity is meaningless. 

39. 6  SUMMARY 

In the field of a half-wave antenna, 

E - j cos { (n/2) cos 8} [ ]
� - -- 1 (J 2ncEor sin 8 ' 

j cos {(n/2) cos 8} [I] � H = - � 2nr sin 8 ' 

Y. _ _  1_ cos2 { (n/2) cos 8} I�s � 
rro - nCEo sin2 8 4nr2 T, 

watts/meter, 

p = 73.083/�s watts, 

(39-12) 

(39-14) 

(39-16) 

(39-17) 

(39-19) 
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where [I] is the antenna current at the time t - ric and P is the radiated 
power. See Fig. 39-1 for the definitions of r and 8. 

The radiation resistance is 73 .08 ohms. 
Arrays of antennas can be more directive than single antennas. 
In the field on an oscillating magnetic dipole, 

tloc[m] ( . A) . � E = x2 1 - ] - sm 8 41, 4lClI. r r 

H = 
[m� {2(A: + j�) cos 8 i +  (- 1  + 

A: + j �) sin e o} , 4lCA r r r r r 
2 2 [4 U> _ tlolC mrms . 2 Q � 

oJ au - 1 2 sin u r c r 

(39-31 ) 

(39-34) 

(39-37) 

m2 [4 
= 4. 603 X 10-31 � sin2 e i 

r 
watts/meter, (39-38) 

8 3 2 [4 tlolC mrms P = 3c3 

= 3 . 856 x 1O-30m�sr watts 

= 197. 3(i) 4(Nlrms)2 watts , 

(39-39) 

(39-40) 

(39-43) 

if m = NIlCa2, N being the number of turns and a the radius of the loop. 
The radiation resistance is 197. 3(a/A)4N2 ohms. 
An electric dipole receiving antenna feeding a high-resistance receiver 

generates a voltage equal to the tangential E multiplied by the length of 
the dipole. A magnetic dipole receiving antenna under similar conditions 
generates a voltage dA/dt, where A is the linking flux. However, see 
Sec. 39.5 .  

PROBLEMS 

39- 1 .  (39. 1 )  The radiation patterns of the electric dipole and of the half-wave 
antenna 
(a) Show that in the far field of an electric dipole E,m, = 6.71p12 sin 6/r. 
(b) Show that for the half-wave antenna 

-
7 0 pl!2 cos { (n/2) cos 8} E,m, - . 2 . e . r SIn 
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39-2. (39. 1 . 4 )  The electric field of a radio antenna 
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Calculate E at a distance of 1 kilometer in the equatorial plane of a 
half-wave radio antenna radiating 1 kilowatt of power. Set A « 1 kilometer. 

39-3. (39. 2) The image of a half-wave antenna 
An antenna is normally situated near a conductor (the earth , an airborne 

vehicle, a satellite, etc . ) .  Energy radiated toward the conductor is reflected, 
and the total field is thus the vector sum of the direct wave plus the 
reflected wave. It is convenient to consider that the latter is generated, not 
by reflection, but by an image of the antenna located behind the surface of 
the conductor. 

(a) Show that the current in the image of a horizontal half-wave antenna 
and the current in the antenna flow in opposite directions. 

(b) Show that the current in the image of a vertical half-wave antenna 
and that in the antenna flow in the same direction. 

Both rules apply to oblique half-wave antennas. 
(c) We have shown that the radiation resistance of a half-wave antenna is 

73. 1 ohms. Find the radiation resistance of a quarter-wave antenna 
perpendicular to a conducting plane. 

39-4. (39. 2) The radiation pattern of a linear array of half-wave antennas 
A linear array consists of parallel half-wave antennas lying in a plane. Say 

there are N antennas, uniformly separated by a distance D and excited in 
phase. 

(a) Show that, in the plane perpendicular to the antennas, 

sin { (NDI2J..) cos CP }  
E rx ---'-'--'-...,.-''---� 

sin {(D I2/..) cos CP }  
, 

where cp is the angle between the direction of observation and the plane of 
the array. The best approach is to sum the individual E phasors graphically 
in the complex plane. 

(b) Find the angular positions of the minima and maxima of E. 
Differentiation yields only the maxima. 

(c) Show that , for a given spacing D, the main lobe at cp = nl2 becomes 
narrower as N increases. 

(d) Draw a polar diagram of E as a function of () between 0 and 3600 for 
an array of 30 parallel half-wave antennas that are in phase and spaced by 
Al4. 

(e) Now plot the same function . using Cartesian coordinates, between 0 
and 1800 with a log scale for the E-axis. 

(f) Explain why the main lobe is twice as wide as the two neighboring 
lobes. 

(g) Show that its half-width (the angle between the maximum and the 
first minimum on one side or the other) is approximately equal to All, 
where l is the length of the array. 

39-5. (39. 3)  The directivity of an antenna 
By definition, the directivity of an antenna is equal to the ratio of the 

Poynting vector at the maximum of the radiation pattern to the Poynting 
vector averaged over a spherical surface surrounding the antenna: 
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f (" r .<f' sin 8 d8 dCP
' 

lr Jo J" 

(a) Show that, the directivity of an electric or magnetic dipole is 1 . 5 .  
(b) Show that the directivity o f  a half-wave antenna i s  1 . 64 .  

39-6. (39. 3 )  The magnetic dipole antenna 
Show that, for a given diameter and for a given mass of copper, the ratio 

wL/R for a magnetic dipole antenna is independent of the number of turns. 
L and R being. respectively, the inductance and the resistance of the 
dipole . 

Increasing the number of turns increases the resistance, the inductance , 
and the stray capacitance of the coil. The impedance is thus, in fact, a 
complicated function of the number of turns. 

39-7 . (39. 3) The fields of electric and magnetic dipoles 
You have two receiving antennas. One is an electric dipole of length I, 

and the other is a single-turn magnetic dipole of diameter I. 
(a) Calculate the ratio of the induced voltages far away from an electric 

dipole and close by, in the equatorial plane.  
(b) Repeat the calculation for the field of a magnetic dipole. 

39-8. (39. 3 )  The azimuthal and centripetal accelerations in the magnetic dipole ; 
synchrotron radiation 

We found that the radiation fields of electric and magnetic dipoles result 
from the accelerations of the electric charges. 

Show that the centripetal acceleration is negligible in the oscillating 
magnetic dipole. Assume a copper torus of major radius RJ and minor 
radius R2 and a current 1m cos wt. Assume also that the current is uniformly 
distributed over a thickness equal to the skin depth. 

Set RJ = 200 millimeters, R2 = 10 millimeters, 1m = 1 ampere, p = 1 . 3 X 
1010 coulombs/meter3 of conduction electrons, and f = 1 megahertz. 

39-9. (39. 4)  The coupling between parallel electric dipoles 
Figure 39-9 shows two parallel electric dipoles , one of which acts as a 

transmitting antenna and the other as a receiving antenna. The distance r is 
much larger than the lengths of the dipoles. How does the signal at the 
receiving antenna vary with the distance r » 1. and with the angle 8? 

39-10. (39. 5) The optimum load for a loop antenna 
A loop receiving antenna of inductance L feeds a load resistance R. 

The resistance of the loop is negligible compared to R. 
Show that there is maximum power transfer to the load when R = wL. 

39-11 . (39.5)  The electric and magnetic dipole antennas 
Compare the responses of electric and of magnetic dipole antennas 

used as receivers in seawater. Assume a frequency of 20 kilohertz, a 
typical frequency for communicating with submarines. Assume that the 
loop antenna has a single turn , that its diameter is equal to the length l of 
the electric dipole , and that 1 < 1.  in seawater. 
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Fig. 39-9. 

39-12 .  (39. 5) Omnidirectional magnetic dipole antenna 
Two identical magnetic dipoles are perpendicular and have a common 

diameter. 
(a) Show that the radiation pattern is a circle in the plane perpendicu-

lar to the common diameter if one dipole leads the other by n/2 radians. 
(b) Explain the nature of the resulting field. 
(c) How would you connect these antennas to a common source? 
Such a pair of crossed coils forms an omnidirectional transmitting or 

receiving antenna. 



APPENDIX A 
SI PREFIXES AND 

THEIR SYMB OLS 

MULTIPLE PREFIX SYMBOL 

1O- 1H atto a 

10- 15 femto f 

10- 12 pica P 
10 -9  nano n 

10-6 micro /l 
10-3 milli m 

10-2 centi c 

10- 1 deci d 

t This prefix is written deca in French. 

Caution: the symbol for the prefix IS 

MULTIPLE PREFIX SYMBOL 

10 dekat da 

102 hecto h 

10' kilo k 

10" mega M 

10" giga G 

1012 tera T 

1015 pet a P 

1018 exa E 

written next to that for the unit 
without a dot. For example , mN stands for millinewton, while m . N is a 
meter-newton, or a joule . 



APPENDIX B 
CONVERSION TABLE 

Examples : One meter equals 100 centimeters. One volt = 108 electromagnetic 
units of potential . 

CGS SYSTEMS 

QUANTITY SI esu emu 

Length meter 102 centimeters 102 centimeters 

Mass kilogram 103 grams 103 grams 

Time second 1 second 1 second 

Force newton 105 dynes 105 dynes 

Pressure pascal 10 dynes/centimeter2 10 dynes/centimeter2 

Energy joule 107 ergs 107 ergs 

Power watt 107 ergs/second 107 ergs/second 

Charge coulomb 3 x 109 10 - 1  

Electric potential volt � 108 
300 

Electric field strength volt/meter 1 /(3 x 104) 106 

Electric flux coulomb 12n x 109 4n x 10.- 1 

Electric flux density coulomb/meter2 12n x 105 4n x 10-5 

Polarization coulomb/meter2 3 x 105 10-5 

Electric current ampere 3 x 109 10-1  

Conductivity siemens/ meter 9 x 109 1 0 - 1 1  

Resistance ohm 1/(9 x 1011)  109 

Conductance siemens 9 x 1011  10-9 

Capacitance farad 9 x 101 1 10-9 

Magnetic flux weber 1 108 maxwells 
300 

Magnetic flux density tesla 1/(3 x 106) 104 gausses 

Magnetic field strength ampere/meter 12n x 107 4n x 10-3 oersted 

Magnetomotance ampere 12n x 109 4n /10 gilberts 

Magnetization ampere/meter 1/(3 x 1013) 10-3 

Inductance henry 1/(9 x 1011)  10-9 

Reluctance ampere/weber 36n x 101 1  4n x 10-9 

Note : We have set c = 3 X 108 meters/second. 



APPENDIX C 
WAVES 

If one disturbs a medium in some way, the disturbance travels outward as 
a wave. For example, a vibrating object generates acoustic waves in air. 

C.l  PLANE SINUSOIDAL WAVES 

Suppose the quantity a propagates at the velocity vp in the posItive 
direction of the z -axis. At z = 0 and for all x and y, it is given by 

a = am exp jwt. (C-l) 

Then, at any position z, 

(C-2) 

This equation defines an unattenuated plane sinusoidal wave. The wave 
fronts are surfaces of uniform phase, at a given time . Here, the wave 
fronts are normal to the z-axis. This wave is also uniform because its 
amplitude am is uniform over a wave front. 

At a given z, a is a sinusoidal function of t. At a given t, a is a 
sinusoidal function of z, as in Fig. C-l . 

a 

v f------- A = f -4  

(a) 

a 

Fig. C-l. The quantity a = am cos (wt - kz) as a 
function of z and as a function 
of t. 

(b) 
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The phase of the wave is the quantity between brackets. It is constant 
for z = vpt. Hence vp is the phase velocity. 

It is usually more convenient to write 

a = am cos (wt - kz), (C-3) 

where 

(C-4) 

is the wave number. Note that this quantity is 2n times 1/ A, or 2n times 
the wave number used in optics. For this reason, k is called the circular 
wave number. 

The wavelength A is the distance over which kz changes by 2n. The 
quantity 1.. = AI(2n), read "lambda bar ," is often more convenient to use 
than A. This is the radian length. 

In phasor notation (Chap. 2) , 

a = am exp j( wt - kz). (C-5) 

If the wave travels in the negative direction of the z-axis , 

a = am exp j( wt + kz). (C-6) 

If there is attenuation, then the wave amplitude decreases exponentially 
with z and 

a = am exp ( - etz) exp j ( wt - (3z) 
= am expj[wt - ({3 - jet)z] .  

The wave number is then complex: 

k = {3 - jet. 

Note the negative sign . Both et and {3 are positive: 

1 
a = -

D ' 

(C-7) 

(C-8) 

(C-9) 

(C-lO) 

where the attenuation distance D is the distance over which the amplitude 
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decreases by a factor of e = 2.71828. The phase velocity is then 

(C- l I )  

We often refer to  waves traveling i n  a specified direction. Then the 
practice is to use a vector wave number 

as in Fig. C-2, and 

a = am exp j( wt - k . r) 
= am exp j( wt - kxx - kyY - kzz) .  

The vector wave number can be complex. 

y 

Fig. C-2. The vector wave number k is normal to 
a wave front. The scalar product k . r has the 
same value anywhere on a given wave front. 

x 

C.2 THE PHASE AND GROUP VELOCITIES 

(C-12) 

(C-13) 

(C-14) 

Let us superpose two plane waves of angular frequencies w and w + �w 
and of wave numbers k and k + �k. The amplitudes are equal , and the 
phases are zero at z = O. t = O. 
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At z, t the phases will be , respectively, wt - kz and (w + � w)t -
(k + �k)z. The two waves are in phase when 

or at points such that 

(�w)t - (�k)z = 0 

z �w 
�k 

(C-15) 

(C-16) 

In other words, the points where the two waves are in phase travel at the 
group velocity 

�w v = -g �k · (C-17) 

The superposition of two waves of slightly different frequencies gives 
an amplitude-modulated wave . The group velocity of the envelope. 

Remember that 

(C-18) 

If vp is independent of w, then k is proportional to w and the phase and 
group velocities are equal : 

�w w v = - = - = v  g �k k p . (C-19) 

If the phase velocity is frequency-dependent, then the phase and group 
velocities are different . In other words, the wavelets in Fig . C-3 travel 
either faster or slower than the envelope, depending on the nature of the 
medium. (For waves at the surface of water, vp = 2vg . )  In the limit, 

dw 1 v = - = ---g dk dk /dw · (C-20) 

If one draws a curve of w as a function of k, its slope is equal to vg, while 
w /k is equal to vp . 

The above equation is exact either if one has only two waves of circular 



736 APPENDIX C 

frequencies w and w + /j.w or if k is a linear function of w. In practice , 
neither condition is strictly true in matter, and the above definition of the 
group velocity is an approximation .  After a while the group spreads out 
and disappears. 

C.3 THE DIFFERENTIAL EQUATION FOR A 
PLANE SINUSOIDAL WAVE 

You can easily check that, for the a of Eq. C-2, 

(C-21) 

This is  the differential equation for an unattenuated plane wave traveling 
along the z-axis. 

If there is attenuation , then the differential equation is 

where 

Inversely 

cx - f3  g =--2- ' 
W 

h = 2cxf3 . w 

_ (�) II2 [ (  �.). 112 ] 112 
f3 - w 1 +  2 2  + 1 , 2 w g  

(g) 1/2 [ ( h2 ) .. 1 12 ] 112 
cx = w - 1 + -- - 1  . 2 w2g2 

C.4 WAVE PROPAGATION IN 
THREE DIMENSIONS 

(C-22) 

(C-23) 

(C-24) 

(C-25) 

More generally, the differential equation for any unattenuated wave 
propagating in space at the phase velocity vp is 

(C-26) 
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For an attenuated wave , 

and Eqs. C-23 to C-25 apply. 

C.S THE WAVE PROPAGATION OF A 
VECTOR QUANTITY 

737 

(C-27) 

A vector quantity, such as an electric field strength E, can also propagate 
as a wave. If the wave is uniform and plane and if it propagates in the 
positive direction of the z-axis. then 

E = Em exp j(wt - kz ) 
= (EmxX + EmyY + Emzz) expj(wt - kz). 

(C-28) 

(C-29) 

The vector Em may depend on x and on y, but it does not depend on z :  
the only dependence on  z and t appears in the exponential function. The 
wave number k can be complex. 

C.6 THE NONHOMOGENEOUS WAVE EQUATION 

In the absence of attenuation, the nonhomogeneous wave equation is of 
the form 

(C-30) 

where f is the disturbance at the source. Thus f = 0 outside the source. 
If f is not a function of t, then there is no wave and 

which is Poisson 's equation, and 

( ) _ _ � f f(x l , y l ' Z I ) d l a x, y, z - v , 4.7l' u '  r 

(C-3 1 )  

(C-32) 
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where r is the distance between the field point (x , y, z )  and the source 
point (x / , y / , z / ) . 

If f is a function of t , then one must take into account the time taken 
by the disturbance to travel from (x / , y / ,  z / ) to (x, y, z )  at the velocity vp 
and 

( ) _ _ � J f(x " Y ' , z " t - r/ vp ) d ' a x, y, z, t - 4 v . 
IT v ' r (C-33) 



ANSWERS 

Problems often require the demonstration of a given result; the list below 
provides about half of the remaining answers, to two significant figures. 

1-5 . 4na3. 

2-7 . 85 watts. 

3-2. 440 millimeters. 

3-4. (b) 3.3 x 10-3 newton, (d) 6 microseconds. 

3-6. (a) (i) 1019 atoms/meter2 , (ii) 1 .6 coulombs/meter2 , 
(iii) 1 . 8  x 10 1 1  volts/meter. (b) 240 atomic diameters, or 0 .07 micrometer. 

QA 
3-9 . (a) 

2-- ' nEar 

GMm Qq 3-13. (a) -- - -- . 
R 4nEaR 

4- 1 .  1 .5 x 1020 newtons. (b) 3 .6  x 1022 newtons , or 200 times more. 

4-13. 1 .9 newtons. 

5-7 . �, 
Qs cos

2
(J
, 

2(3 cos2 (J 1 )/ ' 

4 4 
Qs --

2- - -
2 

4nEor . nEor nE"r 

pa3 
5-9. --, 0, O. 

4nEor 

a'Q 
5-1 1 .  0, -

6
--5 [35cr + m' + n4) - 21] .  

1 nEar 

0. 15Q2 3GM2 
6-2 . (a) -- .  (b) -- .  (c) 1 .2 X 1029 joules. (d) 0 . 17 meter. 

nEaR 5R 
(e) 1 .0 x 1020 volts. 

6-5. (b) 50 picofarads/meter. 
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6-10. (a) 150 kilovolts . (b) 4 x 10-4 atmosphere. (c) 4 kilograms/meter2• 

7-2. (b) 3000. 

7-12. R3wC3 = 1. 

8-1 .  0.07 ohm. 

V 
8-5 . 

4R + 3Ro 
Ro· 

8-10. 0.44. 

8-12. 2.9 kilohms. 

9- 1 .  (a) 5 .7 x 10-37 coulomb-meter. (b) 5 . 9  X 10-19 meter. 

9-8. (a) 
2nE,Eo V. 

In (R2/R, ) 

R1/(jWC1) R2/(jWC2) 10-2. (a) 
/

'
)

+ 
/(

.
)

. 
Rl + 1 (jwC1 Rz + 1 ]wC2 

(b) 
(E,zOco' - E" Ocoz)Eo V. 

S1 0co2 + S20col 

10-4. 4000. 

10-9 . (b) 10 meters}, 10 tons. 

10-13. 25 micrometers. 

11-2 . ( 2 2)3/2 • 4n D + r  
-2QD 

ANSWERS 

13-3. According to 0' the signals were emitted simultaneously. According to 
0, B emitted her signal first. 

13-4. (a) tan (¥ = Y tan (¥ ' . (b) n /2. 

14-2. - 1 .2 x 109 meters, 0.8c. 

14-5. $2. 16  x 108• 
14-8. (a) 4.7 x 104 electronvolts. (b) 9.33 x 108 electronvolts. 

15-2. (a) 7 . 1  x 10-26 kilogram. (b) 38 millimeters. (c) 10-5 second, 
1 .28 x 10- 10 second. 

15-6. 2.6 x 10-27 kilogram, 2.27 x 108 meters/second. 

16- 1 .  -4 x  10-6. 
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16-5. (a) 2 .3  x 10-22 newton. (b) 7 . 7  X 10-23 newton. 

a' 'Va' a' 
17-3. _y2 _ (X - 'Vt), _ y2 -2 (X - 'Vt), - i, O. 

Eo EoC Eo 

17-5 . Inside, 0, /1oN'li; outside, O. O. 

/101 ( 1 1 ) 
18-2. - -- + -- . 

2n D - x  D + x  

ero 
18-5 . (a) -. (b) 9 .3  x 10-24 ampere-meter2. 

2 

2 { I I } 
18-9 . /1oNla 

2[(z + a /2)2 + a2p12 
+ 

2[(z _ a /2? + a2p12 . 

19-2. (a) 330 microamperes, (b) 4.2 x 10- 10 tesla. 

19-4 
/1oa 

. 
2 

L 
19-7. --- In · · · .  

R2 - Rl 

20-1 .  2 .  

B 
20-5. - ,  B. 

/10 

21-1 .  0.5 tesla. 

21-3. 0 .14 tesla, 0.085 tesla. 

22- 1 .  (a) 3 x 1013 meters. (b) 7 . 3  days. 

22-3. (b) 2.2 x 1018)' meters/second2. 

22-6. 1 . 2 , 2 .7 .  

22-8. (c) 1 .4 x 10-4 volt. 

P 
22- 1 1 .  

2
/10 [(4L2 + D2)1I2 - D]. nD 

A V  A2 
22-14. (a) R W - Ii w2. 

741 

23-3. (a) Charge flows to cancel the v X B  field. (b) 31 amperes. (c) 1.5 x 
10-2 newton. (d) For a diameter of 10 meters, 1 =  30 microamperes, 
P = 1 microwatt, F = 2 X 10- 10 newton .  

naw2B�.,sa4 
23-8. Pmax = 

8 

23-10.  (a) Bow2 cos (2wt - cp). (b) 2 kilohertz. 



742 ANSWERS 

24-1 .  (a) NnR2/JON' .  (b) No if its diameter is much smaller than the length of 
the solenoid. 

24-3 . 3 .4 x 10-7 R henry. 

2na 0 ( 4 + x2 ) 112 

24-6. (a) R '  = --;;t; ' L' = /Jona-. (b) 
4 + 4x2 

, x = w/Jooab. 

24-S. L ::  RbRdC, R = RbRd/ Rc-

24-10. (a) 6 ohms, 0.S6 radian, 3 .9 ohms , 4 .6  ohms. (b) 65 amperes, 76 amperes. 
(c) 336 microfarads. (d) 65 amperes. 

25-1 .  (a) R(1 + 
R2W2� + 1 ) + j( wL - R2=:�2C

+ J (b) 37 ohms , 57S. 

(c) 2.7 X 10-2 siemens, -5So. (d) 0 .2 watt. (e) No . (f) (i) At all 
frequencies. (ii) Never. (g) O. 

ZlZz + w2M2 
25-7. 

2 ' M Zl + Zz + JW 

SNJa 8NJa J.l N2na2 2na J.l na2 
25-12. (a) -2 . (b) -[2 + jw 0 [ . (c) b[ ' (d) L2 :: _0_[ _ , 

oel Oc Ob 

(f) 69 + j50 ohms, 91 + j36 ohms. 

25-14. (a) � = �2 
2 2 ' (b) I + R2w2C2• (c) 770 picofarads , 150 millihenrys. 

C I + R w C  

26-6. 2.9 x 104 ampere-turns. 

26-9. (a) 22 kilowatt-hours/meter}. (b) 7S0 atmospheres. 
(c) 0.OS3 kilowatt-hour/meter}. 

26-12. (a) 4 atmospheres. (b) The same. 

27-1 .  (e) 1 .2  x 10-8 meter. 

Eokb EoJ.lok EoJ.lok 
27-3. (a) - (a - x). (b) B :: -- (a - x)j, A = -- (a - x)zi. s s s 

( EoJ.lok/s)(a - x)s � 
(c) O. Above the upper plate, 

2 
x. Below the upper plate, 

A has the same magnitude and the opposite sign. 
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OcoRC 
27-6. (a) - -- . 

€ 

1l0Q'V 27-10. (a) --2- sin 8. (b) Set y == 1 ,  'V/c = O. The two values agree. (d) Q. 
4.nr 

28-4. (a) 5.0 x 10-7 meter, 1 .5 x 10-8 meter. (b) 2.5 x 10-7 meter. 

28-7. 250 + 6.3 x 1O-3j ohms. 

28- 1 1 .  (a) (i) 
12 

2 
(1 + 4 1n 

R2) . (ii) 
v: 'jgE. (iii) 2'jgEV. (iv) 

1m
2

v2
, or N. 

16.n€ov RI c e 

(b) (i) 2.0 x 10-10 joule/meter. (ii) 4 .2  x 10- 13 joule/meter. 
(iii) 5.5 x 103 watt. (iv) 103 watt. 

29-3 .  Use 6 vertical plates, about 6 millimeters thick and 6 millimeters apart, 
with a total width of 1 meter. 

29-6. 5 x 10-5 meter; 7.2 x 106 watts/meter. 

C WI - W2 29-9. (a) 
(/2 _ /2)1/2 _ (j2 _ /2) 112 ' (b) ( / ) _ ( / ) . (d) vp\ = 3.2 x 

2 p i p WI vpl W2 vp2 

743 

108 meters/second, vp2 = 3.2 X 108 meters/second, Vg = 2. 8 X 108 meters/ 
second. (e) 2.8 x 103 meter, 45 . 

29- 1 1 .  (b) 270 parsecs. ERm (ETm) 2nl 
30-2. -E = - 1  and -E = - , except near 8J = 900; 1m 1m II n2 (ETm) 2nl  -E = - cos 81 for any 81, 1m 1.. n2 
30-9. (c) 0.15.  

30-13 .  (a) El nns = 42 volts/meter, Hl rms = 0.11 ampere/meter, ER Tms = 
6.0 volts/meter, HR Tms = 1 .6 X 10-2 ampere/meter, ET HOS = 36 volts/meter, 
HT Tms = 0. 17 ampere/meter. 

c 
30-16. (a) 

K( R)
' where K is a constant ,  A is the altitude, and R is the A + 2 112 

radius of the earth. (b) W [ 1 - K2(A
c 
+ R)2J . 

D, _ Dz _ 0 ° 3 1-2. (a) 1..2 - 0.37, 1..1 - 1 . 1. (b) 150 , 74 . 

31-8. (a) 17°. (e) F = 0.020, T = 0. 69, FT = 1 .4%.  

32-4. (a) 3 .7  x 10-8 meter. (b)  0.95. (c) 13  ohms/square. (d) 3 . 1  x 10-3'\'0' 

32-8. E parallel to the plane of incidence and 81 equal to the Brewster angle. 
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8 RY) 
32-10 . 3 � '  

[ 1 - exp ( -al)] 
32-12. 

N 
. 

ec 

33-7. 
(�)"2 'V;sb 

. 

34-1 .  3.0 gigahertz. 

34-3. 58°, 37°. ( ).2 ) 112 
34-5. (a) E must be parallel to the plates. (b) 1 -

4s
� . 

:( :( 2 :( :(  2 ) w( :( 2 112 34-7. (a) (AO/Az ) + (Ao/Ac) = 1. (b - = { (kzAz) + I } . 
c 

34- 1 1 .  (a) 3 . 1  megawatts. (b) P� coax = 8.2 kilowatts/meter, P� guide = 
12 kilowatts/meter. (c) 130 amperes, 4.0 kilovolts. 

4a 
36-2. 

( 2 2) 112 ' n2 - n 3 m 

36-7. (a) 10 gigawatts/meter2• (b) 1 .6  x 106 volts/meter. 

37-2. c ( 1 + �), c. 

37-9. HlloKws3R2). 

38-1. (a) -
Kilo In (�)i, Kllot [p. 
2:r p 2:rp 

38-4. 88%. 

39-2. 0.22 volt/meter. 

39-7. (a) Far away, 6 . 1  x 107/1/ ;  close by, 4.3 x 107/lf. (b) Far away, 
6. 1 x 107/1/ ;  close by, 8 .6  x 107/lf 

'Vel 1 .43 
39-11 .  - = - .  

'Vrnag 1 

ANSWERS 



INDEX 

Accelerator, 208, 280, 435 
Admittance, 134, 1 52 
Alternating currents, 32, 1 27- 139, 147 
Ampere, 44, 398 
Ampere's circuital law, 352. 367, 378, 496 
Ampere-turn. 353 
Amperian formulation, 494 
Amplifier, operational, 1 4 1 , 144, 145 
Angle 

complex, 580 
of incidence, 555, 581 , 589 

Antenna 
arrays, 717 ,  727 
directivity, 727 
electric dipole. See Electric dipole, 

osciJiating 
half-wave , 7 12-71 7 .  726 
image, 727 
magnetic dipole .  See Magnetic dipole. 

osciJiating 
receiving, 724 

Antireflection coatings, 575 
Askin, A . ,  603 
Attenuation distance, 524. 580, 733 

Bartlett, D. F . ,  499 
Battery, 82, l S I ,  1 67 
Bertoni, H. L . ,  587 
Biot-Savart law, 327, 334. 364 
Bohm, David, 270 
Bohr magneton, 344, 373 
Bondi, H . ,  63, 51 1 
Boundary conditions 

for a metallic waveguide , 6 1 8  
for B and H, 370 
for E and J, 207 
for V, D, and E, 197 

Brackets, use of, 682, 698, 714 
Branch, 1 20 
Brewster angle , 565-567, 574-575. 589 
Bridge circuit, 1411, Hi7 .  4S0 

Capacitance, 108- 1 10,  1 17 , 403 
Capacitor, parallel-plate. See Parallel-plate 

capacitor 
Cathode-ray tube, 588 
Causality , 247 
Chambers, L.  G . ,  5 1 3  

Charge. See also Electric field 
center of, 87, 1 73 
conservation, 69, 290, 3 14 
free, embedded in a dielectric, 1 86 
invariance of, 284, 290, 306 
magnetic. See Monopole, magnetic 

Charge density 
at an interface, 80 
free and bound. 1 74, 1 82 ,  1 83 
in a conductor,  75 , 402 , 409 
total. 178,  233 

Charged particle in E, B, 406 
Child-Langmuir law , 68 
Circuit, electric 

active, 12 1  
bridge , 1 46 ,  167, 450 
delta-star transformation. 163 
differentiating, 1 43- 144 
integrating, 144- 145, 422 
linear, 121 , 149 
mesh method, 122 
node method, 126 
passive, 121  
Q, 454 
RC, 1 24, 135. 1 38, 1 1 9-171  
Rv 467 
Rv RLC, 452-470 
symbols and definitions, 120 
theorems, 149- 167 

Circuit, magnetic. See Magnetic circuit 
Circuital law. See Ampere's circuital law 
Circular frequency, 32, 1 30 
Clock, time read on a rapidly moving, 255 
Coaxial line , 60, 190, 477, 488, 532, 

6 1 9-62 1 ,  624, 645 
Coefficicnt of coupling. 4411. 467-46R 
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Coercive force, 376 
Collimator paradox, 264 
Comet tails, 603, 607 
Complementary solution, 125 
Complex numbers, 30-38 
Conductance, 135 
Conduction, 69, 72-77, 80,  82 

current, 287,  306 
Conduction electrons, 60, 72-82, 3 1 0  

drift velocity, 72 , 80, 300 
Conductivity, 70 

ground, anomalies in, 160 
of a plasma, 542 

Conductor, 64, 77. See also Electric field; 
Magnetic field 

electric field at surface of. 1 10 
electric force on, 1 10 
good, 500 
hollow, 77 

Conjugate, complex, 3 1  
Conservation laws for colliding particles, 

276, 28 1 
Conservation of charge, 64, 69, 290, 314,  

500, 676 
Constant of integration, 1 25 
Constants, physical. See inside the back 

cover 
Contact potential , 77 
Continuity, conditions. See Boundary 

conditions 
Continuous creation theory, 5 1 1 ,  5 1 3  
Coordinates 

Cartesian, 2 ,  19  
cylindrical ,  1 7-24 
orthogonal curvilinear, 15- 17 
spherical, 1 8-24, 225 

Corle, P. R . ,  499 
Coulomb, 43, 398 
Coulomb's law, 42, 5 1 , 520 
Coupling, coefficient of, 446, 467-468 
Crab nehula, 405 
Crack detector, 469 
Curl, 1 1 , 22 , 290 

of A, 333 
of B, 312-314, 352 
of E, 48, 31 1 ,  3 14, 420, 499 
of H, 365, 499 

Current 
conduction, 69, 306 
convection , 306 
displacement,  1 86, 499 
eddy, 425, 432-433, 436 
equivalent, 3 1 3 ,  363, 373 
mesh, 1 22 

INDEX 

polarization, 1 76 
Current density, 67-72, 329, 676 

displacement, 1 86,  499 
equivalent, 313 ,  363, 373 
four-current density, 285 
polarization, 176, 313  
total, 316 

Current source , 1 20, 1 52 
Curve plotters , 1 4 1  
Cyclotron frequency. 405-406 

0), 525, 537 
D'Alembertian, 290 
Decibel, 640, 645 
Del operator, 4, 6, 1 9  
Delta-star transformation . 163- 165, 467 
Depth of penetration, 507, 538 . See also 

Skin depth 
Diamagnetism, 361 
Dielectric constant. See Permittivity, 

relative 
Dielectric strength,  207 , 644 
Dielectrics, 172-210 

and magnetic materials compared, 366 
anisotropic, 195 
artificial, 643 
lossy, 193 
nonhomogeneous, 190 
nonlinear, 1 97, 207 
polarization of, 173 

Digita1-to-analog (D/A) conversion, 142 
Diode, vacuum, 66-69 
Dipole. See Electric dipole ,  Magnetic dipole 
Dirac. P. A. M . .  236. 327 
Direction cosines, 94 
Displacement current density, 1 86,  499 
Divergence, 8 ,  20 

four-dimensional, 289 
of A, 35 1 , 676 
of B, 3 10, 3 14 . 333, 364 . 498 
of D, 179 
of E, 1 5 1 , 309, 314 , 498 
of H, 373 
of J, 69, 500, 676 

Divergence theorem.  9 
Domain, electric, 196 
Domain. magnetic, 374 
Doppler effect, 257, 262. 281 , 283 
Duality. 501 
Ducting, 577 
Duinker, Simon, 154 

Earnshaw's theorem. 54 
Earth's electric charge. 60. 2 1 2  
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Eddy currents, 425 , 432-433, 436, 461 , 468 
Edwards, T. c. , 621 
Eigenvalues, 629 
Einstein, Albert, 254 
Electret, 177, 1 80, 208, 379 
Electric circuit. See Circuit, electric 
Electric dipole, 84-87, 93, 98, 1 73, 501 

oscillating, 681-684 , 690, 697-708, 
710 

Electric displacement ,  186. See also Electric 
flux density D 

Electric energy, 10 1-107 ,  1 18 , 488-489 
associated with polarization, 203 
in a wave, 521 , 523, 527, 539 
in terms of E, 1 05 , 107 
in terms of E and D, 202 
in terms of p and V, 1 0 1 , 200 
of a charged conducting sphere , 105 
of a continuous charge distribution, 104, 

1 16 
Electric field 

at the surface of a conductor, 1 10 
average E over a spherical volume , 56 
average V over a spherical surface , 54 
of a charge embedded in dielectric, 1 86 
of a conducting cylinder in a uniform E, 

235 
of a conducting sphere in a uniform E, 

228 
of a dielectric sphere in a uniform E, 231 
of a polarized dielectric, 176, 1 89 
of a spherical charge, 52,  65, 234 
of an atomic nucleus, 236 
of an electric dipole. See Electric dipole 
of macroscopic bodies, 49 

Electric field strength E, 44, 49, 56, 63 , 89, 
293, 294, 430, 686-687, 690-691 

and the v X B field, 427 
curl o� 46, 31 1 ,  314 ,  420, 430 
divergence o� 5 1 ,  309 
flux of, 50 
in terms of V and A, 316 , 424 
induced, 4l3 ,  420 
inside a dielectric, 1 76 
integrals for, 234, 236 
line integral of, 46, 1 98 ,  430, 495 
maximum. in air, 1 18 
Poisson's equation for, 233 
transformation of, 301 

Electric flux density D, 1 79 
divergence of, 179 
lines of, 232 

Electric force, 61 , 293 
and l incs of E. 1 1 2 . 1 1 7 

in presence of dielectrics, 204, 209-210 
on conductors, 1 10,  1 14, 209-210  

Electric polarization, 1 73 
Electric potential V, 46-49, 54, 89 

at the surface of a star, 62 
average, over a spherical surface, 54 
gradient, 47, 3 16 ,  424 
Poisson's equation for, 65 , 189, 1 98, 233 

Electric susceptibility, 18 1  
Electrolytic tank for plotting magnetic 

fields, 386 
Electromagnet, 383 , 450 
Electromagnetic momentum, 602, 604, 609 
Electromagnetic potentials, 31 4-322, 324 

retarded, 680-686, 689 
Electromagnetic waves, 5 1 4-729 

guided. See Guided waves 
in a general medium , 5 15-520 
in conductors, 524, 526, 531 , 537-542 
in free space, 520-522 
in plasmas, 542-549 
in nonconductors or poor conductors, 

522, 526, 531 
nonuniform, 579-581 , 591 
polarization of, 5 17, 527 
propagating in .a straight line, 6 1 1-6 1 8  
spectrum, 5 1 5  
standing, 598 
TE, 614  
TEM ,  615-618,  624 
uniform, 5 15 ,  520, 522 

Electromotance, 4l3,  426 
Electron 

drift velocity inside a conductor, 72, 80 
emission, 66-69 
mass, effective , 74, 408 
pair formation, 275 

Energy. See also Electric energy; Magnetic 
energy 

kinetic, 276 
relativistic, 273-275, 294 
rest, 274 

Energy storage 
electric, 207, 489 
magnetic, 472, 489 

Energy theorem, 487 
Equations, differential, 33, 35 , 1 24 
Equations, six key, 430 
Equipotential surface , 50, 86, 230, 232, 3 18 ,  

323 
Equivalent currents, 363, 373 

Fabry equation. 345 
Farad. I OH 
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Faraday induction law, 414,  420, 428, 495, 
499 

Faraday, M . ,  409 
Fermi acceleration, 407 
Ferrites ,  425, 725 
Ferroelectricity, 196 

hysteresis, 1 97 
Ferromagnetism, 36 1 ,  368, 374-386 

hysteresis, 375-377, 423 
Feyman, Richard P . ,  334 
Field, 2 .  See also Electric field ; Magnetic 

field 
conservative, 10, 1 5 , 46 
of a point charge moving at a constant 

velocity, 291-301 , 306, 3 14-319 ,  5 1 2  
Flaws i n  metal tubing, 433 
Flowmeter, 409 
Fluorescent lamp, 451 
Flux, 7 

of B, 312 , 329 
of E, 50 

Flux compression ,  490 
Flux, leakage, 381-382 
Flux linkage, 349, 421 
Force. See also Electric force; Magnetic 

force 
Coulomb, 43, 292 
gravitational , 44 
inertial , 239 
Lorentz, 293, 326 
relativistic, 270, 281 

Four-current-density, 285 , 320 
Four-divergence, 289 
Four-gradient, 289 
Four-momentum, 271-273 , 276, 2R7, 320 
Four-poential , 31 9-323 
Four-vector, 265-270 
Fourier series, 219 ,  228 
Frequency, 32 

circular, 32, 1 30 
cyclotron ,  405, 406 
radio and television, 548 

Fresnel's equations , 558-561 , 573, 584 
Friedman, F. , 255 
Frish, D . ,  255 
Functions 

complete set of, 220 
continuously differentiable, 10  
harmonic, 215  
reasonably well-behaved, 220 

Galilean transformation, 224 
Galilei, Galileo, 241 

Gallium arsenide, 74 
Garden-hose effect, 533 
Gas focusing, 405 
Gauss's law 

for 8, 3 1 1 , 495, 498 
for E, 50-57, 178, 309, 495 , 498 

Gauss's theorem, 10 
Generator, 1 17 , 414-419 

homopolar, 403 
magnetohydrodynamic (MHD ) ,  389-

392 
Geophysical prospection, 160 
Gibbs phenomenon, 22 1 
Good , R. H . ,  705 
Goos-Haenchen shift, 587, 670 
Gradient, 3, 20 

four-dimensional, 289 
of V, 47, 316, 424 

Gravitational force , 44 
Green, Estill I . ,  454 
Green's theorem, 10 
Guided waves, 610-674. See also Coaxial 

line; Hollow rectangular waveguide ;  
Microstrip line ; Planar optical wave
guide; Transmission lines 

Hall effect , 388, 393, 408, 416, 599 
Harmonic functions, 2 1 5  

spherical, 225-233 
Haus, Hermann A . ,  307, 493 
Headlight effect , 263 
Heat conduction, 537, 550 
Heaviside, Oliver, 492 
Henry, 438 
HILS, homogeneous, isotropic, linear, and 

stationary medium, 181  
Hodoscope, floating wire, 394 
Hole, 70, 82 
Hollow rectangular waveguide, 627-645 

attenuation, 637, 640, 644 
cut-off wavelength, 630 
energy density, 637 
field components, 628 
multiple reflections, 633 
phase, signal, and group velocities, 635 
transmitted power, 636, 644 

Homopolar generator, 403 
Homopolar motor, 399-403, 4 1 1  
Hubble constant, 5 1 2  
Hurd, C .  M . ,  393 
Hysteresis 

ferroelectric, 1 97,  207 
ferromagnetic, 375-377, 423, 468 



Images, 212-2 1 5 ,  727 

Impedance, 1 34, 458 

bridges, 146, 155 

characteristic, 5 1 8 ,  520, 523 , 526, 531-

532, 538,  540 

matching, 465, 470 

of an inductor, 443 , 453 

output, 150, 161 

surface, 5 5 1 ,  606. See also Resistance, 
surface 

wave, 614,  615  
Incidence, plane of,  557 

Index of refraction, 523, 5 3 1 ,  569, 573, 576 

Inductance 
mutual, 437-44 1 ,  448-449 , 457, 488 

self-inductance , 441-445, 450, 453 , 461 ,  

477 

Induction heating, 5 5 1  

Interface. See Boundary conditions 
Internal reflection spectroscopy, 581 

Invariance, 3 ,  6 ,  243 

of a physical law, 241 

of a quantity, 243 

of n2 - £2/C2 and E ·  B, 303, 304, 307 

of electric charge, 284, 290. 306 

of the speed of light in a vacuum, 244, 

260 

Ion beam, 6 1  

Ion thruster, 59 

Ionized gases. See Plasma 
Ionosphere, 548, 577 

Joule effect, 76, 540 

jw, 33 

Kirchhoff's laws, 121 , 1 38, 453 , 457 

Ki ttel, Charles, 285 

Kt. surface, 705 

Ladder network, 142 

Lambda bar K, 524, 733 

Laplace's equation, 2 15-22 1 ,  224, 225-235 

Laplacian, 1 5 , 23, 25 

of A, 3 5 1 ,  678 

of B, 357, 504, 5 1 8  

of  E, 233 , 504, 5 1 8  

of V ,  6 5 ,  170. 678 

Laser beam. 522. 524. 606, 710 

Laws, local and nonlocal,  52 

Leakage flux , 381-382 

Legendre polynomials, 90-93, 227-228 

Legendre's equation, 227 

Leighton, Robert B . ,  334 
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Length, proper, 251 

Lenz's law, 419-426, 432 

Levitation, 488, 608 

Light cone, 244 

Light-emitting diodes, 592 

Light source paradox, 710 

Light. speed of. 242, 244, 247. 260, 263, 

504, 520 

Line integral, 10 

of A, 348 

of B, 352, 367, 378, 499 

of E, 46, 198 , 413 , 426, 430, 495 

of H, 367, 381 

Line losses, 445 

Lines of 
B, 295 , 329, 356, 371 , 378 

D, 232 

E, 50, 80, 87, 199, 230, 295, 296 

H, 378 

Liquid crystal displays (LCDs), 605 

London equations, 507 

Lorentz condition, 321 ,  325, 5 1 1 ,  676 

Lorentz contraction, 251 ,  261 

Lorentz force, 293, 300, 387, 391 ,  542 

Lorentz reciprocity theorem, 502 

Lorentz transformation, 241-244. See also 
Magnetic force 

Loss angle, 194, 525 

Loss tangent, 194 

Lotsch, H.  K.  Y. , 587 

Loudspeaker, 384 

Lyttleton, R. A . ,  63, 5 1 1  

Magnet 
bar, 364, 377-380 

electromagnet, 383, 450 

permanent, 379 

Magnetic braking force on a satellite, 432 

Magnetic circuits, 381-385 

Magnetic dipole, 337-340, 501 

oscillating, 684-686, 720-724, 728-729 

Magnetic energy density 
in a long solenoid, 476 

in a wave, 521 , 523, 527, 539 

in terms of B, 476 

in terms of B and H, 475 

in terms of J and A, 474, 488 

in terms of L and J, 467, 472, 488, 489 

in terms of <I> and rJl, 487 

Magnetic field 
calculations of, 377 

near a current sheet, 358, 483 

of a circular loop, 331 ,  359 
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Magnetic field (conI. ) 
of a long cylindrical conductor, 298, 330, 

335 , 353, 358 
of a magnetic dipole. See Magnetic dipole 
of a magnetized rod, 364, 377-380 
of a Maxwell pair , 346 
of a moving charge, 29 1-30 1 ,  5 12 
of a rotating disk of charge, 69 1 
of a solenoid, 33 1 , 346, 349, 355, 359, 367 
of a spinning charged sphere, 347 
of a toroidal coil, 358 
of Helmholtz coils, 346 
of magnetized material, 362, 373 
of parallel currents, 336, 343 
of saddle coils, 343 
of the earth, 406, 432 
rotating, 345 
transformation of, 30 1 
uniform, 417 

Magnetic field strength H, 365-371 
curl of, 365 
divergence of, 373 
line integral of, 367 

Magnetic flux, 312 ,  329 
compression, 490 
leakage, 381-382 
linkage, 349, 421 

Magnetic flux density B, 293, 294, 326. 
686-687, 690-69 1 

average over a sphere, 359 
curl of, 3 12 ,  430 
divergence of, 310,  314,  333, 364 
line integral of, 352. 367, 378, 430 
lines of, 295 , 329. 356, 371 , 378 
saturation, 369 
surface integral of, 333 

Magnetic force, 293-294, 300, 326, 388. See 
also Lorentz force 

and lines of B. 482 
between coaxial solenoids, 481 
between long parallel currents, 397, 410 
between particles, 410 
between two electric currents , 396, 478, 

481 , 489 
inside ferromagnetic materials, 392 
on a magnetic dipole, 491 
on a volume distribution of current, 398 
on a wire , 393 
within an isolated circuit, 485, 489 

Magnetic induction. See Magnetic flux 
density B 

Magnetic materials, 361-384 
Magnetic monopole, 310,  327, 343, 498, 5 10  

Magnetic pressure, 483-484 , 490 
Magnetic separation, 490 
Magnetic shutter, 490 
Magnetic susceptibility, 368 
Magnetic torque, 485, 490 
Magnetization curve , 369. See also 

Hysteresis, ferromagnetic 
Magnetization M, 361 , 373 
Magnetohydrodynamic (MHD) generator. 

389-392 
Magnetometer, 434, 436 
Magnetomotance, 367, 381  
Magnetoresistor, 409 
Marsden , J .  E . ,  14  
Mass 

effective, 7-\ 
inertial, 28 1 
relativistic, 270 
rest,  270 

Maxwell bridge, 450 
Maxwell . James Clerk, 492, -\99 
Maxwell's equations. 178, 308-314 , 421 .  

492-5(){), 5 1 1 .  See also inside (he back 
cover. 

invariance, 509, 5 12  
linearity, 498 
redundancy, 31 1-313 , 500 

McAlister, S. P . ,  393 
McCuaig, Malcolm, 383 
McKinnon, W. R . . 393 
Mesh method, 120 ,  122 
Metal detector, 469 
Metallic glass, 377 
Mho . 70 
Microstrip line, 62 1 ,  625 
Millikan, R. A . ,  63 
Millman's theorem, 153 ,  168 
Minkowski diagram, 245 , 250 
Minkowski formulation, 495 
Minnaert, M . ,  703 
Mobility, 73, 82, 408 
Models, 507 
Modes of propagation , 630, 663 
Momentum, 270, 282 

electromagnetic, 602, 604, 609 
flux of, 602 
four-momentum, 271 -273 , 276, 287, 

320 
relativistic, 270 

Monopole, electric, 93 
Monopole, magnetic, 3 10, 327, 343, -\98, 

5 1 0  
Moon, 1 16 , 567 



Mossbauer effect, 283 
Motion transducer, 145 
Motor, 410, 534 

homopolar, 399-403, 4 1 1  
Multipoles, electric, 88-97 

Neper, 645 
Neumann equation, 437 
Nitrobenzene, 195 
Node method, 120, 126 
Norton's theorem, 152 ,  167, 168 
Nucleus, atomic, 6 1  
N u rn  ber, binary, 142 

Observer, 239 
Octupole, electric, 89 
Ohm's law, 70, 134, 453 
Omega-beta diagram, 552, 669 

Panofsky, Wolfgang, K. H . ,  241 
Paradox of the perpendicular capacitors, 

324 
Parallel-plate capacitor, 109, 1 14 ,  1 1 8 , 509, 

532, 545 
dielectric-insulated, 184, 187, 1 90, 193, 

210,  203, 205 
magnetic field in circular, 5 1 0  
moving, 303, 32 1 ,  323 

Paramagnetism, 361 
Particular solution, 125 
Peaking strip, 434 
Penfield, Paul , 154, 307, 493 
Permalloy, 434 
Permeability, 368-370 

of free space, 294, 328, 398, 520 
Permeance , 382 
Permittivity, 181  

complex relative, 194,  525 
frequency and temperature dependence, 

195 
of free space, 43, 398, 520 
relative, 75 , 1 8 1 ,  194, 544 
Table, 182 

Perturbation method, 638 
Phase angle, 32 
Phase shifter. 146 
Phasors, 32-40 
Philips, Melba, 241 
Photomultiplier, 406 
Photon, 244, 263, 277 
Photon-drag detector, 603 , 607 
Pinch effect, 405, 4 1 1  

INDEX 

Planar optical waveguide, 646-674 
dispersion relation, 669 
eigenvalue equation, 657, 662-666 
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field components , 650-656, 661 , 666-668 
field energy, 670, 673 
modal dispersion, 672 
mode order, 657, 672 
numerical aperture, 660, 672 
phase and group velocities, 668-670, 673 
phase shifts on total reflection, 656 
transmitted power, 671 ,  674 

Planck's constant ,  
Plane of incidence, 557 
Plasma, 542-553, 569 

frequency, 544, 547 
Point charges, 104 
Point function , 3, 5 
Poisson's equation,  737 

for B, 357 
for E, 233 
for V, 65, 178, 1 89 , 233 

Polar dielectrics, 173 
Polarization, electric, 173 

current density, 176, 313  
Polarization, wave. See Electromagnetic 

waves, polarization of 
Polarizer, 574 
Polarizing angle, 566 
Poles, magnetic, 379 
Polyvinylidene fluoride , 1 77 
Port, 155 
Positive logic, 142 
Positron, 236, 275 
Potential 

electric. See Electric potential V 

four-potential, 319 ,  320, 323 
line integral of vector, 348 
scalar, 316,  333 
scalar magnetic, 386 
vector. See Vector potential 

Potential divider, 141 , 1 45 
Potential energy. See Electric energy 
Potentials, electromagnetic, 314-322, 324 

retarded ,  680-686, 689 
Potentiometer, 141 
Powdered iron, 425 
Power 

factor, 138, 195, 445, 450, 451 
in alternating-current circuits, 138 

Power-transfer theorem, 1 61 
Poynting theorem, 528 
Poynting vector, 5 19, 521 -523 , 532-535, 

539 
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Precipitation, electrostatic, 62 
Pressure 

magnetic, 483-484, 490 
radiation, 599-603 , 607 

Propagation constant, 5 1 7  
Proton beam, 61 , 533 
Pulsar, 553 
Pump, electromagnetic, 407 
Purcell, E . ,  1 74 

Q of a circuit , 454 
Quad, 289 
Quadrupole, electric, 87, 89, 94-95, 99 

Radar, 577 
Radian length, 517 ,  733 
Radiation, 675-729 

by an accelerated charge, 692-697 
by an oscillating charge , 710 
electric dipole , 697-708 
magnetic dipole, 684-686, 720-724 
pattern, 720-72 1 
resistance, 703 

Radiation pressure, 599-603, 607 
Rasetti, F . ,  392 
Ray equation, 573 
Re operator, 33 
Reactance , 134 
Reciprocity theorems, 1 1 7, 1 57- 1 6 1 ,  

168- 169, 439 
Red shift , 261 , 281  
Reference frame , 239,  258 

inertial, 239, 272 
Reflection and refraction, 554-609 

Brewster's angle, 565-567, 574-575 , 589 
coefficients of, 567-569 
conductors, 594-608 
Fresnel's equations, 558-565 , 573 
index of refraction, 523, 531 , 569, 573, 

576 
laws of reflection, 557 
nonconductors , 561 
plane of incidence, 557 
plasmas, 569-571 
radiation pressure, 599-603 , 607 
ray equation, 573 
Snell's law , 557, 570 
total reflection ,  581 -593, 656 

Relativity, 238-325 
general and special, 239 
principle of, 240 

INDEX 

Relaxation time, 76, 525 
Reluctance, 38 1 , 450 
Remanence, 376 
Resistance, 70 

output, 150 
radiation, 703 , 716,  723 
surface , 8 1 , 551 

Resistivity, 80, 435.  See also Conductivity 
Resistojet , 83 
Resonace, 453-456 
Retentivity , 376 
Right-hand screw rule, 2 
RMS, or root-mean square, value, 36, 1 3 1  
Rowland ring, 375 , 422 
Rutherford experiment, 59 

Sands, Matthew, 334 
Satellites, 432, 553, 567 
Scalar potential. See Electric potential 
Scattering, resonant, 283 
Scintillation particle detector. 592 
Seed-sorting device, 58 
Semiconductors , 70, 388, 389 
Separation of variables, 216 
Set . complete ,  220 
Shape, apparent, of rapidly moving object , 

254 
Shield, 77, 450 
S . I .  (Systeme International) units , 730, 

73 1 
Siemens, 70 
Siemens, E .  W.  von , 70 
Signal velocity, 247 
Simultaneity, 247 
Skin depth ,  524, 531 , 538, 540 
Skin effect, 359, 443, 488, 510 ,  537 
Smith, J . ,  255 
Snell's law, 557, 570 
Solar wind, 533 
Soldering gun, 469 
Solenoid, 324, 331 , 346, 349, 355, 359, 367 
Source , current density inside a, 494 
Space shuttle, 548 
Space-time diagram, 244-247, 249, 266 
Spaceship, 282 
Speckle, 710 
Spence, Robert, 154 
Spherical harmonic functions, 215  
Starred sections, 88 
Stokes's theorem, 1 3  
Submarines, 598 
Substitution theorem, 1 50 
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Sun, 344, 603 
Superconductivity, 507 
Superposition, principle of, 45 , 48, 149, 329 
Surface 

integral of B. See Gauss's law for B 
integral of E. See Gauss's law for E 

Surface, orientable, 14 
Susceptance, 135 
Susceptibility 

electric, 1 8 1  
magnetic, 368 

Synchrotron radiation, 722, 728 

Tamir, T. 587 
Taylor, Edwin F. ,  239, 242 
TeJlegen's theorem,  154- 157, 168 
TerreJl,  James, 254 
Tesla, 328 
Thermal agitation, 72 
Thevenin's theorem, 1 50,  1 67 , 391 
Tides, 432 
Time 

constant, 125 
dilation, 254, 257 
interval, proper, 258 
proper, 254, 258 
read on a moving clock ,  255 

Transformation, 24 1 
Galilean, 240, 243 
Lorentz, 24 1-244, 248-250 
of A, 3 19  
of  a current density, 287 
of a force, 276, 282 
of a four-current density, 287 
of a four-momentum, 273 
of a four-potential, 32 1 , 324 
of a four-vector, 266 
of a length ,  25 1 
of a magnetic flux, 429 
of a magnetic force, 324 
of a mass, 273 
of a mass density, 280 
of a mutual inductance , 458 
of a relative permittivity,  307 
of a time interval, 254, 258 
of a velocity, 259 
of an angle, 249 
of an electric charge density, 287 
of an electromotance , 429 
of an element of area, 253, 26 1 
of an element of volume, 285 
of an equation, 495 

of E and B, 301 
of M, 307 
of Maxwell's equations, 3 1 3  
o f  p, 307 
of quad, 289 
of the field of a long solenoid, 324 
of the field of a parallel-plate capacitor, 

303, 32 1 , 323 
of the potentials, 3 19,  324 
of the space and time partial derivatives, 

289 
of the speed of light, 244, 260 
of V, 319  
of  visible light into high-energy radiation, 

263 
Transformer, 457, 459, 469, 535 

auto, 463 
current, 449 
ideal, 461 -465 
magnetic-core , 377, 425, 460, 468 
power transfer through a, 464 

Transient, 126 
Transmission lines, 147, 489, 615 , 6 17 .  See 

also Coaxial line; Hollow rectangular 
waveguide; Microstrip line; Planar 
optical waveguide 

Travel, intersteJlar, 282 
Tromba, A. J . ,  14 
Tsukada, Masanobu, 8 1  
Twin paradox, 262 

Uniqueness theorem, 2 1 1 ,  222, 231  
Units, 730, 73 1 
Universe, expansion of the , 63 

Van Bladel, Jean , 26 
Van de Graff accelerator, 6 1 , 358 
Van der Pauw, 1 69 
Variables, separation of. 2 16, 226 
v x B field,  324, 413-419 
Vector, 2-24, 267. See also Four-vector 

definitions, identities, and theorems. See 
inside the front cover 

operators, 3-24 
rotating, 37 
unit, 2, 16, 1 7 ,  1 8, 27 

Vector potential, 314,  323, 333, 347-349, 
4 17  

divergence, 35 1 ,  676 
Laplacian, 35 1 ,  678 
line integral of, 348 



754 

Velocities, addition of, 259 
Velocity 

energy transport, 674 
group, 539, 547, 552 , 734 
maximum, 242, 249, 270 
maximum signal ,  247, 249 
phase, 517 ,  523 , 525, 538 , 536, 552 , 569, 

733-734 
Virtual work, method of, 1 1 4, 479 
Volt, 45 , 48 
Voltage source , 120 
VSWR, voltage standing-wave ratio, 643 

Wannier, G. H. , 392 
Watson, W. H . ,  5 13  
Wave equations, 290, 737 

for A, 678 
for B and E, 504, 5 1 8  
for V, 678 

INDEX 

Wave impedance, 614-615 
Wave number, 34, 5 1 7 , 5 1 8,  524-526, 545, 

733-734 
Wavefront, 5 15 
Waveguides, 610-674. See also Coaxial line : 

Hollow rectangular waveguide : 
Microstrip line : Planar optical wave
guide; Transmission lines 

Wavelength, 5 17 .  733 
cut-off, 630 

Waves, 34, 732-738. See also 
Electromagnetic waves 

guided. See Waveguides 
uniform and nonuniform, 537 , 579, 732 

Weber, 328, 349 
Weisskopf, V. F. , 254 
Wheatstone bridge, 155 
Wheeler, John A . ,  239 , 242 
Wien bridge, 146 
World line , 244, 271 





Vector definitions , identities , and theorems 

Definitions 

Rectangular coordinates 

1 
", = afxA + af A + afzA • t' ax ay Y az 

2. V . A = aAx + aAy + aAz 
ax ay az 

" A _ ( aAz aAy) A ( aAx aAz) A (dAy aAx) A 3. t' X - - - - x + - - - Y + - - - z 
ay az az ax ax ay 

a2f ay ay 
4. V2f = ax2 + ay2 + az2 

5. V2A = V2Axx + V2Ayy + V2Azz = V( V ·  A) - V x ( V  x A) 

Cylindrical coordinates 

6. Vf = af jJ + .!. af (jJ + af z 
ap p act> az 

1 a 1 aA.p aAz 
7. V . A = p ap (pAp) + p act> + az ( 1 aAz aA.p) A (aAp aAz) A 1 [ a aAp ] A 8. V x A = P a;p - 3z p + az - ap q, + p ap (pA.p) - act> Z 

2 1 a ( af) 1 ay a2f 9. V f = p ap p ap + p2 act>2 
+ az2 

10. V2A = V( V ·  A) - V x ( V  X A) (Sec. 1 . 1 1 .6). 

Spherical coordinates 

af A af A 1 af A 
1 1 .  Vf = - r + - 8  + -- - q, ar r ae r sin e act> 

1 a 2 1 a .  1 aA.p 12. V · A  = -- (r A ) + -- - (Ao sm e) + -- --
r2 ar r r sin e ae r sin e act> 

13. V x A  = _1
_ [� (A sin e) _ aA(I ]r + ! [_1_ aAr _ a(rA.p) ] iJ 

r sin e �e .p act> r sin e act> ar 

+ ! [ a(rAB) _ aAr](jJ 
r ar ae 

14 .  vy = �� (r2 af\ + _
2
_1_ � (sin e af) + �  a2� 

r ar a�} r sin e ae ae r sin e act>" 

15 .  V1A = V( V ' A) - V x  V X A  (Sec. 1 . 1 1 .6). 



Identities 

1 .  (A X B) 0 C = A 0 (B X C) 

2. A x (B X C) = B(A 0 C) - C(A 0 B) 

3. V(jg) = {Vg + g Vf 

4. V(a/b) = (l/b) Va - (a/b2) Vb 

5. V(A o B) = (B 0 V)A + (A 0 V)B + B  x ( V X A) + A  x ( V X B) 

6. V o (jA) = ( Vf) o A + f( V o A) 

7. V 0 (A X B) = B 0 ( V  X A) - A 0 ( V  X B) 

8. ( V o V)f = VY 

9 .  V x ( Vf) = 0 

10. V o ( V X A) = O  

1 1 .  V x (jA) = ( Vf) X A + f( V X A) 

12. V x (A X B) = (B o  V)A - (A o  V)B + ( V o B)A - ( V o A)B. 

13. V x ( V X A) = V( V o A) - V2A (Sec. 1 . 1 1 .6) 

14 (A 0 V)B = [A 
oBx + A

. " 
oBx + A 

OBx]x . x � . � ' &  [ oBy oBy OBy] , + Ax - + Ay - + A, - y 
ox oy OZ 

+ [A 
oB, 

+ A  
oB, 

+ A  
OB,] , 

x ox 
y 

oy ' oz z 

15 .  V '(l/r) = Nr2. This is the gradient calculated at (x ' ,  y ' ,  z ' ), and r is the 
vector r pointing from (x ' ,  y ' , z ' )  to (x, y, z) .  

16. V (l /r) = -Nr2. This is the gradient calculated at (x, y, z) with the same 
vector r. 

17 .  st = ! �c r X dl, where the surface of area d is plane. The vector r extends 
from an arbitrary origin to a point on the curve C that bounds d. 

18. Iv Vfdv = Lddst 
19. I ,,( V X A) dv = - I s4 A X dst, where d is the area of the closed surface 

that bounds the volume v. 
20. �c f dl = - f." Vf X dd where C is the closed curve that bounds the open 

surface of area d. 

Theorems 

1 .  The divergence theorem. I s4 A 0 dst = I v V 0 A dv where d is the area of 
the closed surface that bounds the volume v. 

2. Stokes's theorem: �c A 0 dl = f.<.4 (V X A) 0 dst. 



Physical constants t 

Elementary charge 

Electron rest mass 

Proton rest mass 

Speed of light in vacuum 

Permittivity of vacuum 

Permeability of vacuum 

Avogadro constant 

Boltzmann constant 

Planck constant 

Gravitational constant 

Mass of the sun 

Radius of the sun 

Mean sun-earth distance 

Earth's mean orbital speed 

Mass of the earth 

Radius of the earth 

Mass of the moon 

Radius of the moon 

Moon-earth distance 

t Codata Bulletin, November 1986. 

e = 1 .602177 x 10- 10 C 

m = 9. 10938 x 10-31 kg 

= 5 . 10999 X 105 eV 

mp = 1 . 67262 x 10-27 kg 

= 9.38272 X 108 eV 

c = 2.99792458 X 108 m/ s 

Eo = 8. 85418782 X 10- 12 P/m 

1/4nEo = 8.9875518 x 109 m/P 

110 == 4n x 10-7 H/m 

NA = 6.02213 X 1023 mol- 1 

k = 1 .3806 X 10-34 J/K 

h = 6. 62607 X 10-34 J . s 
fr = h/ (2n) = 1 .054572 x 10-34 J . s 

G = 6.672 X 10- 1 1 N · m2/kg2 

1 .98596 x 1030 kg 

6 .965 x 108 m 

1 .495 x 10" m 

2.98 x 104 m/s 

5 .974 x 1024 kg 

6.378 x 106 m 

7.3305 x 1022 kg 

1 . 74 x 106 m 

3.84393 x 108 km 



Maxwell's equations for stationary media 

A. Differential form with E, B, P, M 

p! - V · P  V · E =  , Eo 

V · B = O, 

B .  Integral form 

LB .  d.rA = 0, 

J ( V  X E) . d.rA = 1 E . dl = _ dA 
, 

d Jc dt 

J ( V  X B) . d.rA = 1 B . dl = 110 J (J! + dP + V X M + Eo dE) . d.rA. 
d Jc .r4 dt dt 

C. Differential form with E, D, H, B 

V · D = PI' 

V · B = O, 

dB V X E + at = O, 

dD V X H - -at = J!. 

D. Sinusoidal fields with E, D, H, B and for linear media 

V ·  EE = P!, 
V · I1H = O, 

V X E + jWI1H = ° 
V X H  - jWErEoE = J. 
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